/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_OBJECT_INL_H_ #define ART_RUNTIME_MIRROR_OBJECT_INL_H_ #include "object.h" #include "art_field.h" #include "art_method.h" #include "atomic.h" #include "array-inl.h" #include "class-inl.h" #include "class_flags.h" #include "class_linker.h" #include "dex_cache.h" #include "lock_word-inl.h" #include "monitor.h" #include "object_array-inl.h" #include "object_reference-inl.h" #include "object-readbarrier-inl.h" #include "obj_ptr-inl.h" #include "read_barrier-inl.h" #include "reference.h" #include "runtime.h" #include "string-inl.h" #include "throwable.h" namespace art { namespace mirror { inline uint32_t Object::ClassSize(PointerSize pointer_size) { uint32_t vtable_entries = kVTableLength; return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size); } template inline Class* Object::GetClass() { return GetFieldObject( OFFSET_OF_OBJECT_MEMBER(Object, klass_)); } template inline void Object::SetClass(ObjPtr new_klass) { // new_klass may be null prior to class linker initialization. // We don't mark the card as this occurs as part of object allocation. Not all objects have // backing cards, such as large objects. // We use non transactional version since we can't undo this write. We also disable checking as // we may run in transaction mode here. SetFieldObjectWithoutWriteBarrier(kVerifyFlags & ~kVerifyThis)>( OFFSET_OF_OBJECT_MEMBER(Object, klass_), new_klass); } template inline void Object::SetLockWord(LockWord new_val, bool as_volatile) { // Force use of non-transactional mode and do not check. if (as_volatile) { SetField32Volatile( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), new_val.GetValue()); } else { SetField32( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), new_val.GetValue()); } } inline bool Object::CasLockWordWeakSequentiallyConsistent(LockWord old_val, LockWord new_val) { // Force use of non-transactional mode and do not check. return CasFieldWeakSequentiallyConsistent32( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue()); } inline bool Object::CasLockWordWeakAcquire(LockWord old_val, LockWord new_val) { // Force use of non-transactional mode and do not check. return CasFieldWeakAcquire32( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue()); } inline uint32_t Object::GetLockOwnerThreadId() { return Monitor::GetLockOwnerThreadId(this); } inline mirror::Object* Object::MonitorEnter(Thread* self) { return Monitor::MonitorEnter(self, this, /*trylock*/false); } inline mirror::Object* Object::MonitorTryEnter(Thread* self) { return Monitor::MonitorEnter(self, this, /*trylock*/true); } inline bool Object::MonitorExit(Thread* self) { return Monitor::MonitorExit(self, this); } inline void Object::Notify(Thread* self) { Monitor::Notify(self, this); } inline void Object::NotifyAll(Thread* self) { Monitor::NotifyAll(self, this); } inline void Object::Wait(Thread* self) { Monitor::Wait(self, this, 0, 0, true, kWaiting); } inline void Object::Wait(Thread* self, int64_t ms, int32_t ns) { Monitor::Wait(self, this, ms, ns, true, kTimedWaiting); } inline uint32_t Object::GetMarkBit() { #ifdef USE_READ_BARRIER return GetLockWord(false).MarkBitState(); #else LOG(FATAL) << "Unreachable"; UNREACHABLE(); #endif } inline void Object::SetReadBarrierState(uint32_t rb_state) { if (!kUseBakerReadBarrier) { LOG(FATAL) << "Unreachable"; UNREACHABLE(); } DCHECK(ReadBarrier::IsValidReadBarrierState(rb_state)) << rb_state; LockWord lw = GetLockWord(false); lw.SetReadBarrierState(rb_state); SetLockWord(lw, false); } inline void Object::AssertReadBarrierState() const { CHECK(kUseBakerReadBarrier); Object* obj = const_cast(this); DCHECK(obj->GetReadBarrierState() == ReadBarrier::WhiteState()) << "Bad Baker pointer: obj=" << reinterpret_cast(obj) << " rb_state" << reinterpret_cast(obj->GetReadBarrierState()); } template inline bool Object::VerifierInstanceOf(ObjPtr klass) { DCHECK(klass != nullptr); DCHECK(GetClass() != nullptr); return klass->IsInterface() || InstanceOf(klass); } template inline bool Object::InstanceOf(ObjPtr klass) { DCHECK(klass != nullptr); DCHECK(GetClass() != nullptr); return klass->IsAssignableFrom(GetClass()); } template inline bool Object::IsClass() { Class* java_lang_Class = GetClass()-> template GetClass(); return GetClass(kVerifyFlags & ~kVerifyThis), kReadBarrierOption>() == java_lang_Class; } template inline Class* Object::AsClass() { DCHECK((IsClass())); return down_cast(this); } template inline bool Object::IsObjectArray() { constexpr auto kNewFlags = static_cast(kVerifyFlags & ~kVerifyThis); return IsArrayInstance() && !GetClass()-> template GetComponentType()->IsPrimitive(); } template inline ObjectArray* Object::AsObjectArray() { DCHECK((IsObjectArray())); return down_cast*>(this); } template inline bool Object::IsArrayInstance() { return GetClass()-> template IsArrayClass(); } template inline bool Object::IsReferenceInstance() { return GetClass()->IsTypeOfReferenceClass(); } template inline Reference* Object::AsReference() { DCHECK((IsReferenceInstance())); return down_cast(this); } template inline Array* Object::AsArray() { DCHECK((IsArrayInstance())); return down_cast(this); } template inline BooleanArray* Object::AsBooleanArray() { constexpr auto kNewFlags = static_cast(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass()->IsArrayClass()); DCHECK(GetClass()->GetComponentType()->IsPrimitiveBoolean()); return down_cast(this); } template inline ByteArray* Object::AsByteArray() { constexpr auto kNewFlags = static_cast(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass()->IsArrayClass()); DCHECK(GetClass()->template GetComponentType()->IsPrimitiveByte()); return down_cast(this); } template inline ByteArray* Object::AsByteSizedArray() { constexpr auto kNewFlags = static_cast(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass()->IsArrayClass()); DCHECK(GetClass()->template GetComponentType()->IsPrimitiveByte() || GetClass()->template GetComponentType()->IsPrimitiveBoolean()); return down_cast(this); } template inline CharArray* Object::AsCharArray() { constexpr auto kNewFlags = static_cast(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass()->IsArrayClass()); DCHECK(GetClass()->template GetComponentType()->IsPrimitiveChar()); return down_cast(this); } template inline ShortArray* Object::AsShortArray() { constexpr auto kNewFlags = static_cast(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass()->IsArrayClass()); DCHECK(GetClass()->template GetComponentType()->IsPrimitiveShort()); return down_cast(this); } template inline ShortArray* Object::AsShortSizedArray() { constexpr auto kNewFlags = static_cast(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass()->IsArrayClass()); DCHECK(GetClass()->template GetComponentType()->IsPrimitiveShort() || GetClass()->template GetComponentType()->IsPrimitiveChar()); return down_cast(this); } template inline bool Object::IsIntArray() { constexpr auto kNewFlags = static_cast(kVerifyFlags & ~kVerifyThis); ObjPtr klass = GetClass(); ObjPtr component_type = klass->GetComponentType(); return component_type != nullptr && component_type->template IsPrimitiveInt(); } template inline IntArray* Object::AsIntArray() { DCHECK((IsIntArray())); return down_cast(this); } template inline bool Object::IsLongArray() { constexpr auto kNewFlags = static_cast(kVerifyFlags & ~kVerifyThis); ObjPtr klass = GetClass(); ObjPtr component_type = klass->GetComponentType(); return component_type != nullptr && component_type->template IsPrimitiveLong(); } template inline LongArray* Object::AsLongArray() { DCHECK((IsLongArray())); return down_cast(this); } template inline bool Object::IsFloatArray() { constexpr auto kNewFlags = static_cast(kVerifyFlags & ~kVerifyThis); auto* component_type = GetClass()->GetComponentType(); return component_type != nullptr && component_type->template IsPrimitiveFloat(); } template inline FloatArray* Object::AsFloatArray() { DCHECK(IsFloatArray()); constexpr auto kNewFlags = static_cast(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass()->IsArrayClass()); DCHECK(GetClass()->template GetComponentType()->IsPrimitiveFloat()); return down_cast(this); } template inline bool Object::IsDoubleArray() { constexpr auto kNewFlags = static_cast(kVerifyFlags & ~kVerifyThis); auto* component_type = GetClass()->GetComponentType(); return component_type != nullptr && component_type->template IsPrimitiveDouble(); } template inline DoubleArray* Object::AsDoubleArray() { DCHECK(IsDoubleArray()); constexpr auto kNewFlags = static_cast(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass()->IsArrayClass()); DCHECK(GetClass()->template GetComponentType()->IsPrimitiveDouble()); return down_cast(this); } template inline bool Object::IsString() { return GetClass()->IsStringClass(); } template inline String* Object::AsString() { DCHECK((IsString())); return down_cast(this); } template inline Throwable* Object::AsThrowable() { DCHECK(GetClass()->IsThrowableClass()); return down_cast(this); } template inline bool Object::IsWeakReferenceInstance() { return GetClass()->IsWeakReferenceClass(); } template inline bool Object::IsSoftReferenceInstance() { return GetClass()->IsSoftReferenceClass(); } template inline bool Object::IsFinalizerReferenceInstance() { return GetClass()->IsFinalizerReferenceClass(); } template inline FinalizerReference* Object::AsFinalizerReference() { DCHECK(IsFinalizerReferenceInstance()); return down_cast(this); } template inline bool Object::IsPhantomReferenceInstance() { return GetClass()->IsPhantomReferenceClass(); } template inline size_t Object::SizeOf() { // Read barrier is never required for SizeOf since objects sizes are constant. Reading from-space // values is OK because of that. static constexpr ReadBarrierOption kReadBarrierOption = kWithoutReadBarrier; size_t result; constexpr auto kNewFlags = static_cast(kVerifyFlags & ~kVerifyThis); if (IsArrayInstance()) { result = AsArray()-> template SizeOf(); } else if (IsClass()) { result = AsClass()-> template SizeOf(); } else if (GetClass()->IsStringClass()) { result = AsString()-> template SizeOf(); } else { result = GetClass()-> template GetObjectSize(); } DCHECK_GE(result, sizeof(Object)) << " class=" << Class::PrettyClass(GetClass()); return result; } template inline uint8_t Object::GetFieldBoolean(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField(field_offset); } template inline int8_t Object::GetFieldByte(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField(field_offset); } template inline uint8_t Object::GetFieldBooleanVolatile(MemberOffset field_offset) { return GetFieldBoolean(field_offset); } template inline int8_t Object::GetFieldByteVolatile(MemberOffset field_offset) { return GetFieldByte(field_offset); } template inline void Object::SetFieldBoolean(MemberOffset field_offset, uint8_t new_value) REQUIRES_SHARED(Locks::mutator_lock_) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldBoolean(this, field_offset, GetFieldBoolean(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField(field_offset, new_value); } template inline void Object::SetFieldByte(MemberOffset field_offset, int8_t new_value) REQUIRES_SHARED(Locks::mutator_lock_) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldByte(this, field_offset, GetFieldByte(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField(field_offset, new_value); } template inline void Object::SetFieldBooleanVolatile(MemberOffset field_offset, uint8_t new_value) { return SetFieldBoolean( field_offset, new_value); } template inline void Object::SetFieldByteVolatile(MemberOffset field_offset, int8_t new_value) { return SetFieldByte( field_offset, new_value); } template inline uint16_t Object::GetFieldChar(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField(field_offset); } template inline int16_t Object::GetFieldShort(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return GetField(field_offset); } template inline uint16_t Object::GetFieldCharVolatile(MemberOffset field_offset) { return GetFieldChar(field_offset); } template inline int16_t Object::GetFieldShortVolatile(MemberOffset field_offset) { return GetFieldShort(field_offset); } template inline void Object::SetFieldChar(MemberOffset field_offset, uint16_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldChar(this, field_offset, GetFieldChar(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField(field_offset, new_value); } template inline void Object::SetFieldShort(MemberOffset field_offset, int16_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldChar(this, field_offset, GetFieldShort(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField(field_offset, new_value); } template inline void Object::SetFieldCharVolatile(MemberOffset field_offset, uint16_t new_value) { return SetFieldChar( field_offset, new_value); } template inline void Object::SetFieldShortVolatile(MemberOffset field_offset, int16_t new_value) { return SetFieldShort( field_offset, new_value); } template inline void Object::SetField32(MemberOffset field_offset, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, GetField32(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField(field_offset, new_value); } template inline void Object::SetField32Volatile(MemberOffset field_offset, int32_t new_value) { SetField32(field_offset, new_value); } template inline void Object::SetField32Transaction(MemberOffset field_offset, int32_t new_value) { if (Runtime::Current()->IsActiveTransaction()) { SetField32(field_offset, new_value); } else { SetField32(field_offset, new_value); } } // TODO: Pass memory_order_ and strong/weak as arguments to avoid code duplication? template inline bool Object::CasFieldWeakSequentiallyConsistent32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast(raw_addr); return atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_value, new_value); } template inline bool Object::CasFieldWeakAcquire32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast(raw_addr); return atomic_addr->CompareExchangeWeakAcquire(old_value, new_value); } template inline bool Object::CasFieldWeakRelease32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast(raw_addr); return atomic_addr->CompareExchangeWeakRelease(old_value, new_value); } template inline bool Object::CasFieldStrongSequentiallyConsistent32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast(raw_addr); return atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_value, new_value); } template inline void Object::SetField64(MemberOffset field_offset, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, GetField64(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } SetField(field_offset, new_value); } template inline void Object::SetField64Volatile(MemberOffset field_offset, int64_t new_value) { return SetField64(field_offset, new_value); } template inline void Object::SetField64Transaction(MemberOffset field_offset, int32_t new_value) { if (Runtime::Current()->IsActiveTransaction()) { SetField64(field_offset, new_value); } else { SetField64(field_offset, new_value); } } template inline kSize Object::GetFieldAcquire(MemberOffset field_offset) { const uint8_t* raw_addr = reinterpret_cast(this) + field_offset.Int32Value(); const kSize* addr = reinterpret_cast(raw_addr); return reinterpret_cast*>(addr)->LoadAcquire(); } template inline bool Object::CasFieldWeakSequentiallyConsistent64(MemberOffset field_offset, int64_t old_value, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast(this) + field_offset.Int32Value(); Atomic* atomic_addr = reinterpret_cast*>(raw_addr); return atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_value, new_value); } template inline bool Object::CasFieldStrongSequentiallyConsistent64(MemberOffset field_offset, int64_t old_value, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast(this) + field_offset.Int32Value(); Atomic* atomic_addr = reinterpret_cast*>(raw_addr); return atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_value, new_value); } template inline T* Object::GetFieldObject(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } uint8_t* raw_addr = reinterpret_cast(this) + field_offset.Int32Value(); HeapReference* objref_addr = reinterpret_cast*>(raw_addr); T* result = ReadBarrier::Barrier(this, field_offset, objref_addr); if (kIsVolatile) { // TODO: Refactor to use a SequentiallyConsistent load instead. QuasiAtomic::ThreadFenceAcquire(); // Ensure visibility of operations preceding store. } if (kVerifyFlags & kVerifyReads) { VerifyObject(result); } return result; } template inline T* Object::GetFieldObjectVolatile(MemberOffset field_offset) { return GetFieldObject(field_offset); } template inline void Object::SetFieldObjectWithoutWriteBarrier(MemberOffset field_offset, ObjPtr new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { ObjPtr obj; if (kIsVolatile) { obj = GetFieldObjectVolatile(field_offset); } else { obj = GetFieldObject(field_offset); } Runtime::Current()->RecordWriteFieldReference(this, field_offset, obj.Ptr(), true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } uint8_t* raw_addr = reinterpret_cast(this) + field_offset.Int32Value(); HeapReference* objref_addr = reinterpret_cast*>(raw_addr); if (kIsVolatile) { // TODO: Refactor to use a SequentiallyConsistent store instead. QuasiAtomic::ThreadFenceRelease(); // Ensure that prior accesses are visible before store. objref_addr->Assign(new_value.Ptr()); QuasiAtomic::ThreadFenceSequentiallyConsistent(); // Ensure this store occurs before any volatile loads. } else { objref_addr->Assign(new_value.Ptr()); } } template inline void Object::SetFieldObject(MemberOffset field_offset, ObjPtr new_value) { SetFieldObjectWithoutWriteBarrier(field_offset, new_value); if (new_value != nullptr) { Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value); // TODO: Check field assignment could theoretically cause thread suspension, TODO: fix this. CheckFieldAssignment(field_offset, new_value); } } template inline void Object::SetFieldObjectVolatile(MemberOffset field_offset, ObjPtr new_value) { SetFieldObject(field_offset, new_value); } template inline void Object::SetFieldObjectTransaction(MemberOffset field_offset, ObjPtr new_value) { if (Runtime::Current()->IsActiveTransaction()) { SetFieldObject(field_offset, new_value); } else { SetFieldObject(field_offset, new_value); } } template inline HeapReference* Object::GetFieldObjectReferenceAddr(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return reinterpret_cast*>(reinterpret_cast(this) + field_offset.Int32Value()); } template inline bool Object::CasFieldWeakSequentiallyConsistentObject(MemberOffset field_offset, ObjPtr old_value, ObjPtr new_value) { bool success = CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier< kTransactionActive, kCheckTransaction, kVerifyFlags>(field_offset, old_value, new_value); if (success) { Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value); } return success; } template inline bool Object::CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier( MemberOffset field_offset, ObjPtr old_value, ObjPtr new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } if (kVerifyFlags & kVerifyReads) { VerifyObject(old_value); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true); } HeapReference old_ref(HeapReference::FromObjPtr(old_value)); HeapReference new_ref(HeapReference::FromObjPtr(new_value)); uint8_t* raw_addr = reinterpret_cast(this) + field_offset.Int32Value(); Atomic* atomic_addr = reinterpret_cast*>(raw_addr); bool success = atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_ref.reference_, new_ref.reference_); return success; } template inline bool Object::CasFieldStrongSequentiallyConsistentObject(MemberOffset field_offset, ObjPtr old_value, ObjPtr new_value) { bool success = CasFieldStrongSequentiallyConsistentObjectWithoutWriteBarrier< kTransactionActive, kCheckTransaction, kVerifyFlags>(field_offset, old_value, new_value); if (success) { Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value); } return success; } template inline bool Object::CasFieldStrongSequentiallyConsistentObjectWithoutWriteBarrier( MemberOffset field_offset, ObjPtr old_value, ObjPtr new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } if (kVerifyFlags & kVerifyReads) { VerifyObject(old_value); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true); } HeapReference old_ref(HeapReference::FromObjPtr(old_value)); HeapReference new_ref(HeapReference::FromObjPtr(new_value)); uint8_t* raw_addr = reinterpret_cast(this) + field_offset.Int32Value(); Atomic* atomic_addr = reinterpret_cast*>(raw_addr); bool success = atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_ref.reference_, new_ref.reference_); return success; } template inline bool Object::CasFieldWeakRelaxedObjectWithoutWriteBarrier( MemberOffset field_offset, ObjPtr old_value, ObjPtr new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } if (kVerifyFlags & kVerifyReads) { VerifyObject(old_value); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true); } HeapReference old_ref(HeapReference::FromObjPtr(old_value)); HeapReference new_ref(HeapReference::FromObjPtr(new_value)); uint8_t* raw_addr = reinterpret_cast(this) + field_offset.Int32Value(); Atomic* atomic_addr = reinterpret_cast*>(raw_addr); bool success = atomic_addr->CompareExchangeWeakRelaxed(old_ref.reference_, new_ref.reference_); return success; } template inline bool Object::CasFieldWeakReleaseObjectWithoutWriteBarrier( MemberOffset field_offset, ObjPtr old_value, ObjPtr new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } if (kVerifyFlags & kVerifyReads) { VerifyObject(old_value); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true); } HeapReference old_ref(HeapReference::FromObjPtr(old_value)); HeapReference new_ref(HeapReference::FromObjPtr(new_value)); uint8_t* raw_addr = reinterpret_cast(this) + field_offset.Int32Value(); Atomic* atomic_addr = reinterpret_cast*>(raw_addr); bool success = atomic_addr->CompareExchangeWeakRelease(old_ref.reference_, new_ref.reference_); return success; } template inline void Object::VisitFieldsReferences(uint32_t ref_offsets, const Visitor& visitor) { if (!kIsStatic && (ref_offsets != mirror::Class::kClassWalkSuper)) { // Instance fields and not the slow-path. uint32_t field_offset = mirror::kObjectHeaderSize; while (ref_offsets != 0) { if ((ref_offsets & 1) != 0) { visitor(this, MemberOffset(field_offset), kIsStatic); } ref_offsets >>= 1; field_offset += sizeof(mirror::HeapReference); } } else { // There is no reference offset bitmap. In the non-static case, walk up the class // inheritance hierarchy and find reference offsets the hard way. In the static case, just // consider this class. for (ObjPtr klass = kIsStatic ? AsClass() : GetClass(); klass != nullptr; klass = kIsStatic ? nullptr : klass->GetSuperClass()) { const size_t num_reference_fields = kIsStatic ? klass->NumReferenceStaticFields() : klass->NumReferenceInstanceFields(); if (num_reference_fields == 0u) { continue; } // Presumably GC can happen when we are cross compiling, it should not cause performance // problems to do pointer size logic. MemberOffset field_offset = kIsStatic ? klass->GetFirstReferenceStaticFieldOffset( Runtime::Current()->GetClassLinker()->GetImagePointerSize()) : klass->GetFirstReferenceInstanceFieldOffset(); for (size_t i = 0u; i < num_reference_fields; ++i) { // TODO: Do a simpler check? if (field_offset.Uint32Value() != ClassOffset().Uint32Value()) { visitor(this, field_offset, kIsStatic); } field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(mirror::HeapReference)); } } } } template inline void Object::VisitInstanceFieldsReferences(ObjPtr klass, const Visitor& visitor) { VisitFieldsReferences( klass->GetReferenceInstanceOffsets(), visitor); } template inline void Object::VisitStaticFieldsReferences(ObjPtr klass, const Visitor& visitor) { DCHECK(!klass->IsTemp()); klass->VisitFieldsReferences(0, visitor); } template inline bool Object::IsClassLoader() { return GetClass()->IsClassLoaderClass(); } template inline mirror::ClassLoader* Object::AsClassLoader() { DCHECK((IsClassLoader())); return down_cast(this); } template inline bool Object::IsDexCache() { return GetClass()->IsDexCacheClass(); } template inline mirror::DexCache* Object::AsDexCache() { DCHECK((IsDexCache())); return down_cast(this); } } // namespace mirror } // namespace art #endif // ART_RUNTIME_MIRROR_OBJECT_INL_H_