/* * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "jit.h" #include #include "art_method-inl.h" #include "base/enums.h" #include "base/logging.h" #include "base/memory_tool.h" #include "debugger.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "interpreter/interpreter.h" #include "java_vm_ext.h" #include "jit_code_cache.h" #include "oat_file_manager.h" #include "oat_quick_method_header.h" #include "profile_compilation_info.h" #include "profile_saver.h" #include "runtime.h" #include "runtime_options.h" #include "stack.h" #include "stack_map.h" #include "thread-inl.h" #include "thread_list.h" #include "utils.h" namespace art { namespace jit { static constexpr bool kEnableOnStackReplacement = true; // At what priority to schedule jit threads. 9 is the lowest foreground priority on device. static constexpr int kJitPoolThreadPthreadPriority = 9; // Different compilation threshold constants. These can be overridden on the command line. static constexpr size_t kJitDefaultCompileThreshold = 10000; // Non-debug default. static constexpr size_t kJitStressDefaultCompileThreshold = 100; // Fast-debug build. static constexpr size_t kJitSlowStressDefaultCompileThreshold = 2; // Slow-debug build. // JIT compiler void* Jit::jit_library_handle_= nullptr; void* Jit::jit_compiler_handle_ = nullptr; void* (*Jit::jit_load_)(bool*) = nullptr; void (*Jit::jit_unload_)(void*) = nullptr; bool (*Jit::jit_compile_method_)(void*, ArtMethod*, Thread*, bool) = nullptr; void (*Jit::jit_types_loaded_)(void*, mirror::Class**, size_t count) = nullptr; bool Jit::generate_debug_info_ = false; struct StressModeHelper { DECLARE_RUNTIME_DEBUG_FLAG(kSlowMode); }; DEFINE_RUNTIME_DEBUG_FLAG(StressModeHelper, kSlowMode); JitOptions* JitOptions::CreateFromRuntimeArguments(const RuntimeArgumentMap& options) { auto* jit_options = new JitOptions; jit_options->use_jit_compilation_ = options.GetOrDefault(RuntimeArgumentMap::UseJitCompilation); jit_options->code_cache_initial_capacity_ = options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheInitialCapacity); jit_options->code_cache_max_capacity_ = options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheMaxCapacity); jit_options->dump_info_on_shutdown_ = options.Exists(RuntimeArgumentMap::DumpJITInfoOnShutdown); jit_options->profile_saver_options_ = options.GetOrDefault(RuntimeArgumentMap::ProfileSaverOpts); if (options.Exists(RuntimeArgumentMap::JITCompileThreshold)) { jit_options->compile_threshold_ = *options.Get(RuntimeArgumentMap::JITCompileThreshold); } else { jit_options->compile_threshold_ = kIsDebugBuild ? (StressModeHelper::kSlowMode ? kJitSlowStressDefaultCompileThreshold : kJitStressDefaultCompileThreshold) : kJitDefaultCompileThreshold; } if (jit_options->compile_threshold_ > std::numeric_limits::max()) { LOG(FATAL) << "Method compilation threshold is above its internal limit."; } if (options.Exists(RuntimeArgumentMap::JITWarmupThreshold)) { jit_options->warmup_threshold_ = *options.Get(RuntimeArgumentMap::JITWarmupThreshold); if (jit_options->warmup_threshold_ > std::numeric_limits::max()) { LOG(FATAL) << "Method warmup threshold is above its internal limit."; } } else { jit_options->warmup_threshold_ = jit_options->compile_threshold_ / 2; } if (options.Exists(RuntimeArgumentMap::JITOsrThreshold)) { jit_options->osr_threshold_ = *options.Get(RuntimeArgumentMap::JITOsrThreshold); if (jit_options->osr_threshold_ > std::numeric_limits::max()) { LOG(FATAL) << "Method on stack replacement threshold is above its internal limit."; } } else { jit_options->osr_threshold_ = jit_options->compile_threshold_ * 2; if (jit_options->osr_threshold_ > std::numeric_limits::max()) { jit_options->osr_threshold_ = std::numeric_limits::max(); } } if (options.Exists(RuntimeArgumentMap::JITPriorityThreadWeight)) { jit_options->priority_thread_weight_ = *options.Get(RuntimeArgumentMap::JITPriorityThreadWeight); if (jit_options->priority_thread_weight_ > jit_options->warmup_threshold_) { LOG(FATAL) << "Priority thread weight is above the warmup threshold."; } else if (jit_options->priority_thread_weight_ == 0) { LOG(FATAL) << "Priority thread weight cannot be 0."; } } else { jit_options->priority_thread_weight_ = std::max( jit_options->warmup_threshold_ / Jit::kDefaultPriorityThreadWeightRatio, static_cast(1)); } if (options.Exists(RuntimeArgumentMap::JITInvokeTransitionWeight)) { jit_options->invoke_transition_weight_ = *options.Get(RuntimeArgumentMap::JITInvokeTransitionWeight); if (jit_options->invoke_transition_weight_ > jit_options->warmup_threshold_) { LOG(FATAL) << "Invoke transition weight is above the warmup threshold."; } else if (jit_options->invoke_transition_weight_ == 0) { LOG(FATAL) << "Invoke transition weight cannot be 0."; } } else { jit_options->invoke_transition_weight_ = std::max( jit_options->warmup_threshold_ / Jit::kDefaultInvokeTransitionWeightRatio, static_cast(1)); } return jit_options; } bool Jit::ShouldUsePriorityThreadWeight() { return Runtime::Current()->InJankPerceptibleProcessState() && Thread::Current()->IsJitSensitiveThread(); } void Jit::DumpInfo(std::ostream& os) { code_cache_->Dump(os); cumulative_timings_.Dump(os); MutexLock mu(Thread::Current(), lock_); memory_use_.PrintMemoryUse(os); } void Jit::DumpForSigQuit(std::ostream& os) { DumpInfo(os); ProfileSaver::DumpInstanceInfo(os); } void Jit::AddTimingLogger(const TimingLogger& logger) { cumulative_timings_.AddLogger(logger); } Jit::Jit() : dump_info_on_shutdown_(false), cumulative_timings_("JIT timings"), memory_use_("Memory used for compilation", 16), lock_("JIT memory use lock"), use_jit_compilation_(true), hot_method_threshold_(0), warm_method_threshold_(0), osr_method_threshold_(0), priority_thread_weight_(0), invoke_transition_weight_(0) {} Jit* Jit::Create(JitOptions* options, std::string* error_msg) { DCHECK(options->UseJitCompilation() || options->GetProfileSaverOptions().IsEnabled()); std::unique_ptr jit(new Jit); jit->dump_info_on_shutdown_ = options->DumpJitInfoOnShutdown(); if (jit_compiler_handle_ == nullptr && !LoadCompiler(error_msg)) { return nullptr; } jit->code_cache_.reset(JitCodeCache::Create( options->GetCodeCacheInitialCapacity(), options->GetCodeCacheMaxCapacity(), jit->generate_debug_info_, error_msg)); if (jit->GetCodeCache() == nullptr) { return nullptr; } jit->use_jit_compilation_ = options->UseJitCompilation(); jit->profile_saver_options_ = options->GetProfileSaverOptions(); VLOG(jit) << "JIT created with initial_capacity=" << PrettySize(options->GetCodeCacheInitialCapacity()) << ", max_capacity=" << PrettySize(options->GetCodeCacheMaxCapacity()) << ", compile_threshold=" << options->GetCompileThreshold() << ", profile_saver_options=" << options->GetProfileSaverOptions(); jit->hot_method_threshold_ = options->GetCompileThreshold(); jit->warm_method_threshold_ = options->GetWarmupThreshold(); jit->osr_method_threshold_ = options->GetOsrThreshold(); jit->priority_thread_weight_ = options->GetPriorityThreadWeight(); jit->invoke_transition_weight_ = options->GetInvokeTransitionWeight(); jit->CreateThreadPool(); // Notify native debugger about the classes already loaded before the creation of the jit. jit->DumpTypeInfoForLoadedTypes(Runtime::Current()->GetClassLinker()); return jit.release(); } bool Jit::LoadCompilerLibrary(std::string* error_msg) { jit_library_handle_ = dlopen( kIsDebugBuild ? "libartd-compiler.so" : "libart-compiler.so", RTLD_NOW); if (jit_library_handle_ == nullptr) { std::ostringstream oss; oss << "JIT could not load libart-compiler.so: " << dlerror(); *error_msg = oss.str(); return false; } jit_load_ = reinterpret_cast(dlsym(jit_library_handle_, "jit_load")); if (jit_load_ == nullptr) { dlclose(jit_library_handle_); *error_msg = "JIT couldn't find jit_load entry point"; return false; } jit_unload_ = reinterpret_cast( dlsym(jit_library_handle_, "jit_unload")); if (jit_unload_ == nullptr) { dlclose(jit_library_handle_); *error_msg = "JIT couldn't find jit_unload entry point"; return false; } jit_compile_method_ = reinterpret_cast( dlsym(jit_library_handle_, "jit_compile_method")); if (jit_compile_method_ == nullptr) { dlclose(jit_library_handle_); *error_msg = "JIT couldn't find jit_compile_method entry point"; return false; } jit_types_loaded_ = reinterpret_cast( dlsym(jit_library_handle_, "jit_types_loaded")); if (jit_types_loaded_ == nullptr) { dlclose(jit_library_handle_); *error_msg = "JIT couldn't find jit_types_loaded entry point"; return false; } return true; } bool Jit::LoadCompiler(std::string* error_msg) { if (jit_library_handle_ == nullptr && !LoadCompilerLibrary(error_msg)) { return false; } bool will_generate_debug_symbols = false; VLOG(jit) << "Calling JitLoad interpreter_only=" << Runtime::Current()->GetInstrumentation()->InterpretOnly(); jit_compiler_handle_ = (jit_load_)(&will_generate_debug_symbols); if (jit_compiler_handle_ == nullptr) { dlclose(jit_library_handle_); *error_msg = "JIT couldn't load compiler"; return false; } generate_debug_info_ = will_generate_debug_symbols; return true; } bool Jit::CompileMethod(ArtMethod* method, Thread* self, bool osr) { DCHECK(Runtime::Current()->UseJitCompilation()); DCHECK(!method->IsRuntimeMethod()); // Don't compile the method if it has breakpoints. if (Dbg::IsDebuggerActive() && Dbg::MethodHasAnyBreakpoints(method)) { VLOG(jit) << "JIT not compiling " << method->PrettyMethod() << " due to breakpoint"; return false; } // Don't compile the method if we are supposed to be deoptimized. instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); if (instrumentation->AreAllMethodsDeoptimized() || instrumentation->IsDeoptimized(method)) { VLOG(jit) << "JIT not compiling " << method->PrettyMethod() << " due to deoptimization"; return false; } // If we get a request to compile a proxy method, we pass the actual Java method // of that proxy method, as the compiler does not expect a proxy method. ArtMethod* method_to_compile = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); if (!code_cache_->NotifyCompilationOf(method_to_compile, self, osr)) { return false; } VLOG(jit) << "Compiling method " << ArtMethod::PrettyMethod(method_to_compile) << " osr=" << std::boolalpha << osr; bool success = jit_compile_method_(jit_compiler_handle_, method_to_compile, self, osr); code_cache_->DoneCompiling(method_to_compile, self, osr); if (!success) { VLOG(jit) << "Failed to compile method " << ArtMethod::PrettyMethod(method_to_compile) << " osr=" << std::boolalpha << osr; } if (kIsDebugBuild) { if (self->IsExceptionPending()) { mirror::Throwable* exception = self->GetException(); LOG(FATAL) << "No pending exception expected after compiling " << ArtMethod::PrettyMethod(method) << ": " << exception->Dump(); } } return success; } void Jit::CreateThreadPool() { // There is a DCHECK in the 'AddSamples' method to ensure the tread pool // is not null when we instrument. // We need peers as we may report the JIT thread, e.g., in the debugger. constexpr bool kJitPoolNeedsPeers = true; thread_pool_.reset(new ThreadPool("Jit thread pool", 1, kJitPoolNeedsPeers)); thread_pool_->SetPthreadPriority(kJitPoolThreadPthreadPriority); Start(); } void Jit::DeleteThreadPool() { Thread* self = Thread::Current(); DCHECK(Runtime::Current()->IsShuttingDown(self)); if (thread_pool_ != nullptr) { std::unique_ptr pool; { ScopedSuspendAll ssa(__FUNCTION__); // Clear thread_pool_ field while the threads are suspended. // A mutator in the 'AddSamples' method will check against it. pool = std::move(thread_pool_); } // When running sanitized, let all tasks finish to not leak. Otherwise just clear the queue. if (!RUNNING_ON_MEMORY_TOOL) { pool->StopWorkers(self); pool->RemoveAllTasks(self); } // We could just suspend all threads, but we know those threads // will finish in a short period, so it's not worth adding a suspend logic // here. Besides, this is only done for shutdown. pool->Wait(self, false, false); } } void Jit::StartProfileSaver(const std::string& filename, const std::vector& code_paths) { if (profile_saver_options_.IsEnabled()) { ProfileSaver::Start(profile_saver_options_, filename, code_cache_.get(), code_paths); } } void Jit::StopProfileSaver() { if (profile_saver_options_.IsEnabled() && ProfileSaver::IsStarted()) { ProfileSaver::Stop(dump_info_on_shutdown_); } } bool Jit::JitAtFirstUse() { return HotMethodThreshold() == 0; } bool Jit::CanInvokeCompiledCode(ArtMethod* method) { return code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode()); } Jit::~Jit() { DCHECK(!profile_saver_options_.IsEnabled() || !ProfileSaver::IsStarted()); if (dump_info_on_shutdown_) { DumpInfo(LOG_STREAM(INFO)); Runtime::Current()->DumpDeoptimizations(LOG_STREAM(INFO)); } DeleteThreadPool(); if (jit_compiler_handle_ != nullptr) { jit_unload_(jit_compiler_handle_); jit_compiler_handle_ = nullptr; } if (jit_library_handle_ != nullptr) { dlclose(jit_library_handle_); jit_library_handle_ = nullptr; } } void Jit::NewTypeLoadedIfUsingJit(mirror::Class* type) { if (!Runtime::Current()->UseJitCompilation()) { // No need to notify if we only use the JIT to save profiles. return; } jit::Jit* jit = Runtime::Current()->GetJit(); if (jit->generate_debug_info_) { DCHECK(jit->jit_types_loaded_ != nullptr); jit->jit_types_loaded_(jit->jit_compiler_handle_, &type, 1); } } void Jit::DumpTypeInfoForLoadedTypes(ClassLinker* linker) { struct CollectClasses : public ClassVisitor { bool operator()(ObjPtr klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { classes_.push_back(klass.Ptr()); return true; } std::vector classes_; }; if (generate_debug_info_) { ScopedObjectAccess so(Thread::Current()); CollectClasses visitor; linker->VisitClasses(&visitor); jit_types_loaded_(jit_compiler_handle_, visitor.classes_.data(), visitor.classes_.size()); } } extern "C" void art_quick_osr_stub(void** stack, uint32_t stack_size_in_bytes, const uint8_t* native_pc, JValue* result, const char* shorty, Thread* self); bool Jit::MaybeDoOnStackReplacement(Thread* thread, ArtMethod* method, uint32_t dex_pc, int32_t dex_pc_offset, JValue* result) { if (!kEnableOnStackReplacement) { return false; } Jit* jit = Runtime::Current()->GetJit(); if (jit == nullptr) { return false; } if (UNLIKELY(__builtin_frame_address(0) < thread->GetStackEnd())) { // Don't attempt to do an OSR if we are close to the stack limit. Since // the interpreter frames are still on stack, OSR has the potential // to stack overflow even for a simple loop. // b/27094810. return false; } // Get the actual Java method if this method is from a proxy class. The compiler // and the JIT code cache do not expect methods from proxy classes. method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); // Cheap check if the method has been compiled already. That's an indicator that we should // osr into it. if (!jit->GetCodeCache()->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { return false; } // Fetch some data before looking up for an OSR method. We don't want thread // suspension once we hold an OSR method, as the JIT code cache could delete the OSR // method while we are being suspended. const size_t number_of_vregs = method->GetCodeItem()->registers_size_; const char* shorty = method->GetShorty(); std::string method_name(VLOG_IS_ON(jit) ? method->PrettyMethod() : ""); void** memory = nullptr; size_t frame_size = 0; ShadowFrame* shadow_frame = nullptr; const uint8_t* native_pc = nullptr; { ScopedAssertNoThreadSuspension sts("Holding OSR method"); const OatQuickMethodHeader* osr_method = jit->GetCodeCache()->LookupOsrMethodHeader(method); if (osr_method == nullptr) { // No osr method yet, just return to the interpreter. return false; } CodeInfo code_info = osr_method->GetOptimizedCodeInfo(); CodeInfoEncoding encoding = code_info.ExtractEncoding(); // Find stack map starting at the target dex_pc. StackMap stack_map = code_info.GetOsrStackMapForDexPc(dex_pc + dex_pc_offset, encoding); if (!stack_map.IsValid()) { // There is no OSR stack map for this dex pc offset. Just return to the interpreter in the // hope that the next branch has one. return false; } // Before allowing the jump, make sure the debugger is not active to avoid jumping from // interpreter to OSR while e.g. single stepping. Note that we could selectively disable // OSR when single stepping, but that's currently hard to know at this point. if (Dbg::IsDebuggerActive()) { return false; } // We found a stack map, now fill the frame with dex register values from the interpreter's // shadow frame. DexRegisterMap vreg_map = code_info.GetDexRegisterMapOf(stack_map, encoding, number_of_vregs); frame_size = osr_method->GetFrameSizeInBytes(); // Allocate memory to put shadow frame values. The osr stub will copy that memory to // stack. // Note that we could pass the shadow frame to the stub, and let it copy the values there, // but that is engineering complexity not worth the effort for something like OSR. memory = reinterpret_cast(malloc(frame_size)); CHECK(memory != nullptr); memset(memory, 0, frame_size); // Art ABI: ArtMethod is at the bottom of the stack. memory[0] = method; shadow_frame = thread->PopShadowFrame(); if (!vreg_map.IsValid()) { // If we don't have a dex register map, then there are no live dex registers at // this dex pc. } else { for (uint16_t vreg = 0; vreg < number_of_vregs; ++vreg) { DexRegisterLocation::Kind location = vreg_map.GetLocationKind(vreg, number_of_vregs, code_info, encoding); if (location == DexRegisterLocation::Kind::kNone) { // Dex register is dead or uninitialized. continue; } if (location == DexRegisterLocation::Kind::kConstant) { // We skip constants because the compiled code knows how to handle them. continue; } DCHECK_EQ(location, DexRegisterLocation::Kind::kInStack); int32_t vreg_value = shadow_frame->GetVReg(vreg); int32_t slot_offset = vreg_map.GetStackOffsetInBytes(vreg, number_of_vregs, code_info, encoding); DCHECK_LT(slot_offset, static_cast(frame_size)); DCHECK_GT(slot_offset, 0); (reinterpret_cast(memory))[slot_offset / sizeof(int32_t)] = vreg_value; } } native_pc = stack_map.GetNativePcOffset(encoding.stack_map.encoding, kRuntimeISA) + osr_method->GetEntryPoint(); VLOG(jit) << "Jumping to " << method_name << "@" << std::hex << reinterpret_cast(native_pc); } { ManagedStack fragment; thread->PushManagedStackFragment(&fragment); (*art_quick_osr_stub)(memory, frame_size, native_pc, result, shorty, thread); if (UNLIKELY(thread->GetException() == Thread::GetDeoptimizationException())) { thread->DeoptimizeWithDeoptimizationException(result); } thread->PopManagedStackFragment(fragment); } free(memory); thread->PushShadowFrame(shadow_frame); VLOG(jit) << "Done running OSR code for " << method_name; return true; } void Jit::AddMemoryUsage(ArtMethod* method, size_t bytes) { if (bytes > 4 * MB) { LOG(INFO) << "Compiler allocated " << PrettySize(bytes) << " to compile " << ArtMethod::PrettyMethod(method); } MutexLock mu(Thread::Current(), lock_); memory_use_.AddValue(bytes); } class JitCompileTask FINAL : public Task { public: enum TaskKind { kAllocateProfile, kCompile, kCompileOsr }; JitCompileTask(ArtMethod* method, TaskKind kind) : method_(method), kind_(kind) { ScopedObjectAccess soa(Thread::Current()); // Add a global ref to the class to prevent class unloading until compilation is done. klass_ = soa.Vm()->AddGlobalRef(soa.Self(), method_->GetDeclaringClass()); CHECK(klass_ != nullptr); } ~JitCompileTask() { ScopedObjectAccess soa(Thread::Current()); soa.Vm()->DeleteGlobalRef(soa.Self(), klass_); } void Run(Thread* self) OVERRIDE { ScopedObjectAccess soa(self); if (kind_ == kCompile) { Runtime::Current()->GetJit()->CompileMethod(method_, self, /* osr */ false); } else if (kind_ == kCompileOsr) { Runtime::Current()->GetJit()->CompileMethod(method_, self, /* osr */ true); } else { DCHECK(kind_ == kAllocateProfile); if (ProfilingInfo::Create(self, method_, /* retry_allocation */ true)) { VLOG(jit) << "Start profiling " << ArtMethod::PrettyMethod(method_); } } ProfileSaver::NotifyJitActivity(); } void Finalize() OVERRIDE { delete this; } private: ArtMethod* const method_; const TaskKind kind_; jobject klass_; DISALLOW_IMPLICIT_CONSTRUCTORS(JitCompileTask); }; void Jit::AddSamples(Thread* self, ArtMethod* method, uint16_t count, bool with_backedges) { if (thread_pool_ == nullptr) { // Should only see this when shutting down. DCHECK(Runtime::Current()->IsShuttingDown(self)); return; } if (method->IsClassInitializer() || method->IsNative() || !method->IsCompilable()) { // We do not want to compile such methods. return; } DCHECK(thread_pool_ != nullptr); DCHECK_GT(warm_method_threshold_, 0); DCHECK_GT(hot_method_threshold_, warm_method_threshold_); DCHECK_GT(osr_method_threshold_, hot_method_threshold_); DCHECK_GE(priority_thread_weight_, 1); DCHECK_LE(priority_thread_weight_, hot_method_threshold_); int32_t starting_count = method->GetCounter(); if (Jit::ShouldUsePriorityThreadWeight()) { count *= priority_thread_weight_; } int32_t new_count = starting_count + count; // int32 here to avoid wrap-around; if (starting_count < warm_method_threshold_) { if ((new_count >= warm_method_threshold_) && (method->GetProfilingInfo(kRuntimePointerSize) == nullptr)) { bool success = ProfilingInfo::Create(self, method, /* retry_allocation */ false); if (success) { VLOG(jit) << "Start profiling " << method->PrettyMethod(); } if (thread_pool_ == nullptr) { // Calling ProfilingInfo::Create might put us in a suspended state, which could // lead to the thread pool being deleted when we are shutting down. DCHECK(Runtime::Current()->IsShuttingDown(self)); return; } if (!success) { // We failed allocating. Instead of doing the collection on the Java thread, we push // an allocation to a compiler thread, that will do the collection. thread_pool_->AddTask(self, new JitCompileTask(method, JitCompileTask::kAllocateProfile)); } } // Avoid jumping more than one state at a time. new_count = std::min(new_count, hot_method_threshold_ - 1); } else if (use_jit_compilation_) { if (starting_count < hot_method_threshold_) { if ((new_count >= hot_method_threshold_) && !code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { DCHECK(thread_pool_ != nullptr); thread_pool_->AddTask(self, new JitCompileTask(method, JitCompileTask::kCompile)); } // Avoid jumping more than one state at a time. new_count = std::min(new_count, osr_method_threshold_ - 1); } else if (starting_count < osr_method_threshold_) { if (!with_backedges) { // If the samples don't contain any back edge, we don't increment the hotness. return; } if ((new_count >= osr_method_threshold_) && !code_cache_->IsOsrCompiled(method)) { DCHECK(thread_pool_ != nullptr); thread_pool_->AddTask(self, new JitCompileTask(method, JitCompileTask::kCompileOsr)); } } } // Update hotness counter method->SetCounter(new_count); } void Jit::MethodEntered(Thread* thread, ArtMethod* method) { Runtime* runtime = Runtime::Current(); if (UNLIKELY(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse())) { // The compiler requires a ProfilingInfo object. ProfilingInfo::Create(thread, method, /* retry_allocation */ true); JitCompileTask compile_task(method, JitCompileTask::kCompile); compile_task.Run(thread); return; } ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize); // Update the entrypoint if the ProfilingInfo has one. The interpreter will call it // instead of interpreting the method. if ((profiling_info != nullptr) && (profiling_info->GetSavedEntryPoint() != nullptr)) { Runtime::Current()->GetInstrumentation()->UpdateMethodsCode( method, profiling_info->GetSavedEntryPoint()); } else { AddSamples(thread, method, 1, /* with_backedges */false); } } void Jit::InvokeVirtualOrInterface(ObjPtr this_object, ArtMethod* caller, uint32_t dex_pc, ArtMethod* callee ATTRIBUTE_UNUSED) { ScopedAssertNoThreadSuspension ants(__FUNCTION__); DCHECK(this_object != nullptr); ProfilingInfo* info = caller->GetProfilingInfo(kRuntimePointerSize); if (info != nullptr) { info->AddInvokeInfo(dex_pc, this_object->GetClass()); } } void Jit::WaitForCompilationToFinish(Thread* self) { if (thread_pool_ != nullptr) { thread_pool_->Wait(self, false, false); } } void Jit::Stop() { Thread* self = Thread::Current(); // TODO(ngeoffray): change API to not require calling WaitForCompilationToFinish twice. WaitForCompilationToFinish(self); GetThreadPool()->StopWorkers(self); WaitForCompilationToFinish(self); } void Jit::Start() { GetThreadPool()->StartWorkers(Thread::Current()); } ScopedJitSuspend::ScopedJitSuspend() { jit::Jit* jit = Runtime::Current()->GetJit(); was_on_ = (jit != nullptr) && (jit->GetThreadPool() != nullptr); if (was_on_) { jit->Stop(); } } ScopedJitSuspend::~ScopedJitSuspend() { if (was_on_) { DCHECK(Runtime::Current()->GetJit() != nullptr); DCHECK(Runtime::Current()->GetJit()->GetThreadPool() != nullptr); Runtime::Current()->GetJit()->Start(); } } } // namespace jit } // namespace art