/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #if !defined(_POSIX_C_SOURCE) #define _POSIX_C_SOURCE 201410L #endif #include #include #include #include #include #include #include #include "../internal.h" #include "../test/test_util.h" #if !defined(OPENSSL_WINDOWS) #include #include #include #include #include #include #else #include OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include #include OPENSSL_MSVC_PRAGMA(warning(pop)) #endif #if !defined(OPENSSL_WINDOWS) static int closesocket(int sock) { return close(sock); } static std::string LastSocketError() { return strerror(errno); } #else static std::string LastSocketError() { char buf[DECIMAL_SIZE(int) + 1]; BIO_snprintf(buf, sizeof(buf), "%d", WSAGetLastError()); return buf; } #endif class ScopedSocket { public: explicit ScopedSocket(int sock) : sock_(sock) {} ~ScopedSocket() { closesocket(sock_); } private: const int sock_; }; TEST(BIOTest, SocketConnect) { static const char kTestMessage[] = "test"; int listening_sock = -1; socklen_t len = 0; sockaddr_storage ss; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) &ss; struct sockaddr_in *sin = (struct sockaddr_in *) &ss; OPENSSL_memset(&ss, 0, sizeof(ss)); ss.ss_family = AF_INET6; listening_sock = socket(AF_INET6, SOCK_STREAM, 0); ASSERT_NE(-1, listening_sock) << LastSocketError(); len = sizeof(*sin6); ASSERT_EQ(1, inet_pton(AF_INET6, "::1", &sin6->sin6_addr)) << LastSocketError(); if (bind(listening_sock, (struct sockaddr *)sin6, sizeof(*sin6)) == -1) { closesocket(listening_sock); ss.ss_family = AF_INET; listening_sock = socket(AF_INET, SOCK_STREAM, 0); ASSERT_NE(-1, listening_sock) << LastSocketError(); len = sizeof(*sin); ASSERT_EQ(1, inet_pton(AF_INET, "127.0.0.1", &sin->sin_addr)) << LastSocketError(); ASSERT_EQ(0, bind(listening_sock, (struct sockaddr *)sin, sizeof(*sin))) << LastSocketError(); } ScopedSocket listening_sock_closer(listening_sock); ASSERT_EQ(0, listen(listening_sock, 1)) << LastSocketError(); ASSERT_EQ(0, getsockname(listening_sock, (struct sockaddr *)&ss, &len)) << LastSocketError(); char hostname[80]; if (ss.ss_family == AF_INET6) { BIO_snprintf(hostname, sizeof(hostname), "[::1]:%d", ntohs(sin6->sin6_port)); } else if (ss.ss_family == AF_INET) { BIO_snprintf(hostname, sizeof(hostname), "127.0.0.1:%d", ntohs(sin->sin_port)); } // Connect to it with a connect BIO. bssl::UniquePtr bio(BIO_new_connect(hostname)); ASSERT_TRUE(bio); // Write a test message to the BIO. ASSERT_EQ(static_cast(sizeof(kTestMessage)), BIO_write(bio.get(), kTestMessage, sizeof(kTestMessage))); // Accept the socket. int sock = accept(listening_sock, (struct sockaddr *) &ss, &len); ASSERT_NE(-1, sock) << LastSocketError(); ScopedSocket sock_closer(sock); // Check the same message is read back out. char buf[sizeof(kTestMessage)]; ASSERT_EQ(static_cast(sizeof(kTestMessage)), recv(sock, buf, sizeof(buf), 0)) << LastSocketError(); EXPECT_EQ(Bytes(kTestMessage, sizeof(kTestMessage)), Bytes(buf, sizeof(buf))); } TEST(BIOTest, Printf) { // Test a short output, a very long one, and various sizes around // 256 (the size of the buffer) to ensure edge cases are correct. static const size_t kLengths[] = {5, 250, 251, 252, 253, 254, 1023}; bssl::UniquePtr bio(BIO_new(BIO_s_mem())); ASSERT_TRUE(bio); for (size_t length : kLengths) { SCOPED_TRACE(length); std::string in(length, 'a'); int ret = BIO_printf(bio.get(), "test %s", in.c_str()); ASSERT_GE(ret, 0); EXPECT_EQ(5 + length, static_cast(ret)); const uint8_t *contents; size_t len; ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len)); EXPECT_EQ("test " + in, std::string(reinterpret_cast(contents), len)); ASSERT_TRUE(BIO_reset(bio.get())); } } static const size_t kLargeASN1PayloadLen = 8000; struct ASN1TestParam { bool should_succeed; std::vector input; // suffix_len is the number of zeros to append to |input|. size_t suffix_len; // expected_len, if |should_succeed| is true, is the expected length of the // ASN.1 element. size_t expected_len; size_t max_len; } kASN1TestParams[] = { {true, {0x30, 2, 1, 2, 0, 0}, 0, 4, 100}, {false /* truncated */, {0x30, 3, 1, 2}, 0, 0, 100}, {false /* should be short len */, {0x30, 0x81, 1, 1}, 0, 0, 100}, {false /* zero padded */, {0x30, 0x82, 0, 1, 1}, 0, 0, 100}, // Test a large payload. {true, {0x30, 0x82, kLargeASN1PayloadLen >> 8, kLargeASN1PayloadLen & 0xff}, kLargeASN1PayloadLen, 4 + kLargeASN1PayloadLen, kLargeASN1PayloadLen * 2}, {false /* max_len too short */, {0x30, 0x82, kLargeASN1PayloadLen >> 8, kLargeASN1PayloadLen & 0xff}, kLargeASN1PayloadLen, 4 + kLargeASN1PayloadLen, 3 + kLargeASN1PayloadLen}, // Test an indefinite-length input. {true, {0x30, 0x80}, kLargeASN1PayloadLen + 2, 2 + kLargeASN1PayloadLen + 2, kLargeASN1PayloadLen * 2}, {false /* max_len too short */, {0x30, 0x80}, kLargeASN1PayloadLen + 2, 2 + kLargeASN1PayloadLen + 2, 2 + kLargeASN1PayloadLen + 1}, }; class BIOASN1Test : public testing::TestWithParam {}; TEST_P(BIOASN1Test, ReadASN1) { const ASN1TestParam& param = GetParam(); std::vector input = param.input; input.resize(input.size() + param.suffix_len, 0); bssl::UniquePtr bio(BIO_new_mem_buf(input.data(), input.size())); ASSERT_TRUE(bio); uint8_t *out; size_t out_len; int ok = BIO_read_asn1(bio.get(), &out, &out_len, param.max_len); if (!ok) { out = nullptr; } bssl::UniquePtr out_storage(out); ASSERT_EQ(param.should_succeed, (ok == 1)); if (param.should_succeed) { EXPECT_EQ(Bytes(input.data(), param.expected_len), Bytes(out, out_len)); } } INSTANTIATE_TEST_CASE_P(, BIOASN1Test, testing::ValuesIn(kASN1TestParams)); // Run through the tests twice, swapping |bio1| and |bio2|, for symmetry. class BIOPairTest : public testing::TestWithParam {}; TEST_P(BIOPairTest, TestPair) { BIO *bio1, *bio2; ASSERT_TRUE(BIO_new_bio_pair(&bio1, 10, &bio2, 10)); bssl::UniquePtr free_bio1(bio1), free_bio2(bio2); if (GetParam()) { std::swap(bio1, bio2); } // Check initial states. EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); EXPECT_EQ(0u, BIO_ctrl_get_read_request(bio1)); // Data written in one end may be read out the other. uint8_t buf[20]; EXPECT_EQ(5, BIO_write(bio1, "12345", 5)); EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1)); ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf))); EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); // Attempting to write more than 10 bytes will write partially. EXPECT_EQ(10, BIO_write(bio1, "1234567890___", 13)); EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1)); EXPECT_EQ(-1, BIO_write(bio1, "z", 1)); EXPECT_TRUE(BIO_should_write(bio1)); ASSERT_EQ(10, BIO_read(bio2, buf, sizeof(buf))); EXPECT_EQ(Bytes("1234567890"), Bytes(buf, 10)); EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); // Unsuccessful reads update the read request. EXPECT_EQ(-1, BIO_read(bio2, buf, 5)); EXPECT_TRUE(BIO_should_read(bio2)); EXPECT_EQ(5u, BIO_ctrl_get_read_request(bio1)); // The read request is clamped to the size of the buffer. EXPECT_EQ(-1, BIO_read(bio2, buf, 20)); EXPECT_TRUE(BIO_should_read(bio2)); EXPECT_EQ(10u, BIO_ctrl_get_read_request(bio1)); // Data may be written and read in chunks. EXPECT_EQ(5, BIO_write(bio1, "12345", 5)); EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1)); EXPECT_EQ(5, BIO_write(bio1, "67890___", 8)); EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1)); ASSERT_EQ(3, BIO_read(bio2, buf, 3)); EXPECT_EQ(Bytes("123"), Bytes(buf, 3)); EXPECT_EQ(3u, BIO_ctrl_get_write_guarantee(bio1)); ASSERT_EQ(7, BIO_read(bio2, buf, sizeof(buf))); EXPECT_EQ(Bytes("4567890"), Bytes(buf, 7)); EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); // Successful reads reset the read request. EXPECT_EQ(0u, BIO_ctrl_get_read_request(bio1)); // Test writes and reads starting in the middle of the ring buffer and // wrapping to front. EXPECT_EQ(8, BIO_write(bio1, "abcdefgh", 8)); EXPECT_EQ(2u, BIO_ctrl_get_write_guarantee(bio1)); ASSERT_EQ(3, BIO_read(bio2, buf, 3)); EXPECT_EQ(Bytes("abc"), Bytes(buf, 3)); EXPECT_EQ(5u, BIO_ctrl_get_write_guarantee(bio1)); EXPECT_EQ(5, BIO_write(bio1, "ijklm___", 8)); EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1)); ASSERT_EQ(10, BIO_read(bio2, buf, sizeof(buf))); EXPECT_EQ(Bytes("defghijklm"), Bytes(buf, 10)); EXPECT_EQ(10u, BIO_ctrl_get_write_guarantee(bio1)); // Data may flow from both ends in parallel. EXPECT_EQ(5, BIO_write(bio1, "12345", 5)); EXPECT_EQ(5, BIO_write(bio2, "67890", 5)); ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf))); EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); ASSERT_EQ(5, BIO_read(bio1, buf, sizeof(buf))); EXPECT_EQ(Bytes("67890"), Bytes(buf, 5)); // Closing the write end causes an EOF on the read half, after draining. EXPECT_EQ(5, BIO_write(bio1, "12345", 5)); EXPECT_TRUE(BIO_shutdown_wr(bio1)); ASSERT_EQ(5, BIO_read(bio2, buf, sizeof(buf))); EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); EXPECT_EQ(0, BIO_read(bio2, buf, sizeof(buf))); // A closed write end may not be written to. EXPECT_EQ(0u, BIO_ctrl_get_write_guarantee(bio1)); EXPECT_EQ(-1, BIO_write(bio1, "_____", 5)); uint32_t err = ERR_get_error(); EXPECT_EQ(ERR_LIB_BIO, ERR_GET_LIB(err)); EXPECT_EQ(BIO_R_BROKEN_PIPE, ERR_GET_REASON(err)); // The other end is still functional. EXPECT_EQ(5, BIO_write(bio2, "12345", 5)); ASSERT_EQ(5, BIO_read(bio1, buf, sizeof(buf))); EXPECT_EQ(Bytes("12345"), Bytes(buf, 5)); } INSTANTIATE_TEST_CASE_P(, BIOPairTest, testing::Values(false, true));