/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % FFFFF X X % % F X X % % FFF X % % F X X % % F X X % % % % % % MagickCore Image Special Effects Methods % % % % Software Design % % Cristy % % October 1996 % % % % % % Copyright 1999-2016 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % http://www.imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % */ /* Include declarations. */ #include "MagickCore/studio.h" #include "MagickCore/accelerate-private.h" #include "MagickCore/annotate.h" #include "MagickCore/artifact.h" #include "MagickCore/attribute.h" #include "MagickCore/cache.h" #include "MagickCore/cache-view.h" #include "MagickCore/channel.h" #include "MagickCore/color.h" #include "MagickCore/color-private.h" #include "MagickCore/colorspace-private.h" #include "MagickCore/composite.h" #include "MagickCore/decorate.h" #include "MagickCore/distort.h" #include "MagickCore/draw.h" #include "MagickCore/effect.h" #include "MagickCore/enhance.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/fx.h" #include "MagickCore/fx-private.h" #include "MagickCore/gem.h" #include "MagickCore/gem-private.h" #include "MagickCore/geometry.h" #include "MagickCore/layer.h" #include "MagickCore/list.h" #include "MagickCore/log.h" #include "MagickCore/image.h" #include "MagickCore/image-private.h" #include "MagickCore/magick.h" #include "MagickCore/memory_.h" #include "MagickCore/monitor.h" #include "MagickCore/monitor-private.h" #include "MagickCore/option.h" #include "MagickCore/pixel.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/property.h" #include "MagickCore/quantum.h" #include "MagickCore/quantum-private.h" #include "MagickCore/random_.h" #include "MagickCore/random-private.h" #include "MagickCore/resample.h" #include "MagickCore/resample-private.h" #include "MagickCore/resize.h" #include "MagickCore/resource_.h" #include "MagickCore/splay-tree.h" #include "MagickCore/statistic.h" #include "MagickCore/string_.h" #include "MagickCore/string-private.h" #include "MagickCore/thread-private.h" #include "MagickCore/transform.h" #include "MagickCore/transform-private.h" #include "MagickCore/utility.h" /* Define declarations. */ #define LeftShiftOperator 0xf5U #define RightShiftOperator 0xf6U #define LessThanEqualOperator 0xf7U #define GreaterThanEqualOperator 0xf8U #define EqualOperator 0xf9U #define NotEqualOperator 0xfaU #define LogicalAndOperator 0xfbU #define LogicalOrOperator 0xfcU #define ExponentialNotation 0xfdU struct _FxInfo { const Image *images; char *expression; FILE *file; SplayTreeInfo *colors, *symbols; CacheView **view; RandomInfo *random_info; ExceptionInfo *exception; }; /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + A c q u i r e F x I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AcquireFxInfo() allocates the FxInfo structure. % % The format of the AcquireFxInfo method is: % % FxInfo *AcquireFxInfo(Image *image,const char *expression, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o expression: the expression. % % o exception: return any errors or warnings in this structure. % */ MagickPrivate FxInfo *AcquireFxInfo(const Image *image,const char *expression, ExceptionInfo *exception) { char fx_op[2]; const Image *next; FxInfo *fx_info; register ssize_t i; fx_info=(FxInfo *) AcquireMagickMemory(sizeof(*fx_info)); if (fx_info == (FxInfo *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); (void) ResetMagickMemory(fx_info,0,sizeof(*fx_info)); fx_info->exception=AcquireExceptionInfo(); fx_info->images=image; fx_info->colors=NewSplayTree(CompareSplayTreeString,RelinquishMagickMemory, RelinquishAlignedMemory); fx_info->symbols=NewSplayTree(CompareSplayTreeString,RelinquishMagickMemory, RelinquishMagickMemory); fx_info->view=(CacheView **) AcquireQuantumMemory(GetImageListLength( fx_info->images),sizeof(*fx_info->view)); if (fx_info->view == (CacheView **) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); i=0; next=GetFirstImageInList(fx_info->images); for ( ; next != (Image *) NULL; next=next->next) { fx_info->view[i]=AcquireVirtualCacheView(next,exception); i++; } fx_info->random_info=AcquireRandomInfo(); fx_info->expression=ConstantString(expression); fx_info->file=stderr; (void) SubstituteString(&fx_info->expression," ",""); /* compact string */ /* Force right-to-left associativity for unary negation. */ (void) SubstituteString(&fx_info->expression,"-","-1.0*"); (void) SubstituteString(&fx_info->expression,"^-1.0*","^-"); (void) SubstituteString(&fx_info->expression,"E-1.0*","E-"); (void) SubstituteString(&fx_info->expression,"e-1.0*","e-"); /* Convert compound to simple operators. */ fx_op[1]='\0'; *fx_op=(char) LeftShiftOperator; (void) SubstituteString(&fx_info->expression,"<<",fx_op); *fx_op=(char) RightShiftOperator; (void) SubstituteString(&fx_info->expression,">>",fx_op); *fx_op=(char) LessThanEqualOperator; (void) SubstituteString(&fx_info->expression,"<=",fx_op); *fx_op=(char) GreaterThanEqualOperator; (void) SubstituteString(&fx_info->expression,">=",fx_op); *fx_op=(char) EqualOperator; (void) SubstituteString(&fx_info->expression,"==",fx_op); *fx_op=(char) NotEqualOperator; (void) SubstituteString(&fx_info->expression,"!=",fx_op); *fx_op=(char) LogicalAndOperator; (void) SubstituteString(&fx_info->expression,"&&",fx_op); *fx_op=(char) LogicalOrOperator; (void) SubstituteString(&fx_info->expression,"||",fx_op); *fx_op=(char) ExponentialNotation; (void) SubstituteString(&fx_info->expression,"**",fx_op); return(fx_info); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A d d N o i s e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % AddNoiseImage() adds random noise to the image. % % The format of the AddNoiseImage method is: % % Image *AddNoiseImage(const Image *image,const NoiseType noise_type, % const double attenuate,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o channel: the channel type. % % o noise_type: The type of noise: Uniform, Gaussian, Multiplicative, % Impulse, Laplacian, or Poisson. % % o attenuate: attenuate the random distribution. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *AddNoiseImage(const Image *image,const NoiseType noise_type, const double attenuate,ExceptionInfo *exception) { #define AddNoiseImageTag "AddNoise/Image" CacheView *image_view, *noise_view; Image *noise_image; MagickBooleanType status; MagickOffsetType progress; RandomInfo **magick_restrict random_info; ssize_t y; #if defined(MAGICKCORE_OPENMP_SUPPORT) unsigned long key; #endif /* Initialize noise image attributes. */ assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); #if defined(MAGICKCORE_OPENCL_SUPPORT) noise_image=AccelerateAddNoiseImage(image,noise_type,exception); if (noise_image != (Image *) NULL) return(noise_image); #endif noise_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if (noise_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(noise_image,DirectClass,exception) == MagickFalse) { noise_image=DestroyImage(noise_image); return((Image *) NULL); } /* Add noise in each row. */ status=MagickTrue; progress=0; random_info=AcquireRandomInfoThreadSet(); image_view=AcquireVirtualCacheView(image,exception); noise_view=AcquireAuthenticCacheView(noise_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) key=GetRandomSecretKey(random_info[0]); #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,noise_image,image->rows,key == ~0UL) #endif for (y=0; y < (ssize_t) image->rows; y++) { const int id = GetOpenMPThreadId(); MagickBooleanType sync; register const Quantum *magick_restrict p; register ssize_t x; register Quantum *magick_restrict q; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(noise_view,0,y,noise_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); PixelTrait noise_traits=GetPixelChannelTraits(noise_image,channel); if ((traits == UndefinedPixelTrait) || (noise_traits == UndefinedPixelTrait)) continue; if (((noise_traits & CopyPixelTrait) != 0) || (GetPixelReadMask(image,p) == 0)) { SetPixelChannel(noise_image,channel,p[i],q); continue; } SetPixelChannel(noise_image,channel,ClampToQuantum( GenerateDifferentialNoise(random_info[id],p[i],noise_type,attenuate)), q); } p+=GetPixelChannels(image); q+=GetPixelChannels(noise_image); } sync=SyncCacheViewAuthenticPixels(noise_view,exception); if (sync == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_AddNoiseImage) #endif proceed=SetImageProgress(image,AddNoiseImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } noise_view=DestroyCacheView(noise_view); image_view=DestroyCacheView(image_view); random_info=DestroyRandomInfoThreadSet(random_info); if (status == MagickFalse) noise_image=DestroyImage(noise_image); return(noise_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % B l u e S h i f t I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % BlueShiftImage() mutes the colors of the image to simulate a scene at % nighttime in the moonlight. % % The format of the BlueShiftImage method is: % % Image *BlueShiftImage(const Image *image,const double factor, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o factor: the shift factor. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *BlueShiftImage(const Image *image,const double factor, ExceptionInfo *exception) { #define BlueShiftImageTag "BlueShift/Image" CacheView *image_view, *shift_view; Image *shift_image; MagickBooleanType status; MagickOffsetType progress; ssize_t y; /* Allocate blue shift image. */ assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); shift_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if (shift_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(shift_image,DirectClass,exception) == MagickFalse) { shift_image=DestroyImage(shift_image); return((Image *) NULL); } /* Blue-shift DirectClass image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); shift_view=AcquireAuthenticCacheView(shift_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,shift_image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { MagickBooleanType sync; PixelInfo pixel; Quantum quantum; register const Quantum *magick_restrict p; register ssize_t x; register Quantum *magick_restrict q; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(shift_view,0,y,shift_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { quantum=GetPixelRed(image,p); if (GetPixelGreen(image,p) < quantum) quantum=GetPixelGreen(image,p); if (GetPixelBlue(image,p) < quantum) quantum=GetPixelBlue(image,p); pixel.red=0.5*(GetPixelRed(image,p)+factor*quantum); pixel.green=0.5*(GetPixelGreen(image,p)+factor*quantum); pixel.blue=0.5*(GetPixelBlue(image,p)+factor*quantum); quantum=GetPixelRed(image,p); if (GetPixelGreen(image,p) > quantum) quantum=GetPixelGreen(image,p); if (GetPixelBlue(image,p) > quantum) quantum=GetPixelBlue(image,p); pixel.red=0.5*(pixel.red+factor*quantum); pixel.green=0.5*(pixel.green+factor*quantum); pixel.blue=0.5*(pixel.blue+factor*quantum); SetPixelRed(shift_image,ClampToQuantum(pixel.red),q); SetPixelGreen(shift_image,ClampToQuantum(pixel.green),q); SetPixelBlue(shift_image,ClampToQuantum(pixel.blue),q); p+=GetPixelChannels(image); q+=GetPixelChannels(shift_image); } sync=SyncCacheViewAuthenticPixels(shift_view,exception); if (sync == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_BlueShiftImage) #endif proceed=SetImageProgress(image,BlueShiftImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); shift_view=DestroyCacheView(shift_view); if (status == MagickFalse) shift_image=DestroyImage(shift_image); return(shift_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % C h a r c o a l I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % CharcoalImage() creates a new image that is a copy of an existing one with % the edge highlighted. It allocates the memory necessary for the new Image % structure and returns a pointer to the new image. % % The format of the CharcoalImage method is: % % Image *CharcoalImage(const Image *image,const double radius, % const double sigma,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the pixel neighborhood. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *CharcoalImage(const Image *image,const double radius, const double sigma,ExceptionInfo *exception) { Image *charcoal_image, *clone_image, *edge_image; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); clone_image=CloneImage(image,0,0,MagickTrue,exception); if (clone_image == (Image *) NULL) return((Image *) NULL); edge_image=EdgeImage(clone_image,radius,exception); clone_image=DestroyImage(clone_image); if (edge_image == (Image *) NULL) return((Image *) NULL); charcoal_image=BlurImage(edge_image,radius,sigma,exception); edge_image=DestroyImage(edge_image); if (charcoal_image == (Image *) NULL) return((Image *) NULL); (void) NormalizeImage(charcoal_image,exception); (void) NegateImage(charcoal_image,MagickFalse,exception); (void) GrayscaleImage(charcoal_image,image->intensity,exception); return(charcoal_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % C o l o r i z e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ColorizeImage() blends the fill color with each pixel in the image. % A percentage blend is specified with opacity. Control the application % of different color components by specifying a different percentage for % each component (e.g. 90/100/10 is 90% red, 100% green, and 10% blue). % % The format of the ColorizeImage method is: % % Image *ColorizeImage(const Image *image,const char *blend, % const PixelInfo *colorize,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o blend: A character string indicating the level of blending as a % percentage. % % o colorize: A color value. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *ColorizeImage(const Image *image,const char *blend, const PixelInfo *colorize,ExceptionInfo *exception) { #define ColorizeImageTag "Colorize/Image" #define Colorize(pixel,blend_percentage,colorize) \ (((pixel)*(100.0-(blend_percentage))+(colorize)*(blend_percentage))/100.0) CacheView *image_view; GeometryInfo geometry_info; Image *colorize_image; MagickBooleanType status; MagickOffsetType progress; MagickStatusType flags; PixelInfo blend_percentage; ssize_t y; /* Allocate colorized image. */ assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); colorize_image=CloneImage(image,0,0,MagickTrue,exception); if (colorize_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(colorize_image,DirectClass,exception) == MagickFalse) { colorize_image=DestroyImage(colorize_image); return((Image *) NULL); } if ((IsGrayColorspace(colorize_image->colorspace) != MagickFalse) || (IsPixelInfoGray(colorize) != MagickFalse)) (void) SetImageColorspace(colorize_image,sRGBColorspace,exception); if ((colorize_image->alpha_trait == UndefinedPixelTrait) && (colorize->alpha_trait != UndefinedPixelTrait)) (void) SetImageAlpha(colorize_image,OpaqueAlpha,exception); if (blend == (const char *) NULL) return(colorize_image); GetPixelInfo(colorize_image,&blend_percentage); flags=ParseGeometry(blend,&geometry_info); blend_percentage.red=geometry_info.rho; blend_percentage.green=geometry_info.rho; blend_percentage.blue=geometry_info.rho; blend_percentage.black=geometry_info.rho; blend_percentage.alpha=(MagickRealType) TransparentAlpha; if ((flags & SigmaValue) != 0) blend_percentage.green=geometry_info.sigma; if ((flags & XiValue) != 0) blend_percentage.blue=geometry_info.xi; if ((flags & PsiValue) != 0) blend_percentage.alpha=geometry_info.psi; if (blend_percentage.colorspace == CMYKColorspace) { if ((flags & PsiValue) != 0) blend_percentage.black=geometry_info.psi; if ((flags & ChiValue) != 0) blend_percentage.alpha=geometry_info.chi; } /* Colorize DirectClass image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(colorize_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(colorize_image,colorize_image,colorize_image->rows,1) #endif for (y=0; y < (ssize_t) colorize_image->rows; y++) { MagickBooleanType sync; register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,colorize_image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) colorize_image->columns; x++) { register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(colorize_image); i++) { PixelTrait traits=GetPixelChannelTraits(colorize_image, (PixelChannel) i); if (traits == UndefinedPixelTrait) continue; if (((traits & CopyPixelTrait) != 0) || (GetPixelReadMask(colorize_image,q) == 0)) continue; SetPixelChannel(colorize_image,(PixelChannel) i,ClampToQuantum( Colorize(q[i],GetPixelInfoChannel(&blend_percentage,(PixelChannel) i), GetPixelInfoChannel(colorize,(PixelChannel) i))),q); } q+=GetPixelChannels(colorize_image); } sync=SyncCacheViewAuthenticPixels(image_view,exception); if (sync == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_ColorizeImage) #endif proceed=SetImageProgress(image,ColorizeImageTag,progress++, colorize_image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); if (status == MagickFalse) colorize_image=DestroyImage(colorize_image); return(colorize_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % C o l o r M a t r i x I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ColorMatrixImage() applies color transformation to an image. This method % permits saturation changes, hue rotation, luminance to alpha, and various % other effects. Although variable-sized transformation matrices can be used, % typically one uses a 5x5 matrix for an RGBA image and a 6x6 for CMYKA % (or RGBA with offsets). The matrix is similar to those used by Adobe Flash % except offsets are in column 6 rather than 5 (in support of CMYKA images) % and offsets are normalized (divide Flash offset by 255). % % The format of the ColorMatrixImage method is: % % Image *ColorMatrixImage(const Image *image, % const KernelInfo *color_matrix,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o color_matrix: the color matrix. % % o exception: return any errors or warnings in this structure. % */ /* FUTURE: modify to make use of a MagickMatrix Mutliply function That should be provided in "matrix.c" (ASIDE: actually distorts should do this too but currently doesn't) */ MagickExport Image *ColorMatrixImage(const Image *image, const KernelInfo *color_matrix,ExceptionInfo *exception) { #define ColorMatrixImageTag "ColorMatrix/Image" CacheView *color_view, *image_view; double ColorMatrix[6][6] = { { 1.0, 0.0, 0.0, 0.0, 0.0, 0.0 }, { 0.0, 1.0, 0.0, 0.0, 0.0, 0.0 }, { 0.0, 0.0, 1.0, 0.0, 0.0, 0.0 }, { 0.0, 0.0, 0.0, 1.0, 0.0, 0.0 }, { 0.0, 0.0, 0.0, 0.0, 1.0, 0.0 }, { 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 } }; Image *color_image; MagickBooleanType status; MagickOffsetType progress; register ssize_t i; ssize_t u, v, y; /* Map given color_matrix, into a 6x6 matrix RGBKA and a constant */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); i=0; for (v=0; v < (ssize_t) color_matrix->height; v++) for (u=0; u < (ssize_t) color_matrix->width; u++) { if ((v < 6) && (u < 6)) ColorMatrix[v][u]=color_matrix->values[i]; i++; } /* Initialize color image. */ color_image=CloneImage(image,0,0,MagickTrue,exception); if (color_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(color_image,DirectClass,exception) == MagickFalse) { color_image=DestroyImage(color_image); return((Image *) NULL); } if (image->debug != MagickFalse) { char format[MagickPathExtent], *message; (void) LogMagickEvent(TransformEvent,GetMagickModule(), " ColorMatrix image with color matrix:"); message=AcquireString(""); for (v=0; v < 6; v++) { *message='\0'; (void) FormatLocaleString(format,MagickPathExtent,"%.20g: ",(double) v); (void) ConcatenateString(&message,format); for (u=0; u < 6; u++) { (void) FormatLocaleString(format,MagickPathExtent,"%+f ", ColorMatrix[v][u]); (void) ConcatenateString(&message,format); } (void) LogMagickEvent(TransformEvent,GetMagickModule(),"%s",message); } message=DestroyString(message); } /* Apply the ColorMatrix to image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); color_view=AcquireAuthenticCacheView(color_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,color_image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { PixelInfo pixel; register const Quantum *magick_restrict p; register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=GetCacheViewAuthenticPixels(color_view,0,y,color_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } GetPixelInfo(image,&pixel); for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t v; size_t height; GetPixelInfoPixel(image,p,&pixel); height=color_matrix->height > 6 ? 6UL : color_matrix->height; for (v=0; v < (ssize_t) height; v++) { double sum; sum=ColorMatrix[v][0]*GetPixelRed(image,p)+ColorMatrix[v][1]* GetPixelGreen(image,p)+ColorMatrix[v][2]*GetPixelBlue(image,p); if (image->colorspace == CMYKColorspace) sum+=ColorMatrix[v][3]*GetPixelBlack(image,p); if (image->alpha_trait != UndefinedPixelTrait) sum+=ColorMatrix[v][4]*GetPixelAlpha(image,p); sum+=QuantumRange*ColorMatrix[v][5]; switch (v) { case 0: pixel.red=sum; break; case 1: pixel.green=sum; break; case 2: pixel.blue=sum; break; case 3: pixel.black=sum; break; case 4: pixel.alpha=sum; break; default: break; } } SetPixelViaPixelInfo(color_image,&pixel,q); p+=GetPixelChannels(image); q+=GetPixelChannels(color_image); } if (SyncCacheViewAuthenticPixels(color_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_ColorMatrixImage) #endif proceed=SetImageProgress(image,ColorMatrixImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } color_view=DestroyCacheView(color_view); image_view=DestroyCacheView(image_view); if (status == MagickFalse) color_image=DestroyImage(color_image); return(color_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + D e s t r o y F x I n f o % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DestroyFxInfo() deallocates memory associated with an FxInfo structure. % % The format of the DestroyFxInfo method is: % % ImageInfo *DestroyFxInfo(ImageInfo *fx_info) % % A description of each parameter follows: % % o fx_info: the fx info. % */ MagickPrivate FxInfo *DestroyFxInfo(FxInfo *fx_info) { register ssize_t i; fx_info->exception=DestroyExceptionInfo(fx_info->exception); fx_info->expression=DestroyString(fx_info->expression); fx_info->symbols=DestroySplayTree(fx_info->symbols); fx_info->colors=DestroySplayTree(fx_info->colors); for (i=(ssize_t) GetImageListLength(fx_info->images)-1; i >= 0; i--) fx_info->view[i]=DestroyCacheView(fx_info->view[i]); fx_info->view=(CacheView **) RelinquishMagickMemory(fx_info->view); fx_info->random_info=DestroyRandomInfo(fx_info->random_info); fx_info=(FxInfo *) RelinquishMagickMemory(fx_info); return(fx_info); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + F x E v a l u a t e C h a n n e l E x p r e s s i o n % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % FxEvaluateChannelExpression() evaluates an expression and returns the % results. % % The format of the FxEvaluateExpression method is: % % double FxEvaluateChannelExpression(FxInfo *fx_info, % const PixelChannel channel,const ssize_t x,const ssize_t y, % double *alpha,Exceptioninfo *exception) % double FxEvaluateExpression(FxInfo *fx_info, % double *alpha,Exceptioninfo *exception) % % A description of each parameter follows: % % o fx_info: the fx info. % % o channel: the channel. % % o x,y: the pixel position. % % o alpha: the result. % % o exception: return any errors or warnings in this structure. % */ static double FxChannelStatistics(FxInfo *fx_info,Image *image, PixelChannel channel,const char *symbol,ExceptionInfo *exception) { ChannelType channel_mask; char key[MagickPathExtent], statistic[MagickPathExtent]; const char *value; register const char *p; channel_mask=UndefinedChannel; for (p=symbol; (*p != '.') && (*p != '\0'); p++) ; if (*p == '.') { ssize_t option; option=ParseCommandOption(MagickPixelChannelOptions,MagickTrue,p+1); if (option >= 0) { channel=(PixelChannel) option; channel_mask=(ChannelType) (channel_mask | (1 << channel)); (void) SetPixelChannelMask(image,channel_mask); } } (void) FormatLocaleString(key,MagickPathExtent,"%p.%.20g.%s",(void *) image, (double) channel,symbol); value=(const char *) GetValueFromSplayTree(fx_info->symbols,key); if (value != (const char *) NULL) { if (channel_mask != UndefinedChannel) (void) SetPixelChannelMask(image,channel_mask); return(QuantumScale*StringToDouble(value,(char **) NULL)); } (void) DeleteNodeFromSplayTree(fx_info->symbols,key); if (LocaleNCompare(symbol,"depth",5) == 0) { size_t depth; depth=GetImageDepth(image,exception); (void) FormatLocaleString(statistic,MagickPathExtent,"%.20g",(double) depth); } if (LocaleNCompare(symbol,"kurtosis",8) == 0) { double kurtosis, skewness; (void) GetImageKurtosis(image,&kurtosis,&skewness,exception); (void) FormatLocaleString(statistic,MagickPathExtent,"%g",kurtosis); } if (LocaleNCompare(symbol,"maxima",6) == 0) { double maxima, minima; (void) GetImageRange(image,&minima,&maxima,exception); (void) FormatLocaleString(statistic,MagickPathExtent,"%g",maxima); } if (LocaleNCompare(symbol,"mean",4) == 0) { double mean, standard_deviation; (void) GetImageMean(image,&mean,&standard_deviation,exception); (void) FormatLocaleString(statistic,MagickPathExtent,"%g",mean); } if (LocaleNCompare(symbol,"minima",6) == 0) { double maxima, minima; (void) GetImageRange(image,&minima,&maxima,exception); (void) FormatLocaleString(statistic,MagickPathExtent,"%g",minima); } if (LocaleNCompare(symbol,"skewness",8) == 0) { double kurtosis, skewness; (void) GetImageKurtosis(image,&kurtosis,&skewness,exception); (void) FormatLocaleString(statistic,MagickPathExtent,"%g",skewness); } if (LocaleNCompare(symbol,"standard_deviation",18) == 0) { double mean, standard_deviation; (void) GetImageMean(image,&mean,&standard_deviation,exception); (void) FormatLocaleString(statistic,MagickPathExtent,"%g", standard_deviation); } if (channel_mask != UndefinedChannel) (void) SetPixelChannelMask(image,channel_mask); (void) AddValueToSplayTree(fx_info->symbols,ConstantString(key), ConstantString(statistic)); return(QuantumScale*StringToDouble(statistic,(char **) NULL)); } static double FxEvaluateSubexpression(FxInfo *,const PixelChannel,const ssize_t, const ssize_t,const char *,size_t *,double *,ExceptionInfo *); static MagickOffsetType FxGCD(MagickOffsetType alpha,MagickOffsetType beta) { if (beta != 0) return(FxGCD(beta,alpha % beta)); return(alpha); } static inline const char *FxSubexpression(const char *expression, ExceptionInfo *exception) { const char *subexpression; register ssize_t level; level=0; subexpression=expression; while ((*subexpression != '\0') && ((level != 1) || (strchr(")",(int) *subexpression) == (char *) NULL))) { if (strchr("(",(int) *subexpression) != (char *) NULL) level++; else if (strchr(")",(int) *subexpression) != (char *) NULL) level--; subexpression++; } if (*subexpression == '\0') (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "UnbalancedParenthesis","`%s'",expression); return(subexpression); } static double FxGetSymbol(FxInfo *fx_info,const PixelChannel channel, const ssize_t x,const ssize_t y,const char *expression, ExceptionInfo *exception) { char *q, subexpression[MagickPathExtent], symbol[MagickPathExtent]; const char *p, *value; Image *image; PixelInfo pixel; double alpha, beta; PointInfo point; register ssize_t i; size_t depth, length, level; p=expression; i=GetImageIndexInList(fx_info->images); depth=0; level=0; point.x=(double) x; point.y=(double) y; if (isalpha((int) ((unsigned char) *(p+1))) == 0) { if (strchr("suv",(int) *p) != (char *) NULL) { switch (*p) { case 's': default: { i=GetImageIndexInList(fx_info->images); break; } case 'u': i=0; break; case 'v': i=1; break; } p++; if (*p == '[') { level++; q=subexpression; for (p++; *p != '\0'; ) { if (*p == '[') level++; else if (*p == ']') { level--; if (level == 0) break; } *q++=(*p++); } *q='\0'; alpha=FxEvaluateSubexpression(fx_info,channel,x,y,subexpression, &depth,&beta,exception); i=(ssize_t) (alpha+0.5); p++; } if (*p == '.') p++; } if ((*p == 'p') && (isalpha((int) ((unsigned char) *(p+1))) == 0)) { p++; if (*p == '{') { level++; q=subexpression; for (p++; *p != '\0'; ) { if (*p == '{') level++; else if (*p == '}') { level--; if (level == 0) break; } *q++=(*p++); } *q='\0'; alpha=FxEvaluateSubexpression(fx_info,channel,x,y,subexpression, &depth,&beta,exception); point.x=alpha; point.y=beta; p++; } else if (*p == '[') { level++; q=subexpression; for (p++; *p != '\0'; ) { if (*p == '[') level++; else if (*p == ']') { level--; if (level == 0) break; } *q++=(*p++); } *q='\0'; alpha=FxEvaluateSubexpression(fx_info,channel,x,y,subexpression, &depth,&beta,exception); point.x+=alpha; point.y+=beta; p++; } if (*p == '.') p++; } } length=GetImageListLength(fx_info->images); while (i < 0) i+=(ssize_t) length; if (length != 0) i%=length; image=GetImageFromList(fx_info->images,i); if (image == (Image *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "NoSuchImage","`%s'",expression); return(0.0); } GetPixelInfo(image,&pixel); (void) InterpolatePixelInfo(image,fx_info->view[i],image->interpolate, point.x,point.y,&pixel,exception); if ((strlen(p) > 2) && (LocaleCompare(p,"intensity") != 0) && (LocaleCompare(p,"luma") != 0) && (LocaleCompare(p,"luminance") != 0) && (LocaleCompare(p,"hue") != 0) && (LocaleCompare(p,"saturation") != 0) && (LocaleCompare(p,"lightness") != 0)) { char name[MagickPathExtent]; (void) CopyMagickString(name,p,MagickPathExtent); for (q=name+(strlen(name)-1); q > name; q--) { if (*q == ')') break; if (*q == '.') { *q='\0'; break; } } if ((strlen(name) > 2) && (GetValueFromSplayTree(fx_info->symbols,name) == (const char *) NULL)) { PixelInfo *color; color=(PixelInfo *) GetValueFromSplayTree(fx_info->colors,name); if (color != (PixelInfo *) NULL) { pixel=(*color); p+=strlen(name); } else { MagickBooleanType status; status=QueryColorCompliance(name,AllCompliance,&pixel, fx_info->exception); if (status != MagickFalse) { (void) AddValueToSplayTree(fx_info->colors,ConstantString( name),ClonePixelInfo(&pixel)); p+=strlen(name); } } } } (void) CopyMagickString(symbol,p,MagickPathExtent); StripString(symbol); if (*symbol == '\0') { switch (channel) { case RedPixelChannel: return(QuantumScale*pixel.red); case GreenPixelChannel: return(QuantumScale*pixel.green); case BluePixelChannel: return(QuantumScale*pixel.blue); case BlackPixelChannel: { if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(), ImageError,"ColorSeparatedImageRequired","`%s'", image->filename); return(0.0); } return(QuantumScale*pixel.black); } case AlphaPixelChannel: { if (pixel.alpha_trait == UndefinedPixelTrait) return(1.0); alpha=(double) (QuantumScale*pixel.alpha); return(alpha); } case IndexPixelChannel: return(0.0); case IntensityPixelChannel: { Quantum quantum_pixel[MaxPixelChannels]; SetPixelViaPixelInfo(image,&pixel,quantum_pixel); return(QuantumScale*GetPixelIntensity(image,quantum_pixel)); } default: break; } (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "UnableToParseExpression","`%s'",p); return(0.0); } switch (*symbol) { case 'A': case 'a': { if (LocaleCompare(symbol,"a") == 0) return((QuantumScale*pixel.alpha)); break; } case 'B': case 'b': { if (LocaleCompare(symbol,"b") == 0) return(QuantumScale*pixel.blue); break; } case 'C': case 'c': { if (LocaleNCompare(symbol,"channel",7) == 0) { GeometryInfo channel_info; MagickStatusType flags; flags=ParseGeometry(symbol+7,&channel_info); if (image->colorspace == CMYKColorspace) switch (channel) { case CyanPixelChannel: { if ((flags & RhoValue) == 0) return(0.0); return(channel_info.rho); } case MagentaPixelChannel: { if ((flags & SigmaValue) == 0) return(0.0); return(channel_info.sigma); } case YellowPixelChannel: { if ((flags & XiValue) == 0) return(0.0); return(channel_info.xi); } case BlackPixelChannel: { if ((flags & PsiValue) == 0) return(0.0); return(channel_info.psi); } case AlphaPixelChannel: { if ((flags & ChiValue) == 0) return(0.0); return(channel_info.chi); } default: return(0.0); } switch (channel) { case RedPixelChannel: { if ((flags & RhoValue) == 0) return(0.0); return(channel_info.rho); } case GreenPixelChannel: { if ((flags & SigmaValue) == 0) return(0.0); return(channel_info.sigma); } case BluePixelChannel: { if ((flags & XiValue) == 0) return(0.0); return(channel_info.xi); } case BlackPixelChannel: { if ((flags & ChiValue) == 0) return(0.0); return(channel_info.chi); } case AlphaPixelChannel: { if ((flags & PsiValue) == 0) return(0.0); return(channel_info.psi); } default: return(0.0); } } if (LocaleCompare(symbol,"c") == 0) return(QuantumScale*pixel.red); break; } case 'D': case 'd': { if (LocaleNCompare(symbol,"depth",5) == 0) return(FxChannelStatistics(fx_info,image,channel,symbol,exception)); break; } case 'G': case 'g': { if (LocaleCompare(symbol,"g") == 0) return(QuantumScale*pixel.green); break; } case 'K': case 'k': { if (LocaleNCompare(symbol,"kurtosis",8) == 0) return(FxChannelStatistics(fx_info,image,channel,symbol,exception)); if (LocaleCompare(symbol,"k") == 0) { if (image->colorspace != CMYKColorspace) { (void) ThrowMagickException(exception,GetMagickModule(), OptionError,"ColorSeparatedImageRequired","`%s'", image->filename); return(0.0); } return(QuantumScale*pixel.black); } break; } case 'H': case 'h': { if (LocaleCompare(symbol,"h") == 0) return(image->rows); if (LocaleCompare(symbol,"hue") == 0) { double hue, lightness, saturation; ConvertRGBToHSL(pixel.red,pixel.green,pixel.blue,&hue,&saturation, &lightness); return(hue); } break; } case 'I': case 'i': { if ((LocaleCompare(symbol,"image.depth") == 0) || (LocaleCompare(symbol,"image.minima") == 0) || (LocaleCompare(symbol,"image.maxima") == 0) || (LocaleCompare(symbol,"image.mean") == 0) || (LocaleCompare(symbol,"image.kurtosis") == 0) || (LocaleCompare(symbol,"image.skewness") == 0) || (LocaleCompare(symbol,"image.standard_deviation") == 0)) return(FxChannelStatistics(fx_info,image,channel,symbol+6,exception)); if (LocaleCompare(symbol,"image.resolution.x") == 0) return(image->resolution.x); if (LocaleCompare(symbol,"image.resolution.y") == 0) return(image->resolution.y); if (LocaleCompare(symbol,"intensity") == 0) { Quantum quantum_pixel[MaxPixelChannels]; SetPixelViaPixelInfo(image,&pixel,quantum_pixel); return(QuantumScale*GetPixelIntensity(image,quantum_pixel)); } if (LocaleCompare(symbol,"i") == 0) return(x); break; } case 'J': case 'j': { if (LocaleCompare(symbol,"j") == 0) return(y); break; } case 'L': case 'l': { if (LocaleCompare(symbol,"lightness") == 0) { double hue, lightness, saturation; ConvertRGBToHSL(pixel.red,pixel.green,pixel.blue,&hue,&saturation, &lightness); return(lightness); } if (LocaleCompare(symbol,"luma") == 0) { double luma; luma=0.212656*pixel.red+0.715158*pixel.green+0.072186*pixel.blue; return(QuantumScale*luma); } if (LocaleCompare(symbol,"luminance") == 0) { double luminence; luminence=0.212656*pixel.red+0.715158*pixel.green+0.072186*pixel.blue; return(QuantumScale*luminence); } break; } case 'M': case 'm': { if (LocaleNCompare(symbol,"maxima",6) == 0) return(FxChannelStatistics(fx_info,image,channel,symbol,exception)); if (LocaleNCompare(symbol,"mean",4) == 0) return(FxChannelStatistics(fx_info,image,channel,symbol,exception)); if (LocaleNCompare(symbol,"minima",6) == 0) return(FxChannelStatistics(fx_info,image,channel,symbol,exception)); if (LocaleCompare(symbol,"m") == 0) return(QuantumScale*pixel.green); break; } case 'N': case 'n': { if (LocaleCompare(symbol,"n") == 0) return(GetImageListLength(fx_info->images)); break; } case 'O': case 'o': { if (LocaleCompare(symbol,"o") == 0) return(QuantumScale*pixel.alpha); break; } case 'P': case 'p': { if (LocaleCompare(symbol,"page.height") == 0) return(image->page.height); if (LocaleCompare(symbol,"page.width") == 0) return(image->page.width); if (LocaleCompare(symbol,"page.x") == 0) return(image->page.x); if (LocaleCompare(symbol,"page.y") == 0) return(image->page.y); break; } case 'Q': case 'q': { if (LocaleCompare(symbol,"quality") == 0) return(image->quality); break; } case 'R': case 'r': { if (LocaleCompare(symbol,"resolution.x") == 0) return(image->resolution.x); if (LocaleCompare(symbol,"resolution.y") == 0) return(image->resolution.y); if (LocaleCompare(symbol,"r") == 0) return(QuantumScale*pixel.red); break; } case 'S': case 's': { if (LocaleCompare(symbol,"saturation") == 0) { double hue, lightness, saturation; ConvertRGBToHSL(pixel.red,pixel.green,pixel.blue,&hue,&saturation, &lightness); return(saturation); } if (LocaleNCompare(symbol,"skewness",8) == 0) return(FxChannelStatistics(fx_info,image,channel,symbol,exception)); if (LocaleNCompare(symbol,"standard_deviation",18) == 0) return(FxChannelStatistics(fx_info,image,channel,symbol,exception)); break; } case 'T': case 't': { if (LocaleCompare(symbol,"t") == 0) return(GetImageIndexInList(fx_info->images)); break; } case 'W': case 'w': { if (LocaleCompare(symbol,"w") == 0) return(image->columns); break; } case 'Y': case 'y': { if (LocaleCompare(symbol,"y") == 0) return(QuantumScale*pixel.blue); break; } case 'Z': case 'z': { if (LocaleCompare(symbol,"z") == 0) return((double)GetImageDepth(image, fx_info->exception)); break; } default: break; } value=(const char *) GetValueFromSplayTree(fx_info->symbols,symbol); if (value != (const char *) NULL) return(StringToDouble(value,(char **) NULL)); (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "UnableToParseExpression","`%s'",symbol); return(0.0); } static const char *FxOperatorPrecedence(const char *expression, ExceptionInfo *exception) { typedef enum { UndefinedPrecedence, NullPrecedence, BitwiseComplementPrecedence, ExponentPrecedence, ExponentialNotationPrecedence, MultiplyPrecedence, AdditionPrecedence, ShiftPrecedence, RelationalPrecedence, EquivalencyPrecedence, BitwiseAndPrecedence, BitwiseOrPrecedence, LogicalAndPrecedence, LogicalOrPrecedence, TernaryPrecedence, AssignmentPrecedence, CommaPrecedence, SeparatorPrecedence } FxPrecedence; FxPrecedence precedence, target; register const char *subexpression; register int c; size_t level; c=0; level=0; subexpression=(const char *) NULL; target=NullPrecedence; while (*expression != '\0') { precedence=UndefinedPrecedence; if ((isspace((int) ((unsigned char) *expression)) != 0) || (c == (int) '@')) { expression++; continue; } switch (*expression) { case 'A': case 'a': { #if defined(MAGICKCORE_HAVE_ACOSH) if (LocaleNCompare(expression,"acosh",5) == 0) { expression+=5; break; } #endif #if defined(MAGICKCORE_HAVE_ASINH) if (LocaleNCompare(expression,"asinh",5) == 0) { expression+=5; break; } #endif #if defined(MAGICKCORE_HAVE_ATANH) if (LocaleNCompare(expression,"atanh",5) == 0) { expression+=5; break; } #endif if (LocaleNCompare(expression,"atan2",5) == 0) { expression+=5; break; } break; } case 'E': case 'e': { if ((isdigit((int) ((unsigned char) c)) != 0) && ((LocaleNCompare(expression,"E+",2) == 0) || (LocaleNCompare(expression,"E-",2) == 0))) { expression+=2; /* scientific notation */ break; } } case 'J': case 'j': { if ((LocaleNCompare(expression,"j0",2) == 0) || (LocaleNCompare(expression,"j1",2) == 0)) { expression+=2; break; } break; } case '#': { while (isxdigit((int) ((unsigned char) *(expression+1))) != 0) expression++; break; } default: break; } if ((c == (int) '{') || (c == (int) '[')) level++; else if ((c == (int) '}') || (c == (int) ']')) level--; if (level == 0) switch ((unsigned char) *expression) { case '~': case '!': { precedence=BitwiseComplementPrecedence; break; } case '^': case '@': { precedence=ExponentPrecedence; break; } default: { if (((c != 0) && ((isdigit((int) ((unsigned char) c)) != 0) || (strchr(")",(int) ((unsigned char) c)) != (char *) NULL))) && (((islower((int) ((unsigned char) *expression)) != 0) || (strchr("(",(int) ((unsigned char) *expression)) != (char *) NULL)) || ((isdigit((int) ((unsigned char) c)) == 0) && (isdigit((int) ((unsigned char) *expression)) != 0))) && (strchr("xy",(int) ((unsigned char) *expression)) == (char *) NULL)) precedence=MultiplyPrecedence; break; } case '*': case '/': case '%': { precedence=MultiplyPrecedence; break; } case '+': case '-': { if ((strchr("(+-/*%:&^|<>~,",c) == (char *) NULL) || (isalpha(c) != 0)) precedence=AdditionPrecedence; break; } case LeftShiftOperator: case RightShiftOperator: { precedence=ShiftPrecedence; break; } case '<': case LessThanEqualOperator: case GreaterThanEqualOperator: case '>': { precedence=RelationalPrecedence; break; } case EqualOperator: case NotEqualOperator: { precedence=EquivalencyPrecedence; break; } case '&': { precedence=BitwiseAndPrecedence; break; } case '|': { precedence=BitwiseOrPrecedence; break; } case LogicalAndOperator: { precedence=LogicalAndPrecedence; break; } case LogicalOrOperator: { precedence=LogicalOrPrecedence; break; } case ExponentialNotation: { precedence=ExponentialNotationPrecedence; break; } case ':': case '?': { precedence=TernaryPrecedence; break; } case '=': { precedence=AssignmentPrecedence; break; } case ',': { precedence=CommaPrecedence; break; } case ';': { precedence=SeparatorPrecedence; break; } } if ((precedence == BitwiseComplementPrecedence) || (precedence == TernaryPrecedence) || (precedence == AssignmentPrecedence)) { if (precedence > target) { /* Right-to-left associativity. */ target=precedence; subexpression=expression; } } else if (precedence >= target) { /* Left-to-right associativity. */ target=precedence; subexpression=expression; } if (strchr("(",(int) *expression) != (char *) NULL) expression=FxSubexpression(expression,exception); c=(int) (*expression++); } return(subexpression); } static double FxEvaluateSubexpression(FxInfo *fx_info, const PixelChannel channel,const ssize_t x,const ssize_t y, const char *expression,size_t *depth,double *beta,ExceptionInfo *exception) { #define FxMaxParenthesisDepth 58 char *q, subexpression[MagickPathExtent]; double alpha, gamma; register const char *p; *beta=0.0; if (exception->severity >= ErrorException) return(0.0); while (isspace((int) ((unsigned char) *expression)) != 0) expression++; if (*expression == '\0') return(0.0); *subexpression='\0'; p=FxOperatorPrecedence(expression,exception); if (p != (const char *) NULL) { (void) CopyMagickString(subexpression,expression,(size_t) (p-expression+1)); alpha=FxEvaluateSubexpression(fx_info,channel,x,y,subexpression,depth, beta,exception); switch ((unsigned char) *p) { case '~': { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); *beta=(double) (~(size_t) *beta); return(*beta); } case '!': { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); return(*beta == 0.0 ? 1.0 : 0.0); } case '^': { *beta=pow(alpha,FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth, beta,exception)); return(*beta); } case '*': case ExponentialNotation: { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); return(alpha*(*beta)); } case '/': { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); if (*beta == 0.0) { (void) ThrowMagickException(exception,GetMagickModule(), OptionError,"DivideByZero","`%s'",expression); return(0.0); } return(alpha/(*beta)); } case '%': { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); *beta=fabs(floor((*beta)+0.5)); if (*beta == 0.0) { (void) ThrowMagickException(exception,GetMagickModule(), OptionError,"DivideByZero","`%s'",expression); return(0.0); } return(fmod(alpha,*beta)); } case '+': { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); return(alpha+(*beta)); } case '-': { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); return(alpha-(*beta)); } case LeftShiftOperator: { gamma=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); *beta=(double) ((size_t) (alpha+0.5) << (size_t) (gamma+0.5)); return(*beta); } case RightShiftOperator: { gamma=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); *beta=(double) ((size_t) (alpha+0.5) >> (size_t) (gamma+0.5)); return(*beta); } case '<': { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); return(alpha < *beta ? 1.0 : 0.0); } case LessThanEqualOperator: { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); return(alpha <= *beta ? 1.0 : 0.0); } case '>': { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); return(alpha > *beta ? 1.0 : 0.0); } case GreaterThanEqualOperator: { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); return(alpha >= *beta ? 1.0 : 0.0); } case EqualOperator: { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); return(fabs(alpha-(*beta)) < MagickEpsilon ? 1.0 : 0.0); } case NotEqualOperator: { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); return(fabs(alpha-(*beta)) >= MagickEpsilon ? 1.0 : 0.0); } case '&': { gamma=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); *beta=(double) ((size_t) (alpha+0.5) & (size_t) (gamma+0.5)); return(*beta); } case '|': { gamma=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); *beta=(double) ((size_t) (alpha+0.5) | (size_t) (gamma+0.5)); return(*beta); } case LogicalAndOperator: { p++; if (alpha <= 0.0) { *beta=0.0; return(*beta); } gamma=FxEvaluateSubexpression(fx_info,channel,x,y,p,depth,beta, exception); *beta=(gamma > 0.0) ? 1.0 : 0.0; return(*beta); } case LogicalOrOperator: { p++; if (alpha > 0.0) { *beta=1.0; return(*beta); } gamma=FxEvaluateSubexpression(fx_info,channel,x,y,p,depth,beta, exception); *beta=(gamma > 0.0) ? 1.0 : 0.0; return(*beta); } case '?': { (void) CopyMagickString(subexpression,++p,MagickPathExtent); q=subexpression; p=StringToken(":",&q); if (q == (char *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), OptionError,"UnableToParseExpression","`%s'",subexpression); return(0.0); } if (fabs(alpha) >= MagickEpsilon) gamma=FxEvaluateSubexpression(fx_info,channel,x,y,p,depth,beta, exception); else gamma=FxEvaluateSubexpression(fx_info,channel,x,y,q,depth,beta, exception); return(gamma); } case '=': { char numeric[MagickPathExtent]; q=subexpression; while (isalpha((int) ((unsigned char) *q)) != 0) q++; if (*q != '\0') { (void) ThrowMagickException(exception,GetMagickModule(), OptionError,"UnableToParseExpression","`%s'",subexpression); return(0.0); } ClearMagickException(exception); *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); (void) FormatLocaleString(numeric,MagickPathExtent,"%g",*beta); (void) DeleteNodeFromSplayTree(fx_info->symbols,subexpression); (void) AddValueToSplayTree(fx_info->symbols,ConstantString( subexpression),ConstantString(numeric)); return(*beta); } case ',': { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); return(alpha); } case ';': { *beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth,beta, exception); return(*beta); } default: { gamma=alpha*FxEvaluateSubexpression(fx_info,channel,x,y,p,depth,beta, exception); return(gamma); } } } if (strchr("(",(int) *expression) != (char *) NULL) { (*depth)++; if (*depth >= FxMaxParenthesisDepth) (void) ThrowMagickException(exception,GetMagickModule(),OptionError, "ParenthesisNestedTooDeeply","`%s'",expression); (void) CopyMagickString(subexpression,expression+1,MagickPathExtent); subexpression[strlen(subexpression)-1]='\0'; gamma=FxEvaluateSubexpression(fx_info,channel,x,y,subexpression,depth, beta,exception); (*depth)--; return(gamma); } switch (*expression) { case '+': { gamma=FxEvaluateSubexpression(fx_info,channel,x,y,expression+1,depth,beta, exception); return(1.0*gamma); } case '-': { gamma=FxEvaluateSubexpression(fx_info,channel,x,y,expression+1,depth,beta, exception); return(-1.0*gamma); } case '~': { gamma=FxEvaluateSubexpression(fx_info,channel,x,y,expression+1,depth,beta, exception); return((~(size_t) (gamma+0.5))); } case 'A': case 'a': { if (LocaleNCompare(expression,"abs",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); return(fabs(alpha)); } #if defined(MAGICKCORE_HAVE_ACOSH) if (LocaleNCompare(expression,"acosh",5) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,depth, beta,exception); return(acosh(alpha)); } #endif if (LocaleNCompare(expression,"acos",4) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,depth, beta,exception); return(acos(alpha)); } #if defined(MAGICKCORE_HAVE_J1) if (LocaleNCompare(expression,"airy",4) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,depth, beta,exception); if (alpha == 0.0) return(1.0); gamma=2.0*j1((MagickPI*alpha))/(MagickPI*alpha); return(gamma*gamma); } #endif #if defined(MAGICKCORE_HAVE_ASINH) if (LocaleNCompare(expression,"asinh",5) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,depth, beta,exception); return(asinh(alpha)); } #endif if (LocaleNCompare(expression,"asin",4) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,depth, beta,exception); return(asin(alpha)); } if (LocaleNCompare(expression,"alt",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); return(((ssize_t) alpha) & 0x01 ? -1.0 : 1.0); } if (LocaleNCompare(expression,"atan2",5) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,depth, beta,exception); return(atan2(alpha,*beta)); } #if defined(MAGICKCORE_HAVE_ATANH) if (LocaleNCompare(expression,"atanh",5) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,depth, beta,exception); return(atanh(alpha)); } #endif if (LocaleNCompare(expression,"atan",4) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,depth, beta,exception); return(atan(alpha)); } if (LocaleCompare(expression,"a") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'B': case 'b': { if (LocaleCompare(expression,"b") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'C': case 'c': { if (LocaleNCompare(expression,"ceil",4) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,depth, beta,exception); return(ceil(alpha)); } if (LocaleNCompare(expression,"clamp",5) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,depth, beta,exception); if (alpha < 0.0) return(0.0); if (alpha > 1.0) return(1.0); return(alpha); } if (LocaleNCompare(expression,"cosh",4) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,depth, beta,exception); return(cosh(alpha)); } if (LocaleNCompare(expression,"cos",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); return(cos(alpha)); } if (LocaleCompare(expression,"c") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'D': case 'd': { if (LocaleNCompare(expression,"debug",5) == 0) { const char *type; alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,depth, beta,exception); if (fx_info->images->colorspace == CMYKColorspace) switch (channel) { case CyanPixelChannel: type="cyan"; break; case MagentaPixelChannel: type="magenta"; break; case YellowPixelChannel: type="yellow"; break; case AlphaPixelChannel: type="opacity"; break; case BlackPixelChannel: type="black"; break; default: type="unknown"; break; } else switch (channel) { case RedPixelChannel: type="red"; break; case GreenPixelChannel: type="green"; break; case BluePixelChannel: type="blue"; break; case AlphaPixelChannel: type="opacity"; break; default: type="unknown"; break; } (void) CopyMagickString(subexpression,expression+6,MagickPathExtent); if (strlen(subexpression) > 1) subexpression[strlen(subexpression)-1]='\0'; if (fx_info->file != (FILE *) NULL) (void) FormatLocaleFile(fx_info->file,"%s[%.20g,%.20g].%s: " "%s=%.*g\n",fx_info->images->filename,(double) x,(double) y,type, subexpression,GetMagickPrecision(),alpha); return(0.0); } if (LocaleNCompare(expression,"drc",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); return((alpha/(*beta*(alpha-1.0)+1.0))); } break; } case 'E': case 'e': { if (LocaleCompare(expression,"epsilon") == 0) return(MagickEpsilon); #if defined(MAGICKCORE_HAVE_ERF) if (LocaleNCompare(expression,"erf",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); return(erf(alpha)); } #endif if (LocaleNCompare(expression,"exp",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); return(exp(alpha)); } if (LocaleCompare(expression,"e") == 0) return(2.7182818284590452354); break; } case 'F': case 'f': { if (LocaleNCompare(expression,"floor",5) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,depth, beta,exception); return(floor(alpha)); } break; } case 'G': case 'g': { if (LocaleNCompare(expression,"gauss",5) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,depth, beta,exception); gamma=exp((-alpha*alpha/2.0))/sqrt(2.0*MagickPI); return(gamma); } if (LocaleNCompare(expression,"gcd",3) == 0) { MagickOffsetType gcd; alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); gcd=FxGCD((MagickOffsetType) (alpha+0.5),(MagickOffsetType) (*beta+ 0.5)); return(gcd); } if (LocaleCompare(expression,"g") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'H': case 'h': { if (LocaleCompare(expression,"h") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); if (LocaleCompare(expression,"hue") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); if (LocaleNCompare(expression,"hypot",5) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,depth, beta,exception); return(hypot(alpha,*beta)); } break; } case 'K': case 'k': { if (LocaleCompare(expression,"k") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'I': case 'i': { if (LocaleCompare(expression,"intensity") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); if (LocaleNCompare(expression,"int",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); return(floor(alpha)); } if (LocaleNCompare(expression,"isnan",5) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,depth, beta,exception); return(!!IsNaN(alpha)); } if (LocaleCompare(expression,"i") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'J': case 'j': { if (LocaleCompare(expression,"j") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); #if defined(MAGICKCORE_HAVE_J0) if (LocaleNCompare(expression,"j0",2) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+2,depth, beta,exception); return(j0(alpha)); } #endif #if defined(MAGICKCORE_HAVE_J1) if (LocaleNCompare(expression,"j1",2) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+2,depth, beta,exception); return(j1(alpha)); } #endif #if defined(MAGICKCORE_HAVE_J1) if (LocaleNCompare(expression,"jinc",4) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,depth, beta,exception); if (alpha == 0.0) return(1.0); gamma=(2.0*j1((MagickPI*alpha))/(MagickPI*alpha)); return(gamma); } #endif break; } case 'L': case 'l': { if (LocaleNCompare(expression,"ln",2) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+2,depth, beta,exception); return(log(alpha)); } if (LocaleNCompare(expression,"logtwo",6) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+6,depth, beta,exception); return(log10(alpha))/log10(2.0); } if (LocaleNCompare(expression,"log",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); return(log10(alpha)); } if (LocaleCompare(expression,"lightness") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'M': case 'm': { if (LocaleCompare(expression,"MaxRGB") == 0) return(QuantumRange); if (LocaleNCompare(expression,"maxima",6) == 0) break; if (LocaleNCompare(expression,"max",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); return(alpha > *beta ? alpha : *beta); } if (LocaleNCompare(expression,"minima",6) == 0) break; if (LocaleNCompare(expression,"min",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); return(alpha < *beta ? alpha : *beta); } if (LocaleNCompare(expression,"mod",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); gamma=alpha-floor((alpha/(*beta)))*(*beta); return(gamma); } if (LocaleCompare(expression,"m") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'N': case 'n': { if (LocaleNCompare(expression,"not",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); return((alpha < MagickEpsilon)); } if (LocaleCompare(expression,"n") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'O': case 'o': { if (LocaleCompare(expression,"Opaque") == 0) return(1.0); if (LocaleCompare(expression,"o") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'P': case 'p': { if (LocaleCompare(expression,"phi") == 0) return(MagickPHI); if (LocaleCompare(expression,"pi") == 0) return(MagickPI); if (LocaleNCompare(expression,"pow",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); return(pow(alpha,*beta)); } if (LocaleCompare(expression,"p") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'Q': case 'q': { if (LocaleCompare(expression,"QuantumRange") == 0) return(QuantumRange); if (LocaleCompare(expression,"QuantumScale") == 0) return(QuantumScale); break; } case 'R': case 'r': { if (LocaleNCompare(expression,"rand",4) == 0) { #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_FxEvaluateSubexpression) #endif alpha=GetPseudoRandomValue(fx_info->random_info); return(alpha); } if (LocaleNCompare(expression,"round",5) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,depth, beta,exception); return(floor(alpha+0.5)); } if (LocaleCompare(expression,"r") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'S': case 's': { if (LocaleCompare(expression,"saturation") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); if (LocaleNCompare(expression,"sign",4) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,depth, beta,exception); return(alpha < 0.0 ? -1.0 : 1.0); } if (LocaleNCompare(expression,"sinc",4) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,depth, beta,exception); if (alpha == 0) return(1.0); gamma=sin((MagickPI*alpha))/(MagickPI*alpha); return(gamma); } if (LocaleNCompare(expression,"sinh",4) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,depth, beta,exception); return(sinh(alpha)); } if (LocaleNCompare(expression,"sin",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); return(sin(alpha)); } if (LocaleNCompare(expression,"sqrt",4) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,depth, beta,exception); return(sqrt(alpha)); } if (LocaleNCompare(expression,"squish",6) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+6,depth, beta,exception); return((1.0/(1.0+exp(-alpha)))); } if (LocaleCompare(expression,"s") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'T': case 't': { if (LocaleNCompare(expression,"tanh",4) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,depth, beta,exception); return(tanh(alpha)); } if (LocaleNCompare(expression,"tan",3) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,depth, beta,exception); return(tan(alpha)); } if (LocaleCompare(expression,"Transparent") == 0) return(0.0); if (LocaleNCompare(expression,"trunc",5) == 0) { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,depth, beta,exception); if (alpha >= 0.0) return(floor(alpha)); return(ceil(alpha)); } if (LocaleCompare(expression,"t") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'U': case 'u': { if (LocaleCompare(expression,"u") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'V': case 'v': { if (LocaleCompare(expression,"v") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'W': case 'w': { if (LocaleNCompare(expression,"while",5) == 0) { do { alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5, depth,beta,exception); } while (fabs(alpha) >= MagickEpsilon); return(*beta); } if (LocaleCompare(expression,"w") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'Y': case 'y': { if (LocaleCompare(expression,"y") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } case 'Z': case 'z': { if (LocaleCompare(expression,"z") == 0) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); break; } default: break; } q=(char *) expression; alpha=InterpretSiPrefixValue(expression,&q); if (q == expression) return(FxGetSymbol(fx_info,channel,x,y,expression,exception)); return(alpha); } MagickPrivate MagickBooleanType FxEvaluateExpression(FxInfo *fx_info, double *alpha,ExceptionInfo *exception) { MagickBooleanType status; status=FxEvaluateChannelExpression(fx_info,GrayPixelChannel,0,0,alpha, exception); return(status); } MagickExport MagickBooleanType FxPreprocessExpression(FxInfo *fx_info, double *alpha,ExceptionInfo *exception) { FILE *file; MagickBooleanType status; file=fx_info->file; fx_info->file=(FILE *) NULL; status=FxEvaluateChannelExpression(fx_info,GrayPixelChannel,0,0,alpha, exception); fx_info->file=file; return(status); } MagickPrivate MagickBooleanType FxEvaluateChannelExpression(FxInfo *fx_info, const PixelChannel channel,const ssize_t x,const ssize_t y, double *alpha,ExceptionInfo *exception) { double beta; size_t depth; depth=0; beta=0.0; *alpha=FxEvaluateSubexpression(fx_info,channel,x,y,fx_info->expression,&depth, &beta,exception); return(exception->severity == OptionError ? MagickFalse : MagickTrue); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % F x I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % FxImage() applies a mathematical expression to the specified image. % % The format of the FxImage method is: % % Image *FxImage(const Image *image,const char *expression, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o expression: A mathematical expression. % % o exception: return any errors or warnings in this structure. % */ static FxInfo **DestroyFxThreadSet(FxInfo **fx_info) { register ssize_t i; assert(fx_info != (FxInfo **) NULL); for (i=0; i < (ssize_t) GetMagickResourceLimit(ThreadResource); i++) if (fx_info[i] != (FxInfo *) NULL) fx_info[i]=DestroyFxInfo(fx_info[i]); fx_info=(FxInfo **) RelinquishMagickMemory(fx_info); return(fx_info); } static FxInfo **AcquireFxThreadSet(const Image *image,const char *expression, ExceptionInfo *exception) { char *fx_expression; FxInfo **fx_info; double alpha; register ssize_t i; size_t number_threads; number_threads=(size_t) GetMagickResourceLimit(ThreadResource); fx_info=(FxInfo **) AcquireQuantumMemory(number_threads,sizeof(*fx_info)); if (fx_info == (FxInfo **) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); return((FxInfo **) NULL); } (void) ResetMagickMemory(fx_info,0,number_threads*sizeof(*fx_info)); if (*expression != '@') fx_expression=ConstantString(expression); else fx_expression=FileToString(expression+1,~0UL,exception); for (i=0; i < (ssize_t) number_threads; i++) { MagickBooleanType status; fx_info[i]=AcquireFxInfo(image,fx_expression,exception); if (fx_info[i] == (FxInfo *) NULL) break; status=FxPreprocessExpression(fx_info[i],&alpha,exception); if (status == MagickFalse) break; } fx_expression=DestroyString(fx_expression); if (i < (ssize_t) number_threads) fx_info=DestroyFxThreadSet(fx_info); return(fx_info); } MagickExport Image *FxImage(const Image *image,const char *expression, ExceptionInfo *exception) { #define FxImageTag "Fx/Image" CacheView *fx_view, *image_view; FxInfo **magick_restrict fx_info; Image *fx_image; MagickBooleanType status; MagickOffsetType progress; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); fx_info=AcquireFxThreadSet(image,expression,exception); if (fx_info == (FxInfo **) NULL) return((Image *) NULL); fx_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if (fx_image == (Image *) NULL) { fx_info=DestroyFxThreadSet(fx_info); return((Image *) NULL); } if (SetImageStorageClass(fx_image,DirectClass,exception) == MagickFalse) { fx_info=DestroyFxThreadSet(fx_info); fx_image=DestroyImage(fx_image); return((Image *) NULL); } /* Fx image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); fx_view=AcquireAuthenticCacheView(fx_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,fx_image,fx_image->rows,1) #endif for (y=0; y < (ssize_t) fx_image->rows; y++) { const int id = GetOpenMPThreadId(); register const Quantum *magick_restrict p; register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(fx_view,0,y,fx_image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) fx_image->columns; x++) { register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { double alpha; PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); PixelTrait fx_traits=GetPixelChannelTraits(fx_image,channel); if ((traits == UndefinedPixelTrait) || (fx_traits == UndefinedPixelTrait)) continue; if (((fx_traits & CopyPixelTrait) != 0) || (GetPixelReadMask(image,p) == 0)) { SetPixelChannel(fx_image,channel,p[i],q); continue; } alpha=0.0; (void) FxEvaluateChannelExpression(fx_info[id],channel,x,y,&alpha, exception); q[i]=ClampToQuantum(QuantumRange*alpha); } p+=GetPixelChannels(image); q+=GetPixelChannels(fx_image); } if (SyncCacheViewAuthenticPixels(fx_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_FxImage) #endif proceed=SetImageProgress(image,FxImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } fx_view=DestroyCacheView(fx_view); image_view=DestroyCacheView(image_view); fx_info=DestroyFxThreadSet(fx_info); if (status == MagickFalse) fx_image=DestroyImage(fx_image); return(fx_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I m p l o d e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ImplodeImage() creates a new image that is a copy of an existing % one with the image pixels "implode" by the specified percentage. It % allocates the memory necessary for the new Image structure and returns a % pointer to the new image. % % The format of the ImplodeImage method is: % % Image *ImplodeImage(const Image *image,const double amount, % const PixelInterpolateMethod method,ExceptionInfo *exception) % % A description of each parameter follows: % % o implode_image: Method ImplodeImage returns a pointer to the image % after it is implode. A null image is returned if there is a memory % shortage. % % o image: the image. % % o amount: Define the extent of the implosion. % % o method: the pixel interpolation method. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *ImplodeImage(const Image *image,const double amount, const PixelInterpolateMethod method,ExceptionInfo *exception) { #define ImplodeImageTag "Implode/Image" CacheView *image_view, *implode_view, *interpolate_view; Image *implode_image; MagickBooleanType status; MagickOffsetType progress; double radius; PointInfo center, scale; ssize_t y; /* Initialize implode image attributes. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); implode_image=CloneImage(image,image->columns,image->rows,MagickTrue, exception); if (implode_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(implode_image,DirectClass,exception) == MagickFalse) { implode_image=DestroyImage(implode_image); return((Image *) NULL); } if (implode_image->background_color.alpha != OpaqueAlpha) implode_image->alpha_trait=BlendPixelTrait; /* Compute scaling factor. */ scale.x=1.0; scale.y=1.0; center.x=0.5*image->columns; center.y=0.5*image->rows; radius=center.x; if (image->columns > image->rows) scale.y=(double) image->columns/(double) image->rows; else if (image->columns < image->rows) { scale.x=(double) image->rows/(double) image->columns; radius=center.y; } /* Implode image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); interpolate_view=AcquireVirtualCacheView(image,exception); implode_view=AcquireAuthenticCacheView(implode_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,implode_image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { double distance; PointInfo delta; register const Quantum *magick_restrict p; register ssize_t x; register Quantum *magick_restrict q; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(implode_view,0,y,implode_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } delta.y=scale.y*(double) (y-center.y); for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; /* Determine if the pixel is within an ellipse. */ if (GetPixelReadMask(image,p) == 0) { SetPixelBackgoundColor(implode_image,q); p+=GetPixelChannels(image); q+=GetPixelChannels(implode_image); continue; } delta.x=scale.x*(double) (x-center.x); distance=delta.x*delta.x+delta.y*delta.y; if (distance >= (radius*radius)) for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); PixelTrait implode_traits=GetPixelChannelTraits(implode_image, channel); if ((traits == UndefinedPixelTrait) || (implode_traits == UndefinedPixelTrait)) continue; SetPixelChannel(implode_image,channel,p[i],q); } else { double factor; /* Implode the pixel. */ factor=1.0; if (distance > 0.0) factor=pow(sin(MagickPI*sqrt((double) distance)/radius/2),-amount); status=InterpolatePixelChannels(image,interpolate_view,implode_image, method,(double) (factor*delta.x/scale.x+center.x),(double) (factor* delta.y/scale.y+center.y),q,exception); } p+=GetPixelChannels(image); q+=GetPixelChannels(implode_image); } if (SyncCacheViewAuthenticPixels(implode_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_ImplodeImage) #endif proceed=SetImageProgress(image,ImplodeImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } implode_view=DestroyCacheView(implode_view); interpolate_view=DestroyCacheView(interpolate_view); image_view=DestroyCacheView(image_view); if (status == MagickFalse) implode_image=DestroyImage(implode_image); return(implode_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % M o r p h I m a g e s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % The MorphImages() method requires a minimum of two images. The first % image is transformed into the second by a number of intervening images % as specified by frames. % % The format of the MorphImage method is: % % Image *MorphImages(const Image *image,const size_t number_frames, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o number_frames: Define the number of in-between image to generate. % The more in-between frames, the smoother the morph. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *MorphImages(const Image *image,const size_t number_frames, ExceptionInfo *exception) { #define MorphImageTag "Morph/Image" double alpha, beta; Image *morph_image, *morph_images; MagickBooleanType status; MagickOffsetType scene; register const Image *next; register ssize_t n; ssize_t y; /* Clone first frame in sequence. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); morph_images=CloneImage(image,0,0,MagickTrue,exception); if (morph_images == (Image *) NULL) return((Image *) NULL); if (GetNextImageInList(image) == (Image *) NULL) { /* Morph single image. */ for (n=1; n < (ssize_t) number_frames; n++) { morph_image=CloneImage(image,0,0,MagickTrue,exception); if (morph_image == (Image *) NULL) { morph_images=DestroyImageList(morph_images); return((Image *) NULL); } AppendImageToList(&morph_images,morph_image); if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; proceed=SetImageProgress(image,MorphImageTag,(MagickOffsetType) n, number_frames); if (proceed == MagickFalse) status=MagickFalse; } } return(GetFirstImageInList(morph_images)); } /* Morph image sequence. */ status=MagickTrue; scene=0; next=image; for ( ; GetNextImageInList(next) != (Image *) NULL; next=GetNextImageInList(next)) { for (n=0; n < (ssize_t) number_frames; n++) { CacheView *image_view, *morph_view; beta=(double) (n+1.0)/(double) (number_frames+1.0); alpha=1.0-beta; morph_image=ResizeImage(next,(size_t) (alpha*next->columns+beta* GetNextImageInList(next)->columns+0.5),(size_t) (alpha*next->rows+beta* GetNextImageInList(next)->rows+0.5),next->filter,exception); if (morph_image == (Image *) NULL) { morph_images=DestroyImageList(morph_images); return((Image *) NULL); } status=SetImageStorageClass(morph_image,DirectClass,exception); if (status == MagickFalse) { morph_image=DestroyImage(morph_image); return((Image *) NULL); } AppendImageToList(&morph_images,morph_image); morph_images=GetLastImageInList(morph_images); morph_image=ResizeImage(GetNextImageInList(next),morph_images->columns, morph_images->rows,GetNextImageInList(next)->filter,exception); if (morph_image == (Image *) NULL) { morph_images=DestroyImageList(morph_images); return((Image *) NULL); } image_view=AcquireVirtualCacheView(morph_image,exception); morph_view=AcquireAuthenticCacheView(morph_images,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(morph_image,morph_image,morph_image->rows,1) #endif for (y=0; y < (ssize_t) morph_images->rows; y++) { MagickBooleanType sync; register const Quantum *magick_restrict p; register ssize_t x; register Quantum *magick_restrict q; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,morph_image->columns,1, exception); q=GetCacheViewAuthenticPixels(morph_view,0,y,morph_images->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) morph_images->columns; x++) { register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(morph_image); i++) { PixelChannel channel=GetPixelChannelChannel(morph_image,i); PixelTrait traits=GetPixelChannelTraits(morph_image,channel); PixelTrait morph_traits=GetPixelChannelTraits(morph_images,channel); if ((traits == UndefinedPixelTrait) || (morph_traits == UndefinedPixelTrait)) continue; if (((morph_traits & CopyPixelTrait) != 0) || (GetPixelReadMask(morph_images,p) == 0)) { SetPixelChannel(morph_image,channel,p[i],q); continue; } SetPixelChannel(morph_image,channel,ClampToQuantum(alpha* GetPixelChannel(morph_images,channel,q)+beta*p[i]),q); } p+=GetPixelChannels(morph_image); q+=GetPixelChannels(morph_images); } sync=SyncCacheViewAuthenticPixels(morph_view,exception); if (sync == MagickFalse) status=MagickFalse; } morph_view=DestroyCacheView(morph_view); image_view=DestroyCacheView(image_view); morph_image=DestroyImage(morph_image); } if (n < (ssize_t) number_frames) break; /* Clone last frame in sequence. */ morph_image=CloneImage(GetNextImageInList(next),0,0,MagickTrue,exception); if (morph_image == (Image *) NULL) { morph_images=DestroyImageList(morph_images); return((Image *) NULL); } AppendImageToList(&morph_images,morph_image); morph_images=GetLastImageInList(morph_images); if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_MorphImages) #endif proceed=SetImageProgress(image,MorphImageTag,scene, GetImageListLength(image)); if (proceed == MagickFalse) status=MagickFalse; } scene++; } if (GetNextImageInList(next) != (Image *) NULL) { morph_images=DestroyImageList(morph_images); return((Image *) NULL); } return(GetFirstImageInList(morph_images)); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % P l a s m a I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % PlasmaImage() initializes an image with plasma fractal values. The image % must be initialized with a base color and the random number generator % seeded before this method is called. % % The format of the PlasmaImage method is: % % MagickBooleanType PlasmaImage(Image *image,const SegmentInfo *segment, % size_t attenuate,size_t depth,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o segment: Define the region to apply plasma fractals values. % % o attenuate: Define the plasma attenuation factor. % % o depth: Limit the plasma recursion depth. % % o exception: return any errors or warnings in this structure. % */ static inline Quantum PlasmaPixel(RandomInfo *random_info, const double pixel,const double noise) { Quantum plasma; plasma=ClampToQuantum(pixel+noise*GetPseudoRandomValue(random_info)- noise/2.0); if (plasma <= 0) return((Quantum) 0); if (plasma >= QuantumRange) return(QuantumRange); return(plasma); } static MagickBooleanType PlasmaImageProxy(Image *image,CacheView *image_view, CacheView *u_view,CacheView *v_view,RandomInfo *random_info, const SegmentInfo *segment,size_t attenuate,size_t depth, ExceptionInfo *exception) { double plasma; register const Quantum *magick_restrict u, *magick_restrict v; register Quantum *magick_restrict q; register ssize_t i; ssize_t x, x_mid, y, y_mid; if ((fabs(segment->x2-segment->x1) <= MagickEpsilon) && (fabs(segment->y2-segment->y1) <= MagickEpsilon)) return(MagickTrue); if (depth != 0) { MagickBooleanType status; SegmentInfo local_info; /* Divide the area into quadrants and recurse. */ depth--; attenuate++; x_mid=(ssize_t) ceil((segment->x1+segment->x2)/2-0.5); y_mid=(ssize_t) ceil((segment->y1+segment->y2)/2-0.5); local_info=(*segment); local_info.x2=(double) x_mid; local_info.y2=(double) y_mid; (void) PlasmaImageProxy(image,image_view,u_view,v_view,random_info, &local_info,attenuate,depth,exception); local_info=(*segment); local_info.y1=(double) y_mid; local_info.x2=(double) x_mid; (void) PlasmaImageProxy(image,image_view,u_view,v_view,random_info, &local_info,attenuate,depth,exception); local_info=(*segment); local_info.x1=(double) x_mid; local_info.y2=(double) y_mid; (void) PlasmaImageProxy(image,image_view,u_view,v_view,random_info, &local_info,attenuate,depth,exception); local_info=(*segment); local_info.x1=(double) x_mid; local_info.y1=(double) y_mid; status=PlasmaImageProxy(image,image_view,u_view,v_view,random_info, &local_info,attenuate,depth,exception); return(status); } x_mid=(ssize_t) ceil((segment->x1+segment->x2)/2-0.5); y_mid=(ssize_t) ceil((segment->y1+segment->y2)/2-0.5); if ((fabs(segment->x1-x_mid) < MagickEpsilon) && (fabs(segment->x2-x_mid) < MagickEpsilon) && (fabs(segment->y1-y_mid) < MagickEpsilon) && (fabs(segment->y2-y_mid) < MagickEpsilon)) return(MagickFalse); /* Average pixels and apply plasma. */ plasma=(double) QuantumRange/(2.0*attenuate); if ((fabs(segment->x1-x_mid) > MagickEpsilon) || (fabs(segment->x2-x_mid) > MagickEpsilon)) { /* Left pixel. */ x=(ssize_t) ceil(segment->x1-0.5); u=GetCacheViewVirtualPixels(u_view,x,(ssize_t) ceil(segment->y1-0.5),1,1, exception); v=GetCacheViewVirtualPixels(v_view,x,(ssize_t) ceil(segment->y2-0.5),1,1, exception); q=QueueCacheViewAuthenticPixels(image_view,x,y_mid,1,1,exception); if ((u == (const Quantum *) NULL) || (v == (const Quantum *) NULL) || (q == (Quantum *) NULL)) return(MagickTrue); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if (traits == UndefinedPixelTrait) continue; q[i]=PlasmaPixel(random_info,(u[i]+v[i])/2.0,plasma); } (void) SyncCacheViewAuthenticPixels(image_view,exception); if (fabs(segment->x1-segment->x2) > MagickEpsilon) { /* Right pixel. */ x=(ssize_t) ceil(segment->x2-0.5); u=GetCacheViewVirtualPixels(u_view,x,(ssize_t) ceil(segment->y1-0.5), 1,1,exception); v=GetCacheViewVirtualPixels(v_view,x,(ssize_t) ceil(segment->y2-0.5), 1,1,exception); q=QueueCacheViewAuthenticPixels(image_view,x,y_mid,1,1,exception); if ((u == (const Quantum *) NULL) || (v == (const Quantum *) NULL) || (q == (Quantum *) NULL)) return(MagickTrue); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if (traits == UndefinedPixelTrait) continue; q[i]=PlasmaPixel(random_info,(u[i]+v[i])/2.0,plasma); } (void) SyncCacheViewAuthenticPixels(image_view,exception); } } if ((fabs(segment->y1-y_mid) > MagickEpsilon) || (fabs(segment->y2-y_mid) > MagickEpsilon)) { if ((fabs(segment->x1-x_mid) > MagickEpsilon) || (fabs(segment->y2-y_mid) > MagickEpsilon)) { /* Bottom pixel. */ y=(ssize_t) ceil(segment->y2-0.5); u=GetCacheViewVirtualPixels(u_view,(ssize_t) ceil(segment->x1-0.5),y, 1,1,exception); v=GetCacheViewVirtualPixels(v_view,(ssize_t) ceil(segment->x2-0.5),y, 1,1,exception); q=QueueCacheViewAuthenticPixels(image_view,x_mid,y,1,1,exception); if ((u == (const Quantum *) NULL) || (v == (const Quantum *) NULL) || (q == (Quantum *) NULL)) return(MagickTrue); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if (traits == UndefinedPixelTrait) continue; q[i]=PlasmaPixel(random_info,(u[i]+v[i])/2.0,plasma); } (void) SyncCacheViewAuthenticPixels(image_view,exception); } if (fabs(segment->y1-segment->y2) > MagickEpsilon) { /* Top pixel. */ y=(ssize_t) ceil(segment->y1-0.5); u=GetCacheViewVirtualPixels(u_view,(ssize_t) ceil(segment->x1-0.5),y, 1,1,exception); v=GetCacheViewVirtualPixels(v_view,(ssize_t) ceil(segment->x2-0.5),y, 1,1,exception); q=QueueCacheViewAuthenticPixels(image_view,x_mid,y,1,1,exception); if ((u == (const Quantum *) NULL) || (v == (const Quantum *) NULL) || (q == (Quantum *) NULL)) return(MagickTrue); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if (traits == UndefinedPixelTrait) continue; q[i]=PlasmaPixel(random_info,(u[i]+v[i])/2.0,plasma); } (void) SyncCacheViewAuthenticPixels(image_view,exception); } } if ((fabs(segment->x1-segment->x2) > MagickEpsilon) || (fabs(segment->y1-segment->y2) > MagickEpsilon)) { /* Middle pixel. */ x=(ssize_t) ceil(segment->x1-0.5); y=(ssize_t) ceil(segment->y1-0.5); u=GetCacheViewVirtualPixels(u_view,x,y,1,1,exception); x=(ssize_t) ceil(segment->x2-0.5); y=(ssize_t) ceil(segment->y2-0.5); v=GetCacheViewVirtualPixels(v_view,x,y,1,1,exception); q=QueueCacheViewAuthenticPixels(image_view,x_mid,y_mid,1,1,exception); if ((u == (const Quantum *) NULL) || (v == (const Quantum *) NULL) || (q == (Quantum *) NULL)) return(MagickTrue); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if (traits == UndefinedPixelTrait) continue; q[i]=PlasmaPixel(random_info,(u[i]+v[i])/2.0,plasma); } (void) SyncCacheViewAuthenticPixels(image_view,exception); } if ((fabs(segment->x2-segment->x1) < 3.0) && (fabs(segment->y2-segment->y1) < 3.0)) return(MagickTrue); return(MagickFalse); } MagickExport MagickBooleanType PlasmaImage(Image *image, const SegmentInfo *segment,size_t attenuate,size_t depth, ExceptionInfo *exception) { CacheView *image_view, *u_view, *v_view; MagickBooleanType status; RandomInfo *random_info; if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse) return(MagickFalse); image_view=AcquireAuthenticCacheView(image,exception); u_view=AcquireVirtualCacheView(image,exception); v_view=AcquireVirtualCacheView(image,exception); random_info=AcquireRandomInfo(); status=PlasmaImageProxy(image,image_view,u_view,v_view,random_info,segment, attenuate,depth,exception); random_info=DestroyRandomInfo(random_info); v_view=DestroyCacheView(v_view); u_view=DestroyCacheView(u_view); image_view=DestroyCacheView(image_view); return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % P o l a r o i d I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % PolaroidImage() simulates a Polaroid picture. % % The format of the PolaroidImage method is: % % Image *PolaroidImage(const Image *image,const DrawInfo *draw_info, % const char *caption,const double angle, % const PixelInterpolateMethod method,ExceptionInfo exception) % % A description of each parameter follows: % % o image: the image. % % o draw_info: the draw info. % % o caption: the Polaroid caption. % % o angle: Apply the effect along this angle. % % o method: the pixel interpolation method. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *PolaroidImage(const Image *image,const DrawInfo *draw_info, const char *caption,const double angle,const PixelInterpolateMethod method, ExceptionInfo *exception) { Image *bend_image, *caption_image, *flop_image, *picture_image, *polaroid_image, *rotate_image, *trim_image; size_t height; ssize_t quantum; /* Simulate a Polaroid picture. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); quantum=(ssize_t) MagickMax(MagickMax((double) image->columns,(double) image->rows)/25.0,10.0); height=image->rows+2*quantum; caption_image=(Image *) NULL; if (caption != (const char *) NULL) { char geometry[MagickPathExtent], *text; DrawInfo *annotate_info; ImageInfo *image_info; MagickBooleanType status; ssize_t count; TypeMetric metrics; /* Generate caption image. */ caption_image=CloneImage(image,image->columns,1,MagickTrue,exception); if (caption_image == (Image *) NULL) return((Image *) NULL); image_info=AcquireImageInfo(); annotate_info=CloneDrawInfo((const ImageInfo *) NULL,draw_info); text=InterpretImageProperties(image_info,(Image *) image,caption, exception); image_info=DestroyImageInfo(image_info); (void) CloneString(&annotate_info->text,text); count=FormatMagickCaption(caption_image,annotate_info,MagickTrue,&metrics, &text,exception); status=SetImageExtent(caption_image,image->columns,(size_t) ((count+1)* (metrics.ascent-metrics.descent)+0.5),exception); if (status == MagickFalse) caption_image=DestroyImage(caption_image); else { caption_image->background_color=image->border_color; (void) SetImageBackgroundColor(caption_image,exception); (void) CloneString(&annotate_info->text,text); (void) FormatLocaleString(geometry,MagickPathExtent,"+0+%g", metrics.ascent); if (annotate_info->gravity == UndefinedGravity) (void) CloneString(&annotate_info->geometry,AcquireString( geometry)); (void) AnnotateImage(caption_image,annotate_info,exception); height+=caption_image->rows; } annotate_info=DestroyDrawInfo(annotate_info); text=DestroyString(text); } picture_image=CloneImage(image,image->columns+2*quantum,height,MagickTrue, exception); if (picture_image == (Image *) NULL) { if (caption_image != (Image *) NULL) caption_image=DestroyImage(caption_image); return((Image *) NULL); } picture_image->background_color=image->border_color; (void) SetImageBackgroundColor(picture_image,exception); (void) CompositeImage(picture_image,image,OverCompositeOp,MagickTrue,quantum, quantum,exception); if (caption_image != (Image *) NULL) { (void) CompositeImage(picture_image,caption_image,OverCompositeOp, MagickTrue,quantum,(ssize_t) (image->rows+3*quantum/2),exception); caption_image=DestroyImage(caption_image); } (void) QueryColorCompliance("none",AllCompliance, &picture_image->background_color,exception); (void) SetImageAlphaChannel(picture_image,OpaqueAlphaChannel,exception); rotate_image=RotateImage(picture_image,90.0,exception); picture_image=DestroyImage(picture_image); if (rotate_image == (Image *) NULL) return((Image *) NULL); picture_image=rotate_image; bend_image=WaveImage(picture_image,0.01*picture_image->rows,2.0* picture_image->columns,method,exception); picture_image=DestroyImage(picture_image); if (bend_image == (Image *) NULL) return((Image *) NULL); picture_image=bend_image; rotate_image=RotateImage(picture_image,-90.0,exception); picture_image=DestroyImage(picture_image); if (rotate_image == (Image *) NULL) return((Image *) NULL); picture_image=rotate_image; picture_image->background_color=image->background_color; polaroid_image=ShadowImage(picture_image,80.0,2.0,quantum/3,quantum/3, exception); if (polaroid_image == (Image *) NULL) { picture_image=DestroyImage(picture_image); return(picture_image); } flop_image=FlopImage(polaroid_image,exception); polaroid_image=DestroyImage(polaroid_image); if (flop_image == (Image *) NULL) { picture_image=DestroyImage(picture_image); return(picture_image); } polaroid_image=flop_image; (void) CompositeImage(polaroid_image,picture_image,OverCompositeOp, MagickTrue,(ssize_t) (-0.01*picture_image->columns/2.0),0L,exception); picture_image=DestroyImage(picture_image); (void) QueryColorCompliance("none",AllCompliance, &polaroid_image->background_color,exception); rotate_image=RotateImage(polaroid_image,angle,exception); polaroid_image=DestroyImage(polaroid_image); if (rotate_image == (Image *) NULL) return((Image *) NULL); polaroid_image=rotate_image; trim_image=TrimImage(polaroid_image,exception); polaroid_image=DestroyImage(polaroid_image); if (trim_image == (Image *) NULL) return((Image *) NULL); polaroid_image=trim_image; return(polaroid_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e p i a T o n e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % MagickSepiaToneImage() applies a special effect to the image, similar to the % effect achieved in a photo darkroom by sepia toning. Threshold ranges from % 0 to QuantumRange and is a measure of the extent of the sepia toning. A % threshold of 80% is a good starting point for a reasonable tone. % % The format of the SepiaToneImage method is: % % Image *SepiaToneImage(const Image *image,const double threshold, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o threshold: the tone threshold. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *SepiaToneImage(const Image *image,const double threshold, ExceptionInfo *exception) { #define SepiaToneImageTag "SepiaTone/Image" CacheView *image_view, *sepia_view; Image *sepia_image; MagickBooleanType status; MagickOffsetType progress; ssize_t y; /* Initialize sepia-toned image attributes. */ assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); sepia_image=CloneImage(image,0,0,MagickTrue,exception); if (sepia_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(sepia_image,DirectClass,exception) == MagickFalse) { sepia_image=DestroyImage(sepia_image); return((Image *) NULL); } /* Tone each row of the image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); sepia_view=AcquireAuthenticCacheView(sepia_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,sepia_image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register ssize_t x; register Quantum *magick_restrict q; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=GetCacheViewAuthenticPixels(sepia_view,0,y,sepia_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { double intensity, tone; intensity=GetPixelIntensity(image,p); tone=intensity > threshold ? (double) QuantumRange : intensity+ (double) QuantumRange-threshold; SetPixelRed(sepia_image,ClampToQuantum(tone),q); tone=intensity > (7.0*threshold/6.0) ? (double) QuantumRange : intensity+(double) QuantumRange-7.0*threshold/6.0; SetPixelGreen(sepia_image,ClampToQuantum(tone),q); tone=intensity < (threshold/6.0) ? 0 : intensity-threshold/6.0; SetPixelBlue(sepia_image,ClampToQuantum(tone),q); tone=threshold/7.0; if ((double) GetPixelGreen(image,q) < tone) SetPixelGreen(sepia_image,ClampToQuantum(tone),q); if ((double) GetPixelBlue(image,q) < tone) SetPixelBlue(sepia_image,ClampToQuantum(tone),q); SetPixelAlpha(sepia_image,GetPixelAlpha(image,p),q); p+=GetPixelChannels(image); q+=GetPixelChannels(sepia_image); } if (SyncCacheViewAuthenticPixels(sepia_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_SepiaToneImage) #endif proceed=SetImageProgress(image,SepiaToneImageTag,progress++, image->rows); if (proceed == MagickFalse) status=MagickFalse; } } sepia_view=DestroyCacheView(sepia_view); image_view=DestroyCacheView(image_view); (void) NormalizeImage(sepia_image,exception); (void) ContrastImage(sepia_image,MagickTrue,exception); if (status == MagickFalse) sepia_image=DestroyImage(sepia_image); return(sepia_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S h a d o w I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ShadowImage() simulates a shadow from the specified image and returns it. % % The format of the ShadowImage method is: % % Image *ShadowImage(const Image *image,const double alpha, % const double sigma,const ssize_t x_offset,const ssize_t y_offset, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o alpha: percentage transparency. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o x_offset: the shadow x-offset. % % o y_offset: the shadow y-offset. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *ShadowImage(const Image *image,const double alpha, const double sigma,const ssize_t x_offset,const ssize_t y_offset, ExceptionInfo *exception) { #define ShadowImageTag "Shadow/Image" CacheView *image_view; ChannelType channel_mask; Image *border_image, *clone_image, *shadow_image; MagickBooleanType status; PixelInfo background_color; RectangleInfo border_info; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); clone_image=CloneImage(image,0,0,MagickTrue,exception); if (clone_image == (Image *) NULL) return((Image *) NULL); if (IsGrayColorspace(image->colorspace) != MagickFalse) (void) SetImageColorspace(clone_image,sRGBColorspace,exception); (void) SetImageVirtualPixelMethod(clone_image,EdgeVirtualPixelMethod, exception); border_info.width=(size_t) floor(2.0*sigma+0.5); border_info.height=(size_t) floor(2.0*sigma+0.5); border_info.x=0; border_info.y=0; (void) QueryColorCompliance("none",AllCompliance,&clone_image->border_color, exception); clone_image->alpha_trait=BlendPixelTrait; border_image=BorderImage(clone_image,&border_info,OverCompositeOp,exception); clone_image=DestroyImage(clone_image); if (border_image == (Image *) NULL) return((Image *) NULL); if (border_image->alpha_trait == UndefinedPixelTrait) (void) SetImageAlphaChannel(border_image,OpaqueAlphaChannel,exception); /* Shadow image. */ status=MagickTrue; background_color=border_image->background_color; background_color.alpha_trait=BlendPixelTrait; image_view=AcquireAuthenticCacheView(border_image,exception); for (y=0; y < (ssize_t) border_image->rows; y++) { register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; q=QueueCacheViewAuthenticPixels(image_view,0,y,border_image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) border_image->columns; x++) { if (border_image->alpha_trait != UndefinedPixelTrait) background_color.alpha=GetPixelAlpha(border_image,q)*alpha/100.0; SetPixelViaPixelInfo(border_image,&background_color,q); q+=GetPixelChannels(border_image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); if (status == MagickFalse) { border_image=DestroyImage(border_image); return((Image *) NULL); } channel_mask=SetImageChannelMask(border_image,AlphaChannel); shadow_image=BlurImage(border_image,0.0,sigma,exception); border_image=DestroyImage(border_image); if (shadow_image == (Image *) NULL) return((Image *) NULL); (void) SetPixelChannelMask(shadow_image,channel_mask); if (shadow_image->page.width == 0) shadow_image->page.width=shadow_image->columns; if (shadow_image->page.height == 0) shadow_image->page.height=shadow_image->rows; shadow_image->page.width+=x_offset-(ssize_t) border_info.width; shadow_image->page.height+=y_offset-(ssize_t) border_info.height; shadow_image->page.x+=x_offset-(ssize_t) border_info.width; shadow_image->page.y+=y_offset-(ssize_t) border_info.height; return(shadow_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S k e t c h I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SketchImage() simulates a pencil sketch. We convolve the image with a % Gaussian operator of the given radius and standard deviation (sigma). For % reasonable results, radius should be larger than sigma. Use a radius of 0 % and SketchImage() selects a suitable radius for you. Angle gives the angle % of the sketch. % % The format of the SketchImage method is: % % Image *SketchImage(const Image *image,const double radius, % const double sigma,const double angle,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the Gaussian, in pixels, not counting the % center pixel. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o angle: apply the effect along this angle. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *SketchImage(const Image *image,const double radius, const double sigma,const double angle,ExceptionInfo *exception) { CacheView *random_view; Image *blend_image, *blur_image, *dodge_image, *random_image, *sketch_image; MagickBooleanType status; RandomInfo **magick_restrict random_info; ssize_t y; #if defined(MAGICKCORE_OPENMP_SUPPORT) unsigned long key; #endif /* Sketch image. */ random_image=CloneImage(image,image->columns << 1,image->rows << 1, MagickTrue,exception); if (random_image == (Image *) NULL) return((Image *) NULL); status=MagickTrue; random_info=AcquireRandomInfoThreadSet(); random_view=AcquireAuthenticCacheView(random_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) key=GetRandomSecretKey(random_info[0]); #pragma omp parallel for schedule(static,4) shared(status) \ magick_threads(random_image,random_image,random_image->rows,key == ~0UL) #endif for (y=0; y < (ssize_t) random_image->rows; y++) { const int id = GetOpenMPThreadId(); register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; q=QueueCacheViewAuthenticPixels(random_view,0,y,random_image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) random_image->columns; x++) { double value; register ssize_t i; if (GetPixelReadMask(random_image,q) == 0) { q+=GetPixelChannels(random_image); continue; } value=GetPseudoRandomValue(random_info[id]); for (i=0; i < (ssize_t) GetPixelChannels(random_image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if (traits == UndefinedPixelTrait) continue; q[i]=ClampToQuantum(QuantumRange*value); } q+=GetPixelChannels(random_image); } if (SyncCacheViewAuthenticPixels(random_view,exception) == MagickFalse) status=MagickFalse; } random_view=DestroyCacheView(random_view); random_info=DestroyRandomInfoThreadSet(random_info); if (status == MagickFalse) { random_image=DestroyImage(random_image); return(random_image); } blur_image=MotionBlurImage(random_image,radius,sigma,angle,exception); random_image=DestroyImage(random_image); if (blur_image == (Image *) NULL) return((Image *) NULL); dodge_image=EdgeImage(blur_image,radius,exception); blur_image=DestroyImage(blur_image); if (dodge_image == (Image *) NULL) return((Image *) NULL); (void) NormalizeImage(dodge_image,exception); (void) NegateImage(dodge_image,MagickFalse,exception); (void) TransformImage(&dodge_image,(char *) NULL,"50%",exception); sketch_image=CloneImage(image,0,0,MagickTrue,exception); if (sketch_image == (Image *) NULL) { dodge_image=DestroyImage(dodge_image); return((Image *) NULL); } (void) CompositeImage(sketch_image,dodge_image,ColorDodgeCompositeOp, MagickTrue,0,0,exception); dodge_image=DestroyImage(dodge_image); blend_image=CloneImage(image,0,0,MagickTrue,exception); if (blend_image == (Image *) NULL) { sketch_image=DestroyImage(sketch_image); return((Image *) NULL); } if (blend_image->alpha_trait != BlendPixelTrait) (void) SetImageAlpha(blend_image,TransparentAlpha,exception); (void) SetImageArtifact(blend_image,"compose:args","20x80"); (void) CompositeImage(sketch_image,blend_image,BlendCompositeOp,MagickTrue, 0,0,exception); blend_image=DestroyImage(blend_image); return(sketch_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S o l a r i z e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SolarizeImage() applies a special effect to the image, similar to the effect % achieved in a photo darkroom by selectively exposing areas of photo % sensitive paper to light. Threshold ranges from 0 to QuantumRange and is a % measure of the extent of the solarization. % % The format of the SolarizeImage method is: % % MagickBooleanType SolarizeImage(Image *image,const double threshold, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o threshold: Define the extent of the solarization. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType SolarizeImage(Image *image, const double threshold,ExceptionInfo *exception) { #define SolarizeImageTag "Solarize/Image" CacheView *image_view; MagickBooleanType status; MagickOffsetType progress; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (IsGrayColorspace(image->colorspace) != MagickFalse) (void) SetImageColorspace(image,sRGBColorspace,exception); if (image->storage_class == PseudoClass) { register ssize_t i; /* Solarize colormap. */ for (i=0; i < (ssize_t) image->colors; i++) { if ((double) image->colormap[i].red > threshold) image->colormap[i].red=QuantumRange-image->colormap[i].red; if ((double) image->colormap[i].green > threshold) image->colormap[i].green=QuantumRange-image->colormap[i].green; if ((double) image->colormap[i].blue > threshold) image->colormap[i].blue=QuantumRange-image->colormap[i].blue; } } /* Solarize image. */ status=MagickTrue; progress=0; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register ssize_t x; register Quantum *magick_restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { register ssize_t i; if (GetPixelReadMask(image,q) == 0) { q+=GetPixelChannels(image); continue; } for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); if ((traits & UpdatePixelTrait) == 0) continue; if ((double) q[i] > threshold) q[i]=QuantumRange-q[i]; } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_SolarizeImage) #endif proceed=SetImageProgress(image,SolarizeImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S t e g a n o I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SteganoImage() hides a digital watermark within the image. Recover % the hidden watermark later to prove that the authenticity of an image. % Offset defines the start position within the image to hide the watermark. % % The format of the SteganoImage method is: % % Image *SteganoImage(const Image *image,Image *watermark, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o watermark: the watermark image. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *SteganoImage(const Image *image,const Image *watermark, ExceptionInfo *exception) { #define GetBit(alpha,i) ((((size_t) (alpha) >> (size_t) (i)) & 0x01) != 0) #define SetBit(alpha,i,set) (Quantum) ((set) != 0 ? (size_t) (alpha) \ | (one << (size_t) (i)) : (size_t) (alpha) & ~(one << (size_t) (i))) #define SteganoImageTag "Stegano/Image" CacheView *stegano_view, *watermark_view; Image *stegano_image; int c; MagickBooleanType status; PixelInfo pixel; register Quantum *q; register ssize_t x; size_t depth, one; ssize_t i, j, k, y; /* Initialize steganographic image attributes. */ assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(watermark != (const Image *) NULL); assert(watermark->signature == MagickCoreSignature); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); one=1UL; stegano_image=CloneImage(image,0,0,MagickTrue,exception); if (stegano_image == (Image *) NULL) return((Image *) NULL); stegano_image->depth=MAGICKCORE_QUANTUM_DEPTH; if (SetImageStorageClass(stegano_image,DirectClass,exception) == MagickFalse) { stegano_image=DestroyImage(stegano_image); return((Image *) NULL); } /* Hide watermark in low-order bits of image. */ c=0; i=0; j=0; depth=stegano_image->depth; k=stegano_image->offset; status=MagickTrue; watermark_view=AcquireVirtualCacheView(watermark,exception); stegano_view=AcquireAuthenticCacheView(stegano_image,exception); for (i=(ssize_t) depth-1; (i >= 0) && (j < (ssize_t) depth); i--) { for (y=0; (y < (ssize_t) watermark->rows) && (j < (ssize_t) depth); y++) { for (x=0; (x < (ssize_t) watermark->columns) && (j < (ssize_t) depth); x++) { ssize_t offset; (void) GetOneCacheViewVirtualPixelInfo(watermark_view,x,y,&pixel, exception); offset=k/(ssize_t) stegano_image->columns; if (offset >= (ssize_t) stegano_image->rows) break; q=GetCacheViewAuthenticPixels(stegano_view,k % (ssize_t) stegano_image->columns,k/(ssize_t) stegano_image->columns,1,1, exception); if (q == (Quantum *) NULL) break; switch (c) { case 0: { SetPixelRed(stegano_image,SetBit(GetPixelRed(stegano_image,q),j, GetBit(GetPixelInfoIntensity(stegano_image,&pixel),i)),q); break; } case 1: { SetPixelGreen(stegano_image,SetBit(GetPixelGreen(stegano_image,q),j, GetBit(GetPixelInfoIntensity(stegano_image,&pixel),i)),q); break; } case 2: { SetPixelBlue(stegano_image,SetBit(GetPixelBlue(stegano_image,q),j, GetBit(GetPixelInfoIntensity(stegano_image,&pixel),i)),q); break; } } if (SyncCacheViewAuthenticPixels(stegano_view,exception) == MagickFalse) break; c++; if (c == 3) c=0; k++; if (k == (ssize_t) (stegano_image->columns*stegano_image->columns)) k=0; if (k == stegano_image->offset) j++; } } if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; proceed=SetImageProgress(image,SteganoImageTag,(MagickOffsetType) (depth-i),depth); if (proceed == MagickFalse) status=MagickFalse; } } stegano_view=DestroyCacheView(stegano_view); watermark_view=DestroyCacheView(watermark_view); if (status == MagickFalse) stegano_image=DestroyImage(stegano_image); return(stegano_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S t e r e o A n a g l y p h I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % StereoAnaglyphImage() combines two images and produces a single image that % is the composite of a left and right image of a stereo pair. Special % red-green stereo glasses are required to view this effect. % % The format of the StereoAnaglyphImage method is: % % Image *StereoImage(const Image *left_image,const Image *right_image, % ExceptionInfo *exception) % Image *StereoAnaglyphImage(const Image *left_image, % const Image *right_image,const ssize_t x_offset,const ssize_t y_offset, % ExceptionInfo *exception) % % A description of each parameter follows: % % o left_image: the left image. % % o right_image: the right image. % % o exception: return any errors or warnings in this structure. % % o x_offset: amount, in pixels, by which the left image is offset to the % right of the right image. % % o y_offset: amount, in pixels, by which the left image is offset to the % bottom of the right image. % % */ MagickExport Image *StereoImage(const Image *left_image, const Image *right_image,ExceptionInfo *exception) { return(StereoAnaglyphImage(left_image,right_image,0,0,exception)); } MagickExport Image *StereoAnaglyphImage(const Image *left_image, const Image *right_image,const ssize_t x_offset,const ssize_t y_offset, ExceptionInfo *exception) { #define StereoImageTag "Stereo/Image" const Image *image; Image *stereo_image; MagickBooleanType status; ssize_t y; assert(left_image != (const Image *) NULL); assert(left_image->signature == MagickCoreSignature); if (left_image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", left_image->filename); assert(right_image != (const Image *) NULL); assert(right_image->signature == MagickCoreSignature); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); assert(right_image != (const Image *) NULL); image=left_image; if ((left_image->columns != right_image->columns) || (left_image->rows != right_image->rows)) ThrowImageException(ImageError,"LeftAndRightImageSizesDiffer"); /* Initialize stereo image attributes. */ stereo_image=CloneImage(left_image,left_image->columns,left_image->rows, MagickTrue,exception); if (stereo_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(stereo_image,DirectClass,exception) == MagickFalse) { stereo_image=DestroyImage(stereo_image); return((Image *) NULL); } (void) SetImageColorspace(stereo_image,sRGBColorspace,exception); /* Copy left image to red channel and right image to blue channel. */ status=MagickTrue; for (y=0; y < (ssize_t) stereo_image->rows; y++) { register const Quantum *magick_restrict p, *magick_restrict q; register ssize_t x; register Quantum *magick_restrict r; p=GetVirtualPixels(left_image,-x_offset,y-y_offset,image->columns,1, exception); q=GetVirtualPixels(right_image,0,y,right_image->columns,1,exception); r=QueueAuthenticPixels(stereo_image,0,y,stereo_image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL) || (r == (Quantum *) NULL)) break; for (x=0; x < (ssize_t) stereo_image->columns; x++) { SetPixelRed(image,GetPixelRed(left_image,p),r); SetPixelGreen(image,GetPixelGreen(right_image,q),r); SetPixelBlue(image,GetPixelBlue(right_image,q),r); if ((GetPixelAlphaTraits(stereo_image) & CopyPixelTrait) != 0) SetPixelAlpha(image,(GetPixelAlpha(left_image,p)+ GetPixelAlpha(right_image,q))/2,r); p+=GetPixelChannels(left_image); q+=GetPixelChannels(right_image); r+=GetPixelChannels(stereo_image); } if (SyncAuthenticPixels(stereo_image,exception) == MagickFalse) break; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; proceed=SetImageProgress(image,StereoImageTag,(MagickOffsetType) y, stereo_image->rows); if (proceed == MagickFalse) status=MagickFalse; } } if (status == MagickFalse) stereo_image=DestroyImage(stereo_image); return(stereo_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S w i r l I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SwirlImage() swirls the pixels about the center of the image, where % degrees indicates the sweep of the arc through which each pixel is moved. % You get a more dramatic effect as the degrees move from 1 to 360. % % The format of the SwirlImage method is: % % Image *SwirlImage(const Image *image,double degrees, % const PixelInterpolateMethod method,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o degrees: Define the tightness of the swirling effect. % % o method: the pixel interpolation method. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *SwirlImage(const Image *image,double degrees, const PixelInterpolateMethod method,ExceptionInfo *exception) { #define SwirlImageTag "Swirl/Image" CacheView *image_view, *interpolate_view, *swirl_view; Image *swirl_image; MagickBooleanType status; MagickOffsetType progress; double radius; PointInfo center, scale; ssize_t y; /* Initialize swirl image attributes. */ assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); swirl_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if (swirl_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(swirl_image,DirectClass,exception) == MagickFalse) { swirl_image=DestroyImage(swirl_image); return((Image *) NULL); } if (swirl_image->background_color.alpha != OpaqueAlpha) swirl_image->alpha_trait=BlendPixelTrait; /* Compute scaling factor. */ center.x=(double) image->columns/2.0; center.y=(double) image->rows/2.0; radius=MagickMax(center.x,center.y); scale.x=1.0; scale.y=1.0; if (image->columns > image->rows) scale.y=(double) image->columns/(double) image->rows; else if (image->columns < image->rows) scale.x=(double) image->rows/(double) image->columns; degrees=(double) DegreesToRadians(degrees); /* Swirl image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); interpolate_view=AcquireVirtualCacheView(image,exception); swirl_view=AcquireAuthenticCacheView(swirl_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,swirl_image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { double distance; PointInfo delta; register const Quantum *magick_restrict p; register ssize_t x; register Quantum *magick_restrict q; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(swirl_view,0,y,swirl_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } delta.y=scale.y*(double) (y-center.y); for (x=0; x < (ssize_t) image->columns; x++) { /* Determine if the pixel is within an ellipse. */ if (GetPixelReadMask(image,p) == 0) { SetPixelBackgoundColor(swirl_image,q); p+=GetPixelChannels(image); q+=GetPixelChannels(swirl_image); continue; } delta.x=scale.x*(double) (x-center.x); distance=delta.x*delta.x+delta.y*delta.y; if (distance >= (radius*radius)) { register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); PixelTrait swirl_traits=GetPixelChannelTraits(swirl_image,channel); if ((traits == UndefinedPixelTrait) || (swirl_traits == UndefinedPixelTrait)) continue; SetPixelChannel(swirl_image,channel,p[i],q); } } else { double cosine, factor, sine; /* Swirl the pixel. */ factor=1.0-sqrt((double) distance)/radius; sine=sin((double) (degrees*factor*factor)); cosine=cos((double) (degrees*factor*factor)); status=InterpolatePixelChannels(image,interpolate_view,swirl_image, method,((cosine*delta.x-sine*delta.y)/scale.x+center.x),(double) ((sine*delta.x+cosine*delta.y)/scale.y+center.y),q,exception); } p+=GetPixelChannels(image); q+=GetPixelChannels(swirl_image); } if (SyncCacheViewAuthenticPixels(swirl_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_SwirlImage) #endif proceed=SetImageProgress(image,SwirlImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } swirl_view=DestroyCacheView(swirl_view); interpolate_view=DestroyCacheView(interpolate_view); image_view=DestroyCacheView(image_view); if (status == MagickFalse) swirl_image=DestroyImage(swirl_image); return(swirl_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % T i n t I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % TintImage() applies a color vector to each pixel in the image. The length % of the vector is 0 for black and white and at its maximum for the midtones. % The vector weighting function is f(x)=(1-(4.0*((x-0.5)*(x-0.5)))) % % The format of the TintImage method is: % % Image *TintImage(const Image *image,const char *blend, % const PixelInfo *tint,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o blend: A color value used for tinting. % % o tint: A color value used for tinting. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *TintImage(const Image *image,const char *blend, const PixelInfo *tint,ExceptionInfo *exception) { #define TintImageTag "Tint/Image" CacheView *image_view, *tint_view; double intensity; GeometryInfo geometry_info; Image *tint_image; MagickBooleanType status; MagickOffsetType progress; PixelInfo color_vector; MagickStatusType flags; ssize_t y; /* Allocate tint image. */ assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); tint_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception); if (tint_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(tint_image,DirectClass,exception) == MagickFalse) { tint_image=DestroyImage(tint_image); return((Image *) NULL); } if ((IsGrayColorspace(image->colorspace) != MagickFalse) && (IsPixelInfoGray(tint) == MagickFalse)) (void) SetImageColorspace(tint_image,sRGBColorspace,exception); if (blend == (const char *) NULL) return(tint_image); /* Determine RGB values of the color. */ GetPixelInfo(image,&color_vector); flags=ParseGeometry(blend,&geometry_info); color_vector.red=geometry_info.rho; color_vector.green=geometry_info.rho; color_vector.blue=geometry_info.rho; color_vector.alpha=(MagickRealType) OpaqueAlpha; if ((flags & SigmaValue) != 0) color_vector.green=geometry_info.sigma; if ((flags & XiValue) != 0) color_vector.blue=geometry_info.xi; if ((flags & PsiValue) != 0) color_vector.alpha=geometry_info.psi; if (image->colorspace == CMYKColorspace) { color_vector.black=geometry_info.rho; if ((flags & PsiValue) != 0) color_vector.black=geometry_info.psi; if ((flags & ChiValue) != 0) color_vector.alpha=geometry_info.chi; } intensity=(double) GetPixelInfoIntensity((const Image *) NULL,tint); color_vector.red=(double) (color_vector.red*tint->red/100.0-intensity); color_vector.green=(double) (color_vector.green*tint->green/100.0-intensity); color_vector.blue=(double) (color_vector.blue*tint->blue/100.0-intensity); color_vector.black=(double) (color_vector.black*tint->black/100.0-intensity); color_vector.alpha=(double) (color_vector.alpha*tint->alpha/100.0-intensity); /* Tint image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); tint_view=AcquireAuthenticCacheView(tint_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,tint_image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=QueueCacheViewAuthenticPixels(tint_view,0,y,tint_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { PixelInfo pixel; double weight; register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel=GetPixelChannelChannel(image,i); PixelTrait traits=GetPixelChannelTraits(image,channel); PixelTrait tint_traits=GetPixelChannelTraits(tint_image,channel); if ((traits == UndefinedPixelTrait) || (tint_traits == UndefinedPixelTrait)) continue; if (((tint_traits & CopyPixelTrait) != 0) || (GetPixelReadMask(image,p) == 0)) { SetPixelChannel(tint_image,channel,p[i],q); continue; } } GetPixelInfo(image,&pixel); weight=QuantumScale*GetPixelRed(image,p)-0.5; pixel.red=(double) GetPixelRed(image,p)+color_vector.red*(1.0-(4.0* (weight*weight))); weight=QuantumScale*GetPixelGreen(image,p)-0.5; pixel.green=(double) GetPixelGreen(image,p)+color_vector.green*(1.0-(4.0* (weight*weight))); weight=QuantumScale*GetPixelBlue(image,p)-0.5; pixel.blue=(double) GetPixelBlue(image,p)+color_vector.blue*(1.0-(4.0* (weight*weight))); weight=QuantumScale*GetPixelBlack(image,p)-0.5; pixel.black=(double) GetPixelBlack(image,p)+color_vector.black*(1.0-(4.0* (weight*weight))); SetPixelViaPixelInfo(tint_image,&pixel,q); p+=GetPixelChannels(image); q+=GetPixelChannels(tint_image); } if (SyncCacheViewAuthenticPixels(tint_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_TintImage) #endif proceed=SetImageProgress(image,TintImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } tint_view=DestroyCacheView(tint_view); image_view=DestroyCacheView(image_view); if (status == MagickFalse) tint_image=DestroyImage(tint_image); return(tint_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % V i g n e t t e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % VignetteImage() softens the edges of the image in vignette style. % % The format of the VignetteImage method is: % % Image *VignetteImage(const Image *image,const double radius, % const double sigma,const ssize_t x,const ssize_t y, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o radius: the radius of the pixel neighborhood. % % o sigma: the standard deviation of the Gaussian, in pixels. % % o x, y: Define the x and y ellipse offset. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *VignetteImage(const Image *image,const double radius, const double sigma,const ssize_t x,const ssize_t y,ExceptionInfo *exception) { char ellipse[MagickPathExtent]; DrawInfo *draw_info; Image *canvas_image, *blur_image, *oval_image, *vignette_image; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); canvas_image=CloneImage(image,0,0,MagickTrue,exception); if (canvas_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(canvas_image,DirectClass,exception) == MagickFalse) { canvas_image=DestroyImage(canvas_image); return((Image *) NULL); } canvas_image->alpha_trait=BlendPixelTrait; oval_image=CloneImage(canvas_image,canvas_image->columns,canvas_image->rows, MagickTrue,exception); if (oval_image == (Image *) NULL) { canvas_image=DestroyImage(canvas_image); return((Image *) NULL); } (void) QueryColorCompliance("#000000",AllCompliance, &oval_image->background_color,exception); (void) SetImageBackgroundColor(oval_image,exception); draw_info=CloneDrawInfo((const ImageInfo *) NULL,(const DrawInfo *) NULL); (void) QueryColorCompliance("#ffffff",AllCompliance,&draw_info->fill, exception); (void) QueryColorCompliance("#ffffff",AllCompliance,&draw_info->stroke, exception); (void) FormatLocaleString(ellipse,MagickPathExtent,"ellipse %g,%g,%g,%g," "0.0,360.0",image->columns/2.0,image->rows/2.0,image->columns/2.0-x, image->rows/2.0-y); draw_info->primitive=AcquireString(ellipse); (void) DrawImage(oval_image,draw_info,exception); draw_info=DestroyDrawInfo(draw_info); blur_image=BlurImage(oval_image,radius,sigma,exception); oval_image=DestroyImage(oval_image); if (blur_image == (Image *) NULL) { canvas_image=DestroyImage(canvas_image); return((Image *) NULL); } blur_image->alpha_trait=UndefinedPixelTrait; (void) CompositeImage(canvas_image,blur_image,IntensityCompositeOp,MagickTrue, 0,0,exception); blur_image=DestroyImage(blur_image); vignette_image=MergeImageLayers(canvas_image,FlattenLayer,exception); canvas_image=DestroyImage(canvas_image); if (vignette_image != (Image *) NULL) (void) TransformImageColorspace(vignette_image,image->colorspace,exception); return(vignette_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % W a v e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % WaveImage() creates a "ripple" effect in the image by shifting the pixels % vertically along a sine wave whose amplitude and wavelength is specified % by the given parameters. % % The format of the WaveImage method is: % % Image *WaveImage(const Image *image,const double amplitude, % const double wave_length,const PixelInterpolateMethod method, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o amplitude, wave_length: Define the amplitude and wave length of the % sine wave. % % o interpolate: the pixel interpolation method. % % o exception: return any errors or warnings in this structure. % */ MagickExport Image *WaveImage(const Image *image,const double amplitude, const double wave_length,const PixelInterpolateMethod method, ExceptionInfo *exception) { #define WaveImageTag "Wave/Image" CacheView *image_view, *wave_view; Image *wave_image; MagickBooleanType status; MagickOffsetType progress; double *sine_map; register ssize_t i; ssize_t y; /* Initialize wave image attributes. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); wave_image=CloneImage(image,image->columns,(size_t) (image->rows+2.0* fabs(amplitude)),MagickTrue,exception); if (wave_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(wave_image,DirectClass,exception) == MagickFalse) { wave_image=DestroyImage(wave_image); return((Image *) NULL); } if (wave_image->background_color.alpha != OpaqueAlpha) wave_image->alpha_trait=BlendPixelTrait; /* Allocate sine map. */ sine_map=(double *) AcquireQuantumMemory((size_t) wave_image->columns, sizeof(*sine_map)); if (sine_map == (double *) NULL) { wave_image=DestroyImage(wave_image); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } for (i=0; i < (ssize_t) wave_image->columns; i++) sine_map[i]=fabs(amplitude)+amplitude*sin((double) ((2.0*MagickPI*i)/ wave_length)); /* Wave image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); wave_view=AcquireAuthenticCacheView(wave_image,exception); (void) SetCacheViewVirtualPixelMethod(image_view, BackgroundVirtualPixelMethod); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,wave_image,wave_image->rows,1) #endif for (y=0; y < (ssize_t) wave_image->rows; y++) { register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; q=QueueCacheViewAuthenticPixels(wave_view,0,y,wave_image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) wave_image->columns; x++) { status=InterpolatePixelChannels(image,image_view,wave_image,method, (double) x,(double) (y-sine_map[x]),q,exception); q+=GetPixelChannels(wave_image); } if (SyncCacheViewAuthenticPixels(wave_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_WaveImage) #endif proceed=SetImageProgress(image,WaveImageTag,progress++,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } wave_view=DestroyCacheView(wave_view); image_view=DestroyCacheView(image_view); sine_map=(double *) RelinquishMagickMemory(sine_map); if (status == MagickFalse) wave_image=DestroyImage(wave_image); return(wave_image); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % W a v e l e t D e n o i s e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % WaveletDenoiseImage() removes noise from the image using a wavelet % transform. The wavelet transform is a fast hierarchical scheme for % processing an image using a set of consecutive lowpass and high_pass filters, % followed by a decimation. This results in a decomposition into different % scales which can be regarded as different “frequency bands”, determined by % the mother wavelet. Adapted from dcraw.c by David Coffin. % % The format of the WaveletDenoiseImage method is: % % Image *WaveletDenoiseImage(const Image *image,const double threshold, % const double softness,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o threshold: set the threshold for smoothing. % % o softness: attenuate the smoothing threshold. % % o exception: return any errors or warnings in this structure. % */ static inline void HatTransform(const float *magick_restrict pixels, const size_t stride,const size_t extent,const size_t scale,float *kernel) { const float *magick_restrict p, *magick_restrict q, *magick_restrict r; register ssize_t i; p=pixels; q=pixels+scale*stride; r=pixels+scale*stride; for (i=0; i < (ssize_t) scale; i++) { kernel[i]=0.25f*(*p+(*p)+(*q)+(*r)); p+=stride; q-=stride; r+=stride; } for ( ; i < (ssize_t) (extent-scale); i++) { kernel[i]=0.25f*(2.0f*(*p)+*(p-scale*stride)+*(p+scale*stride)); p+=stride; } q=p-scale*stride; r=pixels+stride*(extent-2); for ( ; i < (ssize_t) extent; i++) { kernel[i]=0.25f*(*p+(*p)+(*q)+(*r)); p+=stride; q+=stride; r-=stride; } } MagickExport Image *WaveletDenoiseImage(const Image *image, const double threshold,const double softness,ExceptionInfo *exception) { CacheView *image_view, *noise_view; float *kernel, *pixels; Image *noise_image; MagickBooleanType status; MagickSizeType number_pixels; MemoryInfo *pixels_info; ssize_t channel; static const float noise_levels[] = { 0.8002f, 0.2735f, 0.1202f, 0.0585f, 0.0291f, 0.0152f, 0.0080f, 0.0044f }; /* Initialize noise image attributes. */ assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); #if defined(MAGICKCORE_OPENCL_SUPPORT) noise_image=AccelerateWaveletDenoiseImage(image,threshold,exception); if (noise_image != (Image *) NULL) return(noise_image); #endif noise_image=CloneImage(image,0,0,MagickTrue,exception); if (noise_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(noise_image,DirectClass,exception) == MagickFalse) { noise_image=DestroyImage(noise_image); return((Image *) NULL); } if (AcquireMagickResource(WidthResource,4*image->columns) == MagickFalse) ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); pixels_info=AcquireVirtualMemory(3*image->columns,image->rows* sizeof(*pixels)); kernel=(float *) AcquireQuantumMemory(MagickMax(image->rows,image->columns), GetOpenMPMaximumThreads()*sizeof(*kernel)); if ((pixels_info == (MemoryInfo *) NULL) || (kernel == (float *) NULL)) { if (kernel != (float *) NULL) kernel=(float *) RelinquishMagickMemory(kernel); if (pixels_info != (MemoryInfo *) NULL) pixels_info=RelinquishVirtualMemory(pixels_info); ThrowImageException(ResourceLimitError,"MemoryAllocationFailed"); } pixels=(float *) GetVirtualMemoryBlob(pixels_info); status=MagickTrue; number_pixels=(MagickSizeType) image->columns*image->rows; image_view=AcquireAuthenticCacheView(image,exception); noise_view=AcquireAuthenticCacheView(noise_image,exception); for (channel=0; channel < (ssize_t) GetPixelChannels(image); channel++) { register ssize_t i; size_t high_pass, low_pass; ssize_t level, y; PixelChannel pixel_channel; PixelTrait traits; if (status == MagickFalse) continue; traits=GetPixelChannelTraits(image,(PixelChannel) channel); if (traits == UndefinedPixelTrait) continue; pixel_channel=GetPixelChannelChannel(image,channel); if ((pixel_channel != RedPixelChannel) && (pixel_channel != GreenPixelChannel) && (pixel_channel != BluePixelChannel)) continue; /* Copy channel from image to wavelet pixel array. */ i=0; for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; ssize_t x; p=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) { status=MagickFalse; break; } for (x=0; x < (ssize_t) image->columns; x++) { pixels[i++]=(float) p[channel]; p+=GetPixelChannels(image); } } /* Low pass filter outputs are called approximation kernel & high pass filters are referred to as detail kernel. The detail kernel have high values in the noisy parts of the signal. */ high_pass=0; for (level=0; level < 5; level++) { double magnitude; ssize_t x, y; low_pass=(size_t) (number_pixels*((level & 0x01)+1)); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,1) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { const int id = GetOpenMPThreadId(); register float *magick_restrict p, *magick_restrict q; register ssize_t x; p=kernel+id*image->columns; q=pixels+y*image->columns; HatTransform(q+high_pass,1,image->columns,(size_t) (1 << level),p); q+=low_pass; for (x=0; x < (ssize_t) image->columns; x++) *q++=(*p++); } #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,1) \ magick_threads(image,image,image->columns,1) #endif for (x=0; x < (ssize_t) image->columns; x++) { const int id = GetOpenMPThreadId(); register float *magick_restrict p, *magick_restrict q; register ssize_t y; p=kernel+id*image->rows; q=pixels+x+low_pass; HatTransform(q,image->columns,image->rows,(size_t) (1 << level),p); for (y=0; y < (ssize_t) image->rows; y++) { *q=(*p++); q+=image->columns; } } /* To threshold, each coefficient is compared to a threshold value and attenuated / shrunk by some factor. */ magnitude=threshold*noise_levels[level]; for (i=0; i < (ssize_t) number_pixels; ++i) { pixels[high_pass+i]-=pixels[low_pass+i]; if (pixels[high_pass+i] < -magnitude) pixels[high_pass+i]+=magnitude-softness*magnitude; else if (pixels[high_pass+i] > magnitude) pixels[high_pass+i]-=magnitude-softness*magnitude; else pixels[high_pass+i]*=softness; if (high_pass != 0) pixels[i]+=pixels[high_pass+i]; } high_pass=low_pass; } /* Reconstruct image from the thresholded wavelet kernel. */ i=0; for (y=0; y < (ssize_t) image->rows; y++) { MagickBooleanType sync; register Quantum *magick_restrict q; register ssize_t x; ssize_t offset; q=GetCacheViewAuthenticPixels(noise_view,0,y,noise_image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; break; } offset=GetPixelChannelOffset(noise_image,pixel_channel); for (x=0; x < (ssize_t) image->columns; x++) { MagickRealType pixel; pixel=(MagickRealType) pixels[i]+pixels[low_pass+i]; q[offset]=ClampToQuantum(pixel); i++; q+=GetPixelChannels(noise_image); } sync=SyncCacheViewAuthenticPixels(noise_view,exception); if (sync == MagickFalse) status=MagickFalse; } if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; proceed=SetImageProgress(image,AddNoiseImageTag,(MagickOffsetType) channel,GetPixelChannels(image)); if (proceed == MagickFalse) status=MagickFalse; } } noise_view=DestroyCacheView(noise_view); image_view=DestroyCacheView(image_view); kernel=(float *) RelinquishMagickMemory(kernel); pixels_info=RelinquishVirtualMemory(pixels_info); if (status == MagickFalse) noise_image=DestroyImage(noise_image); return(noise_image); }