/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include "time_utils.h" #include "android-base/stringprintf.h" #include "base/logging.h" #if defined(__APPLE__) #include #endif namespace art { using android::base::StringPrintf; std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits) { if (nano_duration == 0) { return "0"; } else { return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration), max_fraction_digits); } } TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) { const uint64_t one_sec = 1000 * 1000 * 1000; const uint64_t one_ms = 1000 * 1000; const uint64_t one_us = 1000; if (nano_duration >= one_sec) { return kTimeUnitSecond; } else if (nano_duration >= one_ms) { return kTimeUnitMillisecond; } else if (nano_duration >= one_us) { return kTimeUnitMicrosecond; } else { return kTimeUnitNanosecond; } } uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) { const uint64_t one_sec = 1000 * 1000 * 1000; const uint64_t one_ms = 1000 * 1000; const uint64_t one_us = 1000; switch (time_unit) { case kTimeUnitSecond: return one_sec; case kTimeUnitMillisecond: return one_ms; case kTimeUnitMicrosecond: return one_us; case kTimeUnitNanosecond: return 1; } return 0; } std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit, size_t max_fraction_digits) { const char* unit = nullptr; uint64_t divisor = GetNsToTimeUnitDivisor(time_unit); switch (time_unit) { case kTimeUnitSecond: unit = "s"; break; case kTimeUnitMillisecond: unit = "ms"; break; case kTimeUnitMicrosecond: unit = "us"; break; case kTimeUnitNanosecond: unit = "ns"; break; } const uint64_t whole_part = nano_duration / divisor; uint64_t fractional_part = nano_duration % divisor; if (fractional_part == 0) { return StringPrintf("%" PRIu64 "%s", whole_part, unit); } else { static constexpr size_t kMaxDigits = 30; size_t avail_digits = kMaxDigits; char fraction_buffer[kMaxDigits]; char* ptr = fraction_buffer; uint64_t multiplier = 10; // This infinite loops if fractional part is 0. while (avail_digits > 1 && fractional_part * multiplier < divisor) { multiplier *= 10; *ptr++ = '0'; avail_digits--; } snprintf(ptr, avail_digits, "%" PRIu64, fractional_part); fraction_buffer[std::min(kMaxDigits - 1, max_fraction_digits)] = '\0'; return StringPrintf("%" PRIu64 ".%s%s", whole_part, fraction_buffer, unit); } } std::string GetIsoDate() { time_t now = time(nullptr); tm tmbuf; tm* ptm = localtime_r(&now, &tmbuf); return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d", ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday, ptm->tm_hour, ptm->tm_min, ptm->tm_sec); } uint64_t MilliTime() { #if defined(__linux__) timespec now; clock_gettime(CLOCK_MONOTONIC, &now); return static_cast(now.tv_sec) * UINT64_C(1000) + now.tv_nsec / UINT64_C(1000000); #else // __APPLE__ timeval now; gettimeofday(&now, nullptr); return static_cast(now.tv_sec) * UINT64_C(1000) + now.tv_usec / UINT64_C(1000); #endif } uint64_t MicroTime() { #if defined(__linux__) timespec now; clock_gettime(CLOCK_MONOTONIC, &now); return static_cast(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000); #else // __APPLE__ timeval now; gettimeofday(&now, nullptr); return static_cast(now.tv_sec) * UINT64_C(1000000) + now.tv_usec; #endif } uint64_t NanoTime() { #if defined(__linux__) timespec now; clock_gettime(CLOCK_MONOTONIC, &now); return static_cast(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec; #else // __APPLE__ timeval now; gettimeofday(&now, nullptr); return static_cast(now.tv_sec) * UINT64_C(1000000000) + now.tv_usec * UINT64_C(1000); #endif } uint64_t ThreadCpuNanoTime() { #if defined(__linux__) timespec now; clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now); return static_cast(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec; #else // __APPLE__ UNIMPLEMENTED(WARNING); return -1; #endif } uint64_t ProcessCpuNanoTime() { #if defined(__linux__) timespec now; clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &now); return static_cast(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec; #else UNIMPLEMENTED(WARNING); return -1; #endif } void NanoSleep(uint64_t ns) { timespec tm; tm.tv_sec = ns / MsToNs(1000); tm.tv_nsec = ns - static_cast(tm.tv_sec) * MsToNs(1000); nanosleep(&tm, nullptr); } void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) { if (absolute) { #if !defined(__APPLE__) clock_gettime(clock, ts); #else UNUSED(clock); timeval tv; gettimeofday(&tv, nullptr); ts->tv_sec = tv.tv_sec; ts->tv_nsec = tv.tv_usec * 1000; #endif } else { ts->tv_sec = 0; ts->tv_nsec = 0; } int64_t end_sec = ts->tv_sec + ms / 1000; constexpr int32_t int32_max = std::numeric_limits::max(); if (UNLIKELY(end_sec >= int32_max)) { // Either ms was intended to denote an infinite timeout, or we have a // problem. The former generally uses the largest possible millisecond // or nanosecond value. Log only in the latter case. constexpr int64_t int64_max = std::numeric_limits::max(); if (ms != int64_max && ms != int64_max / (1000 * 1000)) { LOG(INFO) << "Note: end time exceeds INT32_MAX: " << end_sec; } end_sec = int32_max - 1; // Allow for increment below. } ts->tv_sec = end_sec; ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns; // Catch rollover. if (ts->tv_nsec >= 1000000000L) { ts->tv_sec++; ts->tv_nsec -= 1000000000L; } } } // namespace art