#! /usr/bin/env perl # Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # April 2010 # # The module implements "4-bit" GCM GHASH function and underlying # single multiplication operation in GF(2^128). "4-bit" means that it # uses 256 bytes per-key table [+32 bytes shared table]. There is no # experimental performance data available yet. The only approximation # that can be made at this point is based on code size. Inner loop is # 32 instructions long and on single-issue core should execute in <40 # cycles. Having verified that gcc 3.4 didn't unroll corresponding # loop, this assembler loop body was found to be ~3x smaller than # compiler-generated one... # # July 2010 # # Rescheduling for dual-issue pipeline resulted in 8.5% improvement on # Cortex A8 core and ~25 cycles per processed byte (which was observed # to be ~3 times faster than gcc-generated code:-) # # February 2011 # # Profiler-assisted and platform-specific optimization resulted in 7% # improvement on Cortex A8 core and ~23.5 cycles per byte. # # March 2011 # # Add NEON implementation featuring polynomial multiplication, i.e. no # lookup tables involved. On Cortex A8 it was measured to process one # byte in 15 cycles or 55% faster than integer-only code. # # April 2014 # # Switch to multiplication algorithm suggested in paper referred # below and combine it with reduction algorithm from x86 module. # Performance improvement over previous version varies from 65% on # Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8 # processes one byte in 8.45 cycles, A9 - in 10.2, A15 - in 7.63, # Snapdragon S4 - in 9.33. # # Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software # Polynomial Multiplication on ARM Processors using the NEON Engine. # # http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf # ==================================================================== # Note about "528B" variant. In ARM case it makes lesser sense to # implement it for following reasons: # # - performance improvement won't be anywhere near 50%, because 128- # bit shift operation is neatly fused with 128-bit xor here, and # "538B" variant would eliminate only 4-5 instructions out of 32 # in the inner loop (meaning that estimated improvement is ~15%); # - ARM-based systems are often embedded ones and extra memory # consumption might be unappreciated (for so little improvement); # # Byte order [in]dependence. ========================================= # # Caller is expected to maintain specific *dword* order in Htable, # namely with *least* significant dword of 128-bit value at *lower* # address. This differs completely from C code and has everything to # do with ldm instruction and order in which dwords are "consumed" by # algorithm. *Byte* order within these dwords in turn is whatever # *native* byte order on current platform. See gcm128.c for working # example... $flavour = shift; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } $Xi="r0"; # argument block $Htbl="r1"; $inp="r2"; $len="r3"; $Zll="r4"; # variables $Zlh="r5"; $Zhl="r6"; $Zhh="r7"; $Tll="r8"; $Tlh="r9"; $Thl="r10"; $Thh="r11"; $nlo="r12"; ################# r13 is stack pointer $nhi="r14"; ################# r15 is program counter $rem_4bit=$inp; # used in gcm_gmult_4bit $cnt=$len; sub Zsmash() { my $i=12; my @args=@_; for ($Zll,$Zlh,$Zhl,$Zhh) { $code.=<<___; #if __ARM_ARCH__>=7 && defined(__ARMEL__) rev $_,$_ str $_,[$Xi,#$i] #elif defined(__ARMEB__) str $_,[$Xi,#$i] #else mov $Tlh,$_,lsr#8 strb $_,[$Xi,#$i+3] mov $Thl,$_,lsr#16 strb $Tlh,[$Xi,#$i+2] mov $Thh,$_,lsr#24 strb $Thl,[$Xi,#$i+1] strb $Thh,[$Xi,#$i] #endif ___ $code.="\t".shift(@args)."\n"; $i-=4; } } $code=<<___; #include .text #if defined(__thumb2__) || defined(__clang__) .syntax unified #endif #if defined(__thumb2__) .thumb #else .code 32 #endif #ifdef __clang__ #define ldrplb ldrbpl #define ldrneb ldrbne #endif .type rem_4bit,%object .align 5 rem_4bit: .short 0x0000,0x1C20,0x3840,0x2460 .short 0x7080,0x6CA0,0x48C0,0x54E0 .short 0xE100,0xFD20,0xD940,0xC560 .short 0x9180,0x8DA0,0xA9C0,0xB5E0 .size rem_4bit,.-rem_4bit .type rem_4bit_get,%function rem_4bit_get: #if defined(__thumb2__) adr $rem_4bit,rem_4bit #else sub $rem_4bit,pc,#8+32 @ &rem_4bit #endif b .Lrem_4bit_got nop nop .size rem_4bit_get,.-rem_4bit_get .global gcm_ghash_4bit .type gcm_ghash_4bit,%function .align 4 gcm_ghash_4bit: #if defined(__thumb2__) adr r12,rem_4bit #else sub r12,pc,#8+48 @ &rem_4bit #endif add $len,$inp,$len @ $len to point at the end stmdb sp!,{r3-r11,lr} @ save $len/end too ldmia r12,{r4-r11} @ copy rem_4bit ... stmdb sp!,{r4-r11} @ ... to stack ldrb $nlo,[$inp,#15] ldrb $nhi,[$Xi,#15] .Louter: eor $nlo,$nlo,$nhi and $nhi,$nlo,#0xf0 and $nlo,$nlo,#0x0f mov $cnt,#14 add $Zhh,$Htbl,$nlo,lsl#4 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] add $Thh,$Htbl,$nhi ldrb $nlo,[$inp,#14] and $nhi,$Zll,#0xf @ rem ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] add $nhi,$nhi,$nhi eor $Zll,$Tll,$Zll,lsr#4 ldrh $Tll,[sp,$nhi] @ rem_4bit[rem] eor $Zll,$Zll,$Zlh,lsl#28 ldrb $nhi,[$Xi,#14] eor $Zlh,$Tlh,$Zlh,lsr#4 eor $Zlh,$Zlh,$Zhl,lsl#28 eor $Zhl,$Thl,$Zhl,lsr#4 eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 eor $nlo,$nlo,$nhi and $nhi,$nlo,#0xf0 and $nlo,$nlo,#0x0f eor $Zhh,$Zhh,$Tll,lsl#16 .Linner: add $Thh,$Htbl,$nlo,lsl#4 and $nlo,$Zll,#0xf @ rem subs $cnt,$cnt,#1 add $nlo,$nlo,$nlo ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] eor $Zll,$Tll,$Zll,lsr#4 eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 eor $Zlh,$Zlh,$Zhl,lsl#28 ldrh $Tll,[sp,$nlo] @ rem_4bit[rem] eor $Zhl,$Thl,$Zhl,lsr#4 #ifdef __thumb2__ it pl #endif ldrplb $nlo,[$inp,$cnt] eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 add $Thh,$Htbl,$nhi and $nhi,$Zll,#0xf @ rem eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] add $nhi,$nhi,$nhi ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] eor $Zll,$Tll,$Zll,lsr#4 #ifdef __thumb2__ it pl #endif ldrplb $Tll,[$Xi,$cnt] eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 ldrh $Tlh,[sp,$nhi] eor $Zlh,$Zlh,$Zhl,lsl#28 eor $Zhl,$Thl,$Zhl,lsr#4 eor $Zhl,$Zhl,$Zhh,lsl#28 #ifdef __thumb2__ it pl #endif eorpl $nlo,$nlo,$Tll eor $Zhh,$Thh,$Zhh,lsr#4 #ifdef __thumb2__ itt pl #endif andpl $nhi,$nlo,#0xf0 andpl $nlo,$nlo,#0x0f eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem] bpl .Linner ldr $len,[sp,#32] @ re-load $len/end add $inp,$inp,#16 mov $nhi,$Zll ___ &Zsmash("cmp\t$inp,$len","\n". "#ifdef __thumb2__\n". " it ne\n". "#endif\n". " ldrneb $nlo,[$inp,#15]"); $code.=<<___; bne .Louter add sp,sp,#36 #if __ARM_ARCH__>=5 ldmia sp!,{r4-r11,pc} #else ldmia sp!,{r4-r11,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size gcm_ghash_4bit,.-gcm_ghash_4bit .global gcm_gmult_4bit .type gcm_gmult_4bit,%function gcm_gmult_4bit: stmdb sp!,{r4-r11,lr} ldrb $nlo,[$Xi,#15] b rem_4bit_get .Lrem_4bit_got: and $nhi,$nlo,#0xf0 and $nlo,$nlo,#0x0f mov $cnt,#14 add $Zhh,$Htbl,$nlo,lsl#4 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] ldrb $nlo,[$Xi,#14] add $Thh,$Htbl,$nhi and $nhi,$Zll,#0xf @ rem ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] add $nhi,$nhi,$nhi eor $Zll,$Tll,$Zll,lsr#4 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 eor $Zlh,$Zlh,$Zhl,lsl#28 eor $Zhl,$Thl,$Zhl,lsr#4 eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 and $nhi,$nlo,#0xf0 eor $Zhh,$Zhh,$Tll,lsl#16 and $nlo,$nlo,#0x0f .Loop: add $Thh,$Htbl,$nlo,lsl#4 and $nlo,$Zll,#0xf @ rem subs $cnt,$cnt,#1 add $nlo,$nlo,$nlo ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] eor $Zll,$Tll,$Zll,lsr#4 eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 eor $Zlh,$Zlh,$Zhl,lsl#28 ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem] eor $Zhl,$Thl,$Zhl,lsr#4 #ifdef __thumb2__ it pl #endif ldrplb $nlo,[$Xi,$cnt] eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 add $Thh,$Htbl,$nhi and $nhi,$Zll,#0xf @ rem eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] add $nhi,$nhi,$nhi ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] eor $Zll,$Tll,$Zll,lsr#4 eor $Zll,$Zll,$Zlh,lsl#28 eor $Zlh,$Tlh,$Zlh,lsr#4 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] eor $Zlh,$Zlh,$Zhl,lsl#28 eor $Zhl,$Thl,$Zhl,lsr#4 eor $Zhl,$Zhl,$Zhh,lsl#28 eor $Zhh,$Thh,$Zhh,lsr#4 #ifdef __thumb2__ itt pl #endif andpl $nhi,$nlo,#0xf0 andpl $nlo,$nlo,#0x0f eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] bpl .Loop ___ &Zsmash(); $code.=<<___; #if __ARM_ARCH__>=5 ldmia sp!,{r4-r11,pc} #else ldmia sp!,{r4-r11,lr} tst lr,#1 moveq pc,lr @ be binary compatible with V4, yet bx lr @ interoperable with Thumb ISA:-) #endif .size gcm_gmult_4bit,.-gcm_gmult_4bit ___ { my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3)); my ($t0,$t1,$t2,$t3)=map("q$_",(8..12)); my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31)); sub clmul64x64 { my ($r,$a,$b)=@_; $code.=<<___; vext.8 $t0#lo, $a, $a, #1 @ A1 vmull.p8 $t0, $t0#lo, $b @ F = A1*B vext.8 $r#lo, $b, $b, #1 @ B1 vmull.p8 $r, $a, $r#lo @ E = A*B1 vext.8 $t1#lo, $a, $a, #2 @ A2 vmull.p8 $t1, $t1#lo, $b @ H = A2*B vext.8 $t3#lo, $b, $b, #2 @ B2 vmull.p8 $t3, $a, $t3#lo @ G = A*B2 vext.8 $t2#lo, $a, $a, #3 @ A3 veor $t0, $t0, $r @ L = E + F vmull.p8 $t2, $t2#lo, $b @ J = A3*B vext.8 $r#lo, $b, $b, #3 @ B3 veor $t1, $t1, $t3 @ M = G + H vmull.p8 $r, $a, $r#lo @ I = A*B3 veor $t0#lo, $t0#lo, $t0#hi @ t0 = (L) (P0 + P1) << 8 vand $t0#hi, $t0#hi, $k48 vext.8 $t3#lo, $b, $b, #4 @ B4 veor $t1#lo, $t1#lo, $t1#hi @ t1 = (M) (P2 + P3) << 16 vand $t1#hi, $t1#hi, $k32 vmull.p8 $t3, $a, $t3#lo @ K = A*B4 veor $t2, $t2, $r @ N = I + J veor $t0#lo, $t0#lo, $t0#hi veor $t1#lo, $t1#lo, $t1#hi veor $t2#lo, $t2#lo, $t2#hi @ t2 = (N) (P4 + P5) << 24 vand $t2#hi, $t2#hi, $k16 vext.8 $t0, $t0, $t0, #15 veor $t3#lo, $t3#lo, $t3#hi @ t3 = (K) (P6 + P7) << 32 vmov.i64 $t3#hi, #0 vext.8 $t1, $t1, $t1, #14 veor $t2#lo, $t2#lo, $t2#hi vmull.p8 $r, $a, $b @ D = A*B vext.8 $t3, $t3, $t3, #12 vext.8 $t2, $t2, $t2, #13 veor $t0, $t0, $t1 veor $t2, $t2, $t3 veor $r, $r, $t0 veor $r, $r, $t2 ___ } $code.=<<___; #if __ARM_MAX_ARCH__>=7 .arch armv7-a .fpu neon .global gcm_init_neon .type gcm_init_neon,%function .align 4 gcm_init_neon: vld1.64 $IN#hi,[r1]! @ load H vmov.i8 $t0,#0xe1 vld1.64 $IN#lo,[r1] vshl.i64 $t0#hi,#57 vshr.u64 $t0#lo,#63 @ t0=0xc2....01 vdup.8 $t1,$IN#hi[7] vshr.u64 $Hlo,$IN#lo,#63 vshr.s8 $t1,#7 @ broadcast carry bit vshl.i64 $IN,$IN,#1 vand $t0,$t0,$t1 vorr $IN#hi,$Hlo @ H<<<=1 veor $IN,$IN,$t0 @ twisted H vstmia r0,{$IN} ret @ bx lr .size gcm_init_neon,.-gcm_init_neon .global gcm_gmult_neon .type gcm_gmult_neon,%function .align 4 gcm_gmult_neon: vld1.64 $IN#hi,[$Xi]! @ load Xi vld1.64 $IN#lo,[$Xi]! vmov.i64 $k48,#0x0000ffffffffffff vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H vmov.i64 $k32,#0x00000000ffffffff #ifdef __ARMEL__ vrev64.8 $IN,$IN #endif vmov.i64 $k16,#0x000000000000ffff veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing mov $len,#16 b .Lgmult_neon .size gcm_gmult_neon,.-gcm_gmult_neon .global gcm_ghash_neon .type gcm_ghash_neon,%function .align 4 gcm_ghash_neon: vld1.64 $Xl#hi,[$Xi]! @ load Xi vld1.64 $Xl#lo,[$Xi]! vmov.i64 $k48,#0x0000ffffffffffff vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H vmov.i64 $k32,#0x00000000ffffffff #ifdef __ARMEL__ vrev64.8 $Xl,$Xl #endif vmov.i64 $k16,#0x000000000000ffff veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing .Loop_neon: vld1.64 $IN#hi,[$inp]! @ load inp vld1.64 $IN#lo,[$inp]! #ifdef __ARMEL__ vrev64.8 $IN,$IN #endif veor $IN,$Xl @ inp^=Xi .Lgmult_neon: ___ &clmul64x64 ($Xl,$Hlo,"$IN#lo"); # H.lo·Xi.lo $code.=<<___; veor $IN#lo,$IN#lo,$IN#hi @ Karatsuba pre-processing ___ &clmul64x64 ($Xm,$Hhl,"$IN#lo"); # (H.lo+H.hi)·(Xi.lo+Xi.hi) &clmul64x64 ($Xh,$Hhi,"$IN#hi"); # H.hi·Xi.hi $code.=<<___; veor $Xm,$Xm,$Xl @ Karatsuba post-processing veor $Xm,$Xm,$Xh veor $Xl#hi,$Xl#hi,$Xm#lo veor $Xh#lo,$Xh#lo,$Xm#hi @ Xh|Xl - 256-bit result @ equivalent of reduction_avx from ghash-x86_64.pl vshl.i64 $t1,$Xl,#57 @ 1st phase vshl.i64 $t2,$Xl,#62 veor $t2,$t2,$t1 @ vshl.i64 $t1,$Xl,#63 veor $t2, $t2, $t1 @ veor $Xl#hi,$Xl#hi,$t2#lo @ veor $Xh#lo,$Xh#lo,$t2#hi vshr.u64 $t2,$Xl,#1 @ 2nd phase veor $Xh,$Xh,$Xl veor $Xl,$Xl,$t2 @ vshr.u64 $t2,$t2,#6 vshr.u64 $Xl,$Xl,#1 @ veor $Xl,$Xl,$Xh @ veor $Xl,$Xl,$t2 @ subs $len,#16 bne .Loop_neon #ifdef __ARMEL__ vrev64.8 $Xl,$Xl #endif sub $Xi,#16 vst1.64 $Xl#hi,[$Xi]! @ write out Xi vst1.64 $Xl#lo,[$Xi] ret @ bx lr .size gcm_ghash_neon,.-gcm_ghash_neon #endif ___ } $code.=<<___; .asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by " .align 2 ___ foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or s/\bret\b/bx lr/go or s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4 print $_,"\n"; } close STDOUT; # enforce flush