/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #ifndef OPENSSL_HEADER_SSL_INTERNAL_H #define OPENSSL_HEADER_SSL_INTERNAL_H #include #include #include #include #if defined(OPENSSL_WINDOWS) /* Windows defines struct timeval in winsock2.h. */ OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include OPENSSL_MSVC_PRAGMA(warning(pop)) #else #include #endif #if defined(__cplusplus) extern "C" { #endif typedef struct ssl_handshake_st SSL_HANDSHAKE; /* Protocol versions. * * Due to DTLS's historical wire version differences and to support multiple * variants of the same protocol during development, we maintain two notions of * version. * * The "version" or "wire version" is the actual 16-bit value that appears on * the wire. It uniquely identifies a version and is also used at API * boundaries. The set of supported versions differs between TLS and DTLS. Wire * versions are opaque values and may not be compared numerically. * * The "protocol version" identifies the high-level handshake variant being * used. DTLS versions map to the corresponding TLS versions. Draft TLS 1.3 * variants all map to TLS 1.3. Protocol versions are sequential and may be * compared numerically. */ /* ssl_protocol_version_from_wire sets |*out| to the protocol version * corresponding to wire version |version| and returns one. If |version| is not * a valid TLS or DTLS version, it returns zero. * * Note this simultaneously handles both DTLS and TLS. Use one of the * higher-level functions below for most operations. */ int ssl_protocol_version_from_wire(uint16_t *out, uint16_t version); /* ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the * minimum and maximum enabled protocol versions, respectively. */ int ssl_get_version_range(const SSL *ssl, uint16_t *out_min_version, uint16_t *out_max_version); /* ssl_supports_version returns one if |hs| supports |version| and zero * otherwise. */ int ssl_supports_version(SSL_HANDSHAKE *hs, uint16_t version); /* ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in * decreasing preference order. */ int ssl_add_supported_versions(SSL_HANDSHAKE *hs, CBB *cbb); /* ssl_negotiate_version negotiates a common version based on |hs|'s preferences * and the peer preference list in |peer_versions|. On success, it returns one * and sets |*out_version| to the selected version. Otherwise, it returns zero * and sets |*out_alert| to an alert to send. */ int ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert, uint16_t *out_version, const CBS *peer_versions); /* ssl3_protocol_version returns |ssl|'s protocol version. It is an error to * call this function before the version is determined. */ uint16_t ssl3_protocol_version(const SSL *ssl); /* Cipher suites. */ /* Bits for |algorithm_mkey| (key exchange algorithm). */ #define SSL_kRSA 0x00000001u #define SSL_kECDHE 0x00000002u /* SSL_kPSK is only set for plain PSK, not ECDHE_PSK. */ #define SSL_kPSK 0x00000004u #define SSL_kGENERIC 0x00000008u /* Bits for |algorithm_auth| (server authentication). */ #define SSL_aRSA 0x00000001u #define SSL_aECDSA 0x00000002u /* SSL_aPSK is set for both PSK and ECDHE_PSK. */ #define SSL_aPSK 0x00000004u #define SSL_aGENERIC 0x00000008u #define SSL_aCERT (SSL_aRSA | SSL_aECDSA) /* Bits for |algorithm_enc| (symmetric encryption). */ #define SSL_3DES 0x00000001u #define SSL_AES128 0x00000002u #define SSL_AES256 0x00000004u #define SSL_AES128GCM 0x00000008u #define SSL_AES256GCM 0x00000010u #define SSL_eNULL 0x00000020u #define SSL_CHACHA20POLY1305 0x00000040u #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM) /* Bits for |algorithm_mac| (symmetric authentication). */ #define SSL_SHA1 0x00000001u #define SSL_SHA256 0x00000002u #define SSL_SHA384 0x00000004u /* SSL_AEAD is set for all AEADs. */ #define SSL_AEAD 0x00000008u /* Bits for |algorithm_prf| (handshake digest). */ #define SSL_HANDSHAKE_MAC_DEFAULT 0x1 #define SSL_HANDSHAKE_MAC_SHA256 0x2 #define SSL_HANDSHAKE_MAC_SHA384 0x4 /* SSL_MAX_DIGEST is the number of digest types which exist. When adding a new * one, update the table in ssl_cipher.c. */ #define SSL_MAX_DIGEST 4 /* ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD * object for |cipher| protocol version |version|. It sets |*out_mac_secret_len| * and |*out_fixed_iv_len| to the MAC key length and fixed IV length, * respectively. The MAC key length is zero except for legacy block and stream * ciphers. It returns 1 on success and 0 on error. */ int ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead, size_t *out_mac_secret_len, size_t *out_fixed_iv_len, const SSL_CIPHER *cipher, uint16_t version, int is_dtls); /* ssl_get_handshake_digest returns the |EVP_MD| corresponding to * |algorithm_prf| and the |version|. */ const EVP_MD *ssl_get_handshake_digest(uint32_t algorithm_prf, uint16_t version); /* ssl_create_cipher_list evaluates |rule_str| according to the ciphers in * |ssl_method|. It sets |*out_cipher_list| to a newly-allocated * |ssl_cipher_preference_list_st| containing the result. It returns 1 on * success and 0 on failure. If |strict| is true, nonsense will be rejected. If * false, nonsense will be silently ignored. An empty result is considered an * error regardless of |strict|. */ int ssl_create_cipher_list( const SSL_PROTOCOL_METHOD *ssl_method, struct ssl_cipher_preference_list_st **out_cipher_list, const char *rule_str, int strict); /* ssl_cipher_get_value returns the cipher suite id of |cipher|. */ uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher); /* ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth| * values suitable for use with |key| in TLS 1.2 and below. */ uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key); /* ssl_cipher_uses_certificate_auth returns one if |cipher| authenticates the * server and, optionally, the client with a certificate. Otherwise it returns * zero. */ int ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher); /* ssl_cipher_requires_server_key_exchange returns 1 if |cipher| requires a * ServerKeyExchange message. Otherwise it returns 0. * * This function may return zero while still allowing |cipher| an optional * ServerKeyExchange. This is the case for plain PSK ciphers. */ int ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher); /* ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the * length of an encrypted 1-byte record, for use in record-splitting. Otherwise * it returns zero. */ size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher); /* Transcript layer. */ /* SSL_TRANSCRIPT maintains the handshake transcript as a combination of a * buffer and running hash. */ typedef struct ssl_transcript_st { /* buffer, if non-NULL, contains the handshake transcript. */ BUF_MEM *buffer; /* hash, if initialized with an |EVP_MD|, maintains the handshake hash. For * TLS 1.1 and below, it is the SHA-1 half. */ EVP_MD_CTX hash; /* md5, if initialized with an |EVP_MD|, maintains the MD5 half of the * handshake hash for TLS 1.1 and below. */ EVP_MD_CTX md5; } SSL_TRANSCRIPT; /* SSL_TRANSCRIPT_init initializes the handshake transcript. If called on an * existing transcript, it resets the transcript and hash. It returns one on * success and zero on failure. */ int SSL_TRANSCRIPT_init(SSL_TRANSCRIPT *transcript); /* SSL_TRANSCRIPT_init_hash initializes the handshake hash based on the PRF and * contents of the handshake transcript. Subsequent calls to * |SSL_TRANSCRIPT_update| will update the rolling hash. It returns one on * success and zero on failure. It is an error to call this function after the * handshake buffer is released. */ int SSL_TRANSCRIPT_init_hash(SSL_TRANSCRIPT *transcript, uint16_t version, int algorithm_prf); /* SSL_TRANSCRIPT_cleanup cleans up the hash and transcript. */ void SSL_TRANSCRIPT_cleanup(SSL_TRANSCRIPT *transcript); /* SSL_TRANSCRIPT_free_buffer releases the handshake buffer. Subsequent calls to * |SSL_TRANSCRIPT_update| will not update the handshake buffer. */ void SSL_TRANSCRIPT_free_buffer(SSL_TRANSCRIPT *transcript); /* SSL_TRANSCRIPT_digest_len returns the length of the PRF hash. */ size_t SSL_TRANSCRIPT_digest_len(const SSL_TRANSCRIPT *transcript); /* SSL_TRANSCRIPT_md returns the PRF hash. For TLS 1.1 and below, this is * |EVP_md5_sha1|. */ const EVP_MD *SSL_TRANSCRIPT_md(const SSL_TRANSCRIPT *transcript); /* SSL_TRANSCRIPT_update adds |in| to the handshake buffer and handshake hash, * whichever is enabled. It returns one on success and zero on failure. */ int SSL_TRANSCRIPT_update(SSL_TRANSCRIPT *transcript, const uint8_t *in, size_t in_len); /* SSL_TRANSCRIPT_get_hash writes the handshake hash to |out| which must have * room for at least |SSL_TRANSCRIPT_digest_len| bytes. On success, it returns * one and sets |*out_len| to the number of bytes written. Otherwise, it returns * zero. */ int SSL_TRANSCRIPT_get_hash(const SSL_TRANSCRIPT *transcript, uint8_t *out, size_t *out_len); /* SSL_TRANSCRIPT_ssl3_cert_verify_hash writes the SSL 3.0 CertificateVerify * hash into the bytes pointed to by |out| and writes the number of bytes to * |*out_len|. |out| must have room for |EVP_MAX_MD_SIZE| bytes. It returns one * on success and zero on failure. */ int SSL_TRANSCRIPT_ssl3_cert_verify_hash(SSL_TRANSCRIPT *transcript, uint8_t *out, size_t *out_len, const SSL_SESSION *session, int signature_algorithm); /* SSL_TRANSCRIPT_finish_mac computes the MAC for the Finished message into the * bytes pointed by |out| and writes the number of bytes to |*out_len|. |out| * must have room for |EVP_MAX_MD_SIZE| bytes. It returns one on success and * zero on failure. */ int SSL_TRANSCRIPT_finish_mac(SSL_TRANSCRIPT *transcript, uint8_t *out, size_t *out_len, const SSL_SESSION *session, int from_server, uint16_t version); /* tls1_prf computes the PRF function for |ssl|. It writes |out_len| bytes to * |out|, using |secret| as the secret and |label| as the label. |seed1| and * |seed2| are concatenated to form the seed parameter. It returns one on * success and zero on failure. */ int tls1_prf(const EVP_MD *digest, uint8_t *out, size_t out_len, const uint8_t *secret, size_t secret_len, const char *label, size_t label_len, const uint8_t *seed1, size_t seed1_len, const uint8_t *seed2, size_t seed2_len); /* Encryption layer. */ /* SSL_AEAD_CTX contains information about an AEAD that is being used to encrypt * an SSL connection. */ typedef struct ssl_aead_ctx_st { const SSL_CIPHER *cipher; EVP_AEAD_CTX ctx; /* fixed_nonce contains any bytes of the nonce that are fixed for all * records. */ uint8_t fixed_nonce[12]; uint8_t fixed_nonce_len, variable_nonce_len; /* version is the protocol version that should be used with this AEAD. */ uint16_t version; /* variable_nonce_included_in_record is non-zero if the variable nonce * for a record is included as a prefix before the ciphertext. */ unsigned variable_nonce_included_in_record : 1; /* random_variable_nonce is non-zero if the variable nonce is * randomly generated, rather than derived from the sequence * number. */ unsigned random_variable_nonce : 1; /* omit_length_in_ad is non-zero if the length should be omitted in the * AEAD's ad parameter. */ unsigned omit_length_in_ad : 1; /* omit_version_in_ad is non-zero if the version should be omitted * in the AEAD's ad parameter. */ unsigned omit_version_in_ad : 1; /* omit_ad is non-zero if the AEAD's ad parameter should be omitted. */ unsigned omit_ad : 1; /* xor_fixed_nonce is non-zero if the fixed nonce should be XOR'd into the * variable nonce rather than prepended. */ unsigned xor_fixed_nonce : 1; } SSL_AEAD_CTX; /* SSL_AEAD_CTX_new creates a newly-allocated |SSL_AEAD_CTX| using the supplied * key material. It returns NULL on error. Only one of |SSL_AEAD_CTX_open| or * |SSL_AEAD_CTX_seal| may be used with the resulting object, depending on * |direction|. |version| is the normalized protocol version, so DTLS 1.0 is * represented as 0x0301, not 0xffef. */ SSL_AEAD_CTX *SSL_AEAD_CTX_new(enum evp_aead_direction_t direction, uint16_t version, int is_dtls, const SSL_CIPHER *cipher, const uint8_t *enc_key, size_t enc_key_len, const uint8_t *mac_key, size_t mac_key_len, const uint8_t *fixed_iv, size_t fixed_iv_len); /* SSL_AEAD_CTX_free frees |ctx|. */ void SSL_AEAD_CTX_free(SSL_AEAD_CTX *ctx); /* SSL_AEAD_CTX_explicit_nonce_len returns the length of the explicit nonce for * |ctx|, if any. |ctx| may be NULL to denote the null cipher. */ size_t SSL_AEAD_CTX_explicit_nonce_len(const SSL_AEAD_CTX *ctx); /* SSL_AEAD_CTX_max_overhead returns the maximum overhead of calling * |SSL_AEAD_CTX_seal|. |ctx| may be NULL to denote the null cipher. */ size_t SSL_AEAD_CTX_max_overhead(const SSL_AEAD_CTX *ctx); /* SSL_AEAD_CTX_max_suffix_len returns the maximum suffix length written by * |SSL_AEAD_CTX_seal_scatter|. |ctx| may be NULL to denote the null cipher. * |extra_in_len| should equal the argument of the same name passed to * |SSL_AEAD_CTX_seal_scatter|. */ size_t SSL_AEAD_CTX_max_suffix_len(const SSL_AEAD_CTX *ctx, size_t extra_in_len); /* SSL_AEAD_CTX_open authenticates and decrypts |in_len| bytes from |in| * in-place. On success, it sets |*out| to the plaintext in |in| and returns * one. Otherwise, it returns zero. |ctx| may be NULL to denote the null cipher. * The output will always be |explicit_nonce_len| bytes ahead of |in|. */ int SSL_AEAD_CTX_open(SSL_AEAD_CTX *ctx, CBS *out, uint8_t type, uint16_t wire_version, const uint8_t seqnum[8], uint8_t *in, size_t in_len); /* SSL_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and * writes the result to |out|. It returns one on success and zero on * error. |ctx| may be NULL to denote the null cipher. * * If |in| and |out| alias then |out| + |explicit_nonce_len| must be == |in|. */ int SSL_AEAD_CTX_seal(SSL_AEAD_CTX *ctx, uint8_t *out, size_t *out_len, size_t max_out, uint8_t type, uint16_t wire_version, const uint8_t seqnum[8], const uint8_t *in, size_t in_len); /* SSL_AEAD_CTX_seal_scatter encrypts and authenticates |in_len| bytes from |in| * and splits the result between |out_prefix|, |out| and |out_suffix|. It * returns one on success and zero on error. |ctx| may be NULL to denote the * null cipher. * * On successful return, exactly |SSL_AEAD_CTX_explicit_nonce_len| bytes are * written to |out_prefix|, |in_len| bytes to |out|, and up to * |SSL_AEAD_CTX_max_suffix_len| bytes to |out_suffix|. |*out_suffix_len| is set * to the actual number of bytes written to |out_suffix|. * * |extra_in| may point to an additional plaintext buffer. If present, * |extra_in_len| additional bytes are encrypted and authenticated, and the * ciphertext is written to the beginning of |out_suffix|. * |SSL_AEAD_CTX_max_suffix_len| may be used to size |out_suffix| accordingly. * * If |in| and |out| alias then |out| must be == |in|. Other arguments may not * alias anything. */ int SSL_AEAD_CTX_seal_scatter(SSL_AEAD_CTX *aead, uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix, size_t *out_suffix_len, size_t max_out_suffix_len, uint8_t type, uint16_t wire_version, const uint8_t seqnum[8], const uint8_t *in, size_t in_len, const uint8_t *extra_in, size_t extra_in_len); /* DTLS replay bitmap. */ /* DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect * replayed packets. It should be initialized by zeroing every field. */ typedef struct dtls1_bitmap_st { /* map is a bit mask of the last 64 sequence numbers. Bit * |1<local_pubkey|. It returns * one on success and zero on error. */ int ssl_on_certificate_selected(SSL_HANDSHAKE *hs); /* TLS 1.3 key derivation. */ /* tls13_init_key_schedule initializes the handshake hash and key derivation * state. The cipher suite and PRF hash must have been selected at this point. * It returns one on success and zero on error. */ int tls13_init_key_schedule(SSL_HANDSHAKE *hs); /* tls13_init_early_key_schedule initializes the handshake hash and key * derivation state from the resumption secret to derive the early secrets. It * returns one on success and zero on error. */ int tls13_init_early_key_schedule(SSL_HANDSHAKE *hs); /* tls13_advance_key_schedule incorporates |in| into the key schedule with * HKDF-Extract. It returns one on success and zero on error. */ int tls13_advance_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *in, size_t len); /* tls13_set_traffic_key sets the read or write traffic keys to * |traffic_secret|. It returns one on success and zero on error. */ int tls13_set_traffic_key(SSL *ssl, enum evp_aead_direction_t direction, const uint8_t *traffic_secret, size_t traffic_secret_len); /* tls13_derive_early_secrets derives the early traffic secret. It returns one * on success and zero on error. */ int tls13_derive_early_secrets(SSL_HANDSHAKE *hs); /* tls13_derive_handshake_secrets derives the handshake traffic secret. It * returns one on success and zero on error. */ int tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs); /* tls13_rotate_traffic_key derives the next read or write traffic secret. It * returns one on success and zero on error. */ int tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction); /* tls13_derive_application_secrets derives the initial application data traffic * and exporter secrets based on the handshake transcripts and |master_secret|. * It returns one on success and zero on error. */ int tls13_derive_application_secrets(SSL_HANDSHAKE *hs); /* tls13_derive_resumption_secret derives the |resumption_secret|. */ int tls13_derive_resumption_secret(SSL_HANDSHAKE *hs); /* tls13_export_keying_material provides an exporter interface to use the * |exporter_secret|. */ int tls13_export_keying_material(SSL *ssl, uint8_t *out, size_t out_len, const char *label, size_t label_len, const uint8_t *context, size_t context_len, int use_context); /* tls13_finished_mac calculates the MAC of the handshake transcript to verify * the integrity of the Finished message, and stores the result in |out| and * length in |out_len|. |is_server| is 1 if this is for the Server Finished and * 0 for the Client Finished. */ int tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, int is_server); /* tls13_write_psk_binder calculates the PSK binder value and replaces the last * bytes of |msg| with the resulting value. It returns 1 on success, and 0 on * failure. */ int tls13_write_psk_binder(SSL_HANDSHAKE *hs, uint8_t *msg, size_t len); /* tls13_verify_psk_binder verifies that the handshake transcript, truncated * up to the binders has a valid signature using the value of |session|'s * resumption secret. It returns 1 on success, and 0 on failure. */ int tls13_verify_psk_binder(SSL_HANDSHAKE *hs, SSL_SESSION *session, CBS *binders); /* Handshake functions. */ enum ssl_hs_wait_t { ssl_hs_error, ssl_hs_ok, ssl_hs_read_message, ssl_hs_flush, ssl_hs_flush_and_read_message, ssl_hs_x509_lookup, ssl_hs_channel_id_lookup, ssl_hs_private_key_operation, ssl_hs_pending_ticket, ssl_hs_early_data_rejected, ssl_hs_read_end_of_early_data, ssl_hs_read_change_cipher_spec, }; struct ssl_handshake_st { /* ssl is a non-owning pointer to the parent |SSL| object. */ SSL *ssl; /* do_tls13_handshake runs the TLS 1.3 handshake. On completion, it returns * |ssl_hs_ok|. Otherwise, it returns a value corresponding to what operation * is needed to progress. */ enum ssl_hs_wait_t (*do_tls13_handshake)(SSL_HANDSHAKE *hs); /* wait contains the operation |do_tls13_handshake| is currently blocking on * or |ssl_hs_ok| if none. */ enum ssl_hs_wait_t wait; /* state contains one of the SSL3_ST_* values. */ int state; /* next_state is used when SSL_ST_FLUSH_DATA is entered */ int next_state; /* tls13_state is the internal state for the TLS 1.3 handshake. Its values * depend on |do_tls13_handshake| but the starting state is always zero. */ int tls13_state; /* min_version is the minimum accepted protocol version, taking account both * |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs. */ uint16_t min_version; /* max_version is the maximum accepted protocol version, taking account both * |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs. */ uint16_t max_version; /* session_id is the session ID in the ClientHello, used for the experimental * TLS 1.3 variant. */ uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH]; uint8_t session_id_len; size_t hash_len; uint8_t secret[EVP_MAX_MD_SIZE]; uint8_t early_traffic_secret[EVP_MAX_MD_SIZE]; uint8_t client_handshake_secret[EVP_MAX_MD_SIZE]; uint8_t server_handshake_secret[EVP_MAX_MD_SIZE]; uint8_t client_traffic_secret_0[EVP_MAX_MD_SIZE]; uint8_t server_traffic_secret_0[EVP_MAX_MD_SIZE]; uint8_t expected_client_finished[EVP_MAX_MD_SIZE]; union { /* sent is a bitset where the bits correspond to elements of kExtensions * in t1_lib.c. Each bit is set if that extension was sent in a * ClientHello. It's not used by servers. */ uint32_t sent; /* received is a bitset, like |sent|, but is used by servers to record * which extensions were received from a client. */ uint32_t received; } extensions; union { /* sent is a bitset where the bits correspond to elements of * |client_custom_extensions| in the |SSL_CTX|. Each bit is set if that * extension was sent in a ClientHello. It's not used by servers. */ uint16_t sent; /* received is a bitset, like |sent|, but is used by servers to record * which custom extensions were received from a client. The bits here * correspond to |server_custom_extensions|. */ uint16_t received; } custom_extensions; /* retry_group is the group ID selected by the server in HelloRetryRequest in * TLS 1.3. */ uint16_t retry_group; /* ecdh_ctx is the current ECDH instance. */ SSL_ECDH_CTX ecdh_ctx; /* transcript is the current handshake transcript. */ SSL_TRANSCRIPT transcript; /* cookie is the value of the cookie received from the server, if any. */ uint8_t *cookie; size_t cookie_len; /* key_share_bytes is the value of the previously sent KeyShare extension by * the client in TLS 1.3. */ uint8_t *key_share_bytes; size_t key_share_bytes_len; /* ecdh_public_key, for servers, is the key share to be sent to the client in * TLS 1.3. */ uint8_t *ecdh_public_key; size_t ecdh_public_key_len; /* peer_sigalgs are the signature algorithms that the peer supports. These are * taken from the contents of the signature algorithms extension for a server * or from the CertificateRequest for a client. */ uint16_t *peer_sigalgs; /* num_peer_sigalgs is the number of entries in |peer_sigalgs|. */ size_t num_peer_sigalgs; /* peer_supported_group_list contains the supported group IDs advertised by * the peer. This is only set on the server's end. The server does not * advertise this extension to the client. */ uint16_t *peer_supported_group_list; size_t peer_supported_group_list_len; /* peer_key is the peer's ECDH key for a TLS 1.2 client. */ uint8_t *peer_key; size_t peer_key_len; /* server_params, in a TLS 1.2 server, stores the ServerKeyExchange * parameters. It has client and server randoms prepended for signing * convenience. */ uint8_t *server_params; size_t server_params_len; /* peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the * server when using a TLS 1.2 PSK key exchange. */ char *peer_psk_identity_hint; /* ca_names, on the client, contains the list of CAs received in a * CertificateRequest message. */ STACK_OF(CRYPTO_BUFFER) *ca_names; /* cached_x509_ca_names contains a cache of parsed versions of the elements * of |ca_names|. */ STACK_OF(X509_NAME) *cached_x509_ca_names; /* certificate_types, on the client, contains the set of certificate types * received in a CertificateRequest message. */ uint8_t *certificate_types; size_t num_certificate_types; /* hostname, on the server, is the value of the SNI extension. */ char *hostname; /* local_pubkey is the public key we are authenticating as. */ EVP_PKEY *local_pubkey; /* peer_pubkey is the public key parsed from the peer's leaf certificate. */ EVP_PKEY *peer_pubkey; /* new_session is the new mutable session being established by the current * handshake. It should not be cached. */ SSL_SESSION *new_session; /* early_session is the session corresponding to the current 0-RTT state on * the client if |in_early_data| is true. */ SSL_SESSION *early_session; /* new_cipher is the cipher being negotiated in this handshake. */ const SSL_CIPHER *new_cipher; /* key_block is the record-layer key block for TLS 1.2 and earlier. */ uint8_t *key_block; uint8_t key_block_len; /* scts_requested is one if the SCT extension is in the ClientHello. */ unsigned scts_requested:1; /* needs_psk_binder if the ClientHello has a placeholder PSK binder to be * filled in. */ unsigned needs_psk_binder:1; unsigned received_hello_retry_request:1; /* accept_psk_mode stores whether the client's PSK mode is compatible with our * preferences. */ unsigned accept_psk_mode:1; /* cert_request is one if a client certificate was requested and zero * otherwise. */ unsigned cert_request:1; /* certificate_status_expected is one if OCSP stapling was negotiated and the * server is expected to send a CertificateStatus message. (This is used on * both the client and server sides.) */ unsigned certificate_status_expected:1; /* ocsp_stapling_requested is one if a client requested OCSP stapling. */ unsigned ocsp_stapling_requested:1; /* should_ack_sni is used by a server and indicates that the SNI extension * should be echoed in the ServerHello. */ unsigned should_ack_sni:1; /* in_false_start is one if there is a pending client handshake in False * Start. The client may write data at this point. */ unsigned in_false_start:1; /* in_early_data is one if there is a pending handshake that has progressed * enough to send and receive early data. */ unsigned in_early_data:1; /* early_data_offered is one if the client sent the early_data extension. */ unsigned early_data_offered:1; /* can_early_read is one if application data may be read at this point in the * handshake. */ unsigned can_early_read:1; /* can_early_write is one if application data may be written at this point in * the handshake. */ unsigned can_early_write:1; /* next_proto_neg_seen is one of NPN was negotiated. */ unsigned next_proto_neg_seen:1; /* ticket_expected is one if a TLS 1.2 NewSessionTicket message is to be sent * or received. */ unsigned ticket_expected:1; /* extended_master_secret is one if the extended master secret extension is * negotiated in this handshake. */ unsigned extended_master_secret:1; /* pending_private_key_op is one if there is a pending private key operation * in progress. */ unsigned pending_private_key_op:1; /* client_version is the value sent or received in the ClientHello version. */ uint16_t client_version; /* early_data_read is the amount of early data that has been read by the * record layer. */ uint16_t early_data_read; /* early_data_written is the amount of early data that has been written by the * record layer. */ uint16_t early_data_written; } /* SSL_HANDSHAKE */; SSL_HANDSHAKE *ssl_handshake_new(SSL *ssl); /* ssl_handshake_free releases all memory associated with |hs|. */ void ssl_handshake_free(SSL_HANDSHAKE *hs); /* ssl_check_message_type checks if the current message has type |type|. If so * it returns one. Otherwise, it sends an alert and returns zero. */ int ssl_check_message_type(SSL *ssl, int type); /* tls13_handshake runs the TLS 1.3 handshake. It returns one on success and <= * 0 on error. It sets |out_early_return| to one if we've completed the * handshake early. */ int tls13_handshake(SSL_HANDSHAKE *hs, int *out_early_return); /* The following are implementations of |do_tls13_handshake| for the client and * server. */ enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs); enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs); /* tls13_post_handshake processes a post-handshake message. It returns one on * success and zero on failure. */ int tls13_post_handshake(SSL *ssl); int tls13_process_certificate(SSL_HANDSHAKE *hs, int allow_anonymous); int tls13_process_certificate_verify(SSL_HANDSHAKE *hs); /* tls13_process_finished processes the current message as a Finished message * from the peer. If |use_saved_value| is one, the verify_data is compared * against |hs->expected_client_finished| rather than computed fresh. */ int tls13_process_finished(SSL_HANDSHAKE *hs, int use_saved_value); int tls13_add_certificate(SSL_HANDSHAKE *hs); /* tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the * handshake. If it returns |ssl_private_key_retry|, it should be called again * to retry when the signing operation is completed. */ enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs); int tls13_add_finished(SSL_HANDSHAKE *hs); int tls13_process_new_session_ticket(SSL *ssl); int ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t **out_secret, size_t *out_secret_len, uint8_t *out_alert, CBS *contents); int ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, int *out_found, uint8_t **out_secret, size_t *out_secret_len, uint8_t *out_alert, CBS *contents); int ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out); int ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert, CBS *contents); int ssl_ext_pre_shared_key_parse_clienthello( SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders, uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert, CBS *contents); int ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out); /* ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and * returns one iff it's valid. */ int ssl_is_sct_list_valid(const CBS *contents); int ssl_write_client_hello(SSL_HANDSHAKE *hs); /* ssl_clear_tls13_state releases client state only needed for TLS 1.3. It * should be called once the version is known to be TLS 1.2 or earlier. */ void ssl_clear_tls13_state(SSL_HANDSHAKE *hs); enum ssl_cert_verify_context_t { ssl_cert_verify_server, ssl_cert_verify_client, ssl_cert_verify_channel_id, }; /* tls13_get_cert_verify_signature_input generates the message to be signed for * TLS 1.3's CertificateVerify message. |cert_verify_context| determines the * type of signature. It sets |*out| and |*out_len| to a newly allocated buffer * containing the result. The caller must free it with |OPENSSL_free| to release * it. This function returns one on success and zero on failure. */ int tls13_get_cert_verify_signature_input( SSL_HANDSHAKE *hs, uint8_t **out, size_t *out_len, enum ssl_cert_verify_context_t cert_verify_context); /* ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns * one on successful negotiation or if nothing was negotiated. It returns zero * and sets |*out_alert| to an alert on error. */ int ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert, const SSL_CLIENT_HELLO *client_hello); typedef struct { uint16_t type; int *out_present; CBS *out_data; } SSL_EXTENSION_TYPE; /* ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances * it. It writes the parsed extensions to pointers denoted by |ext_types|. On * success, it fills in the |out_present| and |out_data| fields and returns one. * Otherwise, it sets |*out_alert| to an alert to send and returns zero. Unknown * extensions are rejected unless |ignore_unknown| is 1. */ int ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert, const SSL_EXTENSION_TYPE *ext_types, size_t num_ext_types, int ignore_unknown); /* SSLKEYLOGFILE functions. */ /* ssl_log_secret logs |secret| with label |label|, if logging is enabled for * |ssl|. It returns one on success and zero on failure. */ int ssl_log_secret(const SSL *ssl, const char *label, const uint8_t *secret, size_t secret_len); /* ClientHello functions. */ int ssl_client_hello_init(SSL *ssl, SSL_CLIENT_HELLO *out, const uint8_t *in, size_t in_len); int ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello, CBS *out, uint16_t extension_type); int ssl_client_cipher_list_contains_cipher(const SSL_CLIENT_HELLO *client_hello, uint16_t id); /* GREASE. */ enum ssl_grease_index_t { ssl_grease_cipher = 0, ssl_grease_group, ssl_grease_extension1, ssl_grease_extension2, ssl_grease_version, ssl_grease_ticket_extension, }; /* ssl_get_grease_value returns a GREASE value for |ssl|. For a given * connection, the values for each index will be deterministic. This allows the * same ClientHello be sent twice for a HelloRetryRequest or the same group be * advertised in both supported_groups and key_shares. */ uint16_t ssl_get_grease_value(const SSL *ssl, enum ssl_grease_index_t index); /* Signature algorithms. */ /* tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature * algorithms and saves them on |hs|. It returns one on success and zero on * error. */ int tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs); /* tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm * that should be used with |pkey| in TLS 1.1 and earlier. It returns one on * success and zero if |pkey| may not be used at those versions. */ int tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey); /* tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use * with |hs|'s private key based on the peer's preferences and the algorithms * supported. It returns one on success and zero on error. */ int tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t *out); /* tls12_add_verify_sigalgs adds the signature algorithms acceptable for the * peer signature to |out|. It returns one on success and zero on error. */ int tls12_add_verify_sigalgs(const SSL *ssl, CBB *out); /* tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer * signature. It returns one on success and zero on error, setting |*out_alert| * to an alert to send. */ int tls12_check_peer_sigalg(SSL *ssl, uint8_t *out_alert, uint16_t sigalg); /* Underdocumented functions. * * Functions below here haven't been touched up and may be underdocumented. */ #define TLSEXT_CHANNEL_ID_SIZE 128 /* From RFC4492, used in encoding the curve type in ECParameters */ #define NAMED_CURVE_TYPE 3 typedef struct cert_st { EVP_PKEY *privatekey; /* chain contains the certificate chain, with the leaf at the beginning. The * first element of |chain| may be NULL to indicate that the leaf certificate * has not yet been set. * If |chain| != NULL -> len(chain) >= 1 * If |chain[0]| == NULL -> len(chain) >= 2. * |chain[1..]| != NULL */ STACK_OF(CRYPTO_BUFFER) *chain; /* x509_chain may contain a parsed copy of |chain[1..]|. This is only used as * a cache in order to implement “get0” functions that return a non-owning * pointer to the certificate chain. */ STACK_OF(X509) *x509_chain; /* x509_leaf may contain a parsed copy of the first element of |chain|. This * is only used as a cache in order to implement “get0” functions that return * a non-owning pointer to the certificate chain. */ X509 *x509_leaf; /* x509_stash contains the last |X509| object append to the chain. This is a * workaround for some third-party code that continue to use an |X509| object * even after passing ownership with an “add0” function. */ X509 *x509_stash; /* key_method, if non-NULL, is a set of callbacks to call for private key * operations. */ const SSL_PRIVATE_KEY_METHOD *key_method; /* x509_method contains pointers to functions that might deal with |X509| * compatibility, or might be a no-op, depending on the application. */ const SSL_X509_METHOD *x509_method; /* sigalgs, if non-NULL, is the set of signature algorithms supported by * |privatekey| in decreasing order of preference. */ uint16_t *sigalgs; size_t num_sigalgs; /* Certificate setup callback: if set is called whenever a * certificate may be required (client or server). the callback * can then examine any appropriate parameters and setup any * certificates required. This allows advanced applications * to select certificates on the fly: for example based on * supported signature algorithms or curves. */ int (*cert_cb)(SSL *ssl, void *arg); void *cert_cb_arg; /* Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX * store is used instead. */ X509_STORE *verify_store; /* Signed certificate timestamp list to be sent to the client, if requested */ CRYPTO_BUFFER *signed_cert_timestamp_list; /* OCSP response to be sent to the client, if requested. */ CRYPTO_BUFFER *ocsp_response; /* sid_ctx partitions the session space within a shared session cache or * ticket key. Only sessions with a matching value will be accepted. */ uint8_t sid_ctx_length; uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH]; /* If enable_early_data is non-zero, early data can be sent and accepted. */ unsigned enable_early_data:1; } CERT; /* SSL_METHOD is a compatibility structure to support the legacy version-locked * methods. */ struct ssl_method_st { /* version, if non-zero, is the only protocol version acceptable to an * SSL_CTX initialized from this method. */ uint16_t version; /* method is the underlying SSL_PROTOCOL_METHOD that initializes the * SSL_CTX. */ const SSL_PROTOCOL_METHOD *method; /* x509_method contains pointers to functions that might deal with |X509| * compatibility, or might be a no-op, depending on the application. */ const SSL_X509_METHOD *x509_method; }; /* Used to hold functions for SSLv2 or SSLv3/TLSv1 functions */ struct ssl_protocol_method_st { /* is_dtls is one if the protocol is DTLS and zero otherwise. */ char is_dtls; int (*ssl_new)(SSL *ssl); void (*ssl_free)(SSL *ssl); /* ssl_get_message reads the next handshake message. On success, it returns * one and sets |ssl->s3->tmp.message_type|, |ssl->init_msg|, and * |ssl->init_num|. Otherwise, it returns <= 0. */ int (*ssl_get_message)(SSL *ssl); /* get_current_message sets |*out| to the current handshake message. This * includes the protocol-specific message header. */ void (*get_current_message)(const SSL *ssl, CBS *out); /* release_current_message is called to release the current handshake message. * If |free_buffer| is one, buffers will also be released. */ void (*release_current_message)(SSL *ssl, int free_buffer); /* read_app_data reads up to |len| bytes of application data into |buf|. On * success, it returns the number of bytes read. Otherwise, it returns <= 0 * and sets |*out_got_handshake| to whether the failure was due to a * post-handshake handshake message. If so, it fills in the current message as * in |ssl_get_message|. */ int (*read_app_data)(SSL *ssl, int *out_got_handshake, uint8_t *buf, int len, int peek); int (*read_change_cipher_spec)(SSL *ssl); void (*read_close_notify)(SSL *ssl); int (*write_app_data)(SSL *ssl, int *out_needs_handshake, const uint8_t *buf, int len); int (*dispatch_alert)(SSL *ssl); /* supports_cipher returns one if |cipher| is supported by this protocol and * zero otherwise. */ int (*supports_cipher)(const SSL_CIPHER *cipher); /* init_message begins a new handshake message of type |type|. |cbb| is the * root CBB to be passed into |finish_message|. |*body| is set to a child CBB * the caller should write to. It returns one on success and zero on error. */ int (*init_message)(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); /* finish_message finishes a handshake message. It sets |*out_msg| to a * newly-allocated buffer with the serialized message. The caller must * release it with |OPENSSL_free| when done. It returns one on success and * zero on error. */ int (*finish_message)(SSL *ssl, CBB *cbb, uint8_t **out_msg, size_t *out_len); /* add_message adds a handshake message to the pending flight. It returns one * on success and zero on error. In either case, it takes ownership of |msg| * and releases it with |OPENSSL_free| when done. */ int (*add_message)(SSL *ssl, uint8_t *msg, size_t len); /* add_change_cipher_spec adds a ChangeCipherSpec record to the pending * flight. It returns one on success and zero on error. */ int (*add_change_cipher_spec)(SSL *ssl); /* add_alert adds an alert to the pending flight. It returns one on success * and zero on error. */ int (*add_alert)(SSL *ssl, uint8_t level, uint8_t desc); /* flush_flight flushes the pending flight to the transport. It returns one on * success and <= 0 on error. */ int (*flush_flight)(SSL *ssl); /* expect_flight is called when the handshake expects a flight of messages from * the peer. */ void (*expect_flight)(SSL *ssl); /* received_flight is called when the handshake has received a flight of * messages from the peer. */ void (*received_flight)(SSL *ssl); /* set_read_state sets |ssl|'s read cipher state to |aead_ctx|. It takes * ownership of |aead_ctx|. It returns one on success and zero if changing the * read state is forbidden at this point. */ int (*set_read_state)(SSL *ssl, SSL_AEAD_CTX *aead_ctx); /* set_write_state sets |ssl|'s write cipher state to |aead_ctx|. It takes * ownership of |aead_ctx|. It returns one on success and zero if changing the * write state is forbidden at this point. */ int (*set_write_state)(SSL *ssl, SSL_AEAD_CTX *aead_ctx); }; struct ssl_x509_method_st { /* check_client_CA_list returns one if |names| is a good list of X.509 * distinguished names and zero otherwise. This is used to ensure that we can * reject unparsable values at handshake time when using crypto/x509. */ int (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names); /* cert_clear frees and NULLs all X509 certificate-related state. */ void (*cert_clear)(CERT *cert); /* cert_free frees all X509-related state. */ void (*cert_free)(CERT *cert); /* cert_flush_cached_chain drops any cached |X509|-based certificate chain * from |cert|. */ /* cert_dup duplicates any needed fields from |cert| to |new_cert|. */ void (*cert_dup)(CERT *new_cert, const CERT *cert); void (*cert_flush_cached_chain)(CERT *cert); /* cert_flush_cached_chain drops any cached |X509|-based leaf certificate * from |cert|. */ void (*cert_flush_cached_leaf)(CERT *cert); /* session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain| * from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns * one on success or zero on error. */ int (*session_cache_objects)(SSL_SESSION *session); /* session_dup duplicates any needed fields from |session| to |new_session|. * It returns one on success or zero on error. */ int (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session); /* session_clear frees any X509-related state from |session|. */ void (*session_clear)(SSL_SESSION *session); /* session_verify_cert_chain verifies the certificate chain in |session|, * sets |session->verify_result| and returns one on success or zero on * error. */ int (*session_verify_cert_chain)(SSL_SESSION *session, SSL *ssl); /* hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|. */ void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs); /* ssl_new does any neccessary initialisation of |ssl|. It returns one on * success or zero on error. */ int (*ssl_new)(SSL *ssl); /* ssl_free frees anything created by |ssl_new|. */ void (*ssl_free)(SSL *ssl); /* ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|. */ void (*ssl_flush_cached_client_CA)(SSL *ssl); /* ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if * necessary. On success, it updates |ssl|'s certificate configuration as * needed and returns one. Otherwise, it returns zero. */ int (*ssl_auto_chain_if_needed)(SSL *ssl); /* ssl_ctx_new does any neccessary initialisation of |ctx|. It returns one on * success or zero on error. */ int (*ssl_ctx_new)(SSL_CTX *ctx); /* ssl_ctx_free frees anything created by |ssl_ctx_new|. */ void (*ssl_ctx_free)(SSL_CTX *ctx); /* ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|. */ void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl); }; /* ssl_crypto_x509_method provides the |ssl_x509_method_st| functions using * crypto/x509. */ extern const struct ssl_x509_method_st ssl_crypto_x509_method; typedef struct ssl3_record_st { /* type is the record type. */ uint8_t type; /* length is the number of unconsumed bytes in the record. */ uint16_t length; /* data is a non-owning pointer to the first unconsumed byte of the record. */ uint8_t *data; } SSL3_RECORD; typedef struct ssl3_buffer_st { /* buf is the memory allocated for this buffer. */ uint8_t *buf; /* offset is the offset into |buf| which the buffer contents start at. */ uint16_t offset; /* len is the length of the buffer contents from |buf| + |offset|. */ uint16_t len; /* cap is how much memory beyond |buf| + |offset| is available. */ uint16_t cap; } SSL3_BUFFER; /* An ssl_shutdown_t describes the shutdown state of one end of the connection, * whether it is alive or has been shutdown via close_notify or fatal alert. */ enum ssl_shutdown_t { ssl_shutdown_none = 0, ssl_shutdown_close_notify = 1, ssl_shutdown_fatal_alert = 2, }; typedef struct ssl3_state_st { uint8_t read_sequence[8]; uint8_t write_sequence[8]; uint8_t server_random[SSL3_RANDOM_SIZE]; uint8_t client_random[SSL3_RANDOM_SIZE]; /* read_buffer holds data from the transport to be processed. */ SSL3_BUFFER read_buffer; /* write_buffer holds data to be written to the transport. */ SSL3_BUFFER write_buffer; SSL3_RECORD rrec; /* each decoded record goes in here */ /* partial write - check the numbers match */ unsigned int wnum; /* number of bytes sent so far */ int wpend_tot; /* number bytes written */ int wpend_type; int wpend_ret; /* number of bytes submitted */ const uint8_t *wpend_buf; /* recv_shutdown is the shutdown state for the receive half of the * connection. */ enum ssl_shutdown_t recv_shutdown; /* recv_shutdown is the shutdown state for the send half of the connection. */ enum ssl_shutdown_t send_shutdown; int alert_dispatch; int total_renegotiations; /* early_data_skipped is the amount of early data that has been skipped by the * record layer. */ uint16_t early_data_skipped; /* empty_record_count is the number of consecutive empty records received. */ uint8_t empty_record_count; /* warning_alert_count is the number of consecutive warning alerts * received. */ uint8_t warning_alert_count; /* key_update_count is the number of consecutive KeyUpdates received. */ uint8_t key_update_count; /* skip_early_data instructs the record layer to skip unexpected early data * messages when 0RTT is rejected. */ unsigned skip_early_data:1; /* have_version is true if the connection's final version is known. Otherwise * the version has not been negotiated yet. */ unsigned have_version:1; /* v2_hello_done is true if the peer's V2ClientHello, if any, has been handled * and future messages should use the record layer. */ unsigned v2_hello_done:1; /* is_v2_hello is true if the current handshake message was derived from a * V2ClientHello rather than received from the peer directly. */ unsigned is_v2_hello:1; /* initial_handshake_complete is true if the initial handshake has * completed. */ unsigned initial_handshake_complete:1; /* session_reused indicates whether a session was resumed. */ unsigned session_reused:1; unsigned send_connection_binding:1; /* In a client, this means that the server supported Channel ID and that a * Channel ID was sent. In a server it means that we echoed support for * Channel IDs and that tlsext_channel_id will be valid after the * handshake. */ unsigned tlsext_channel_id_valid:1; /* key_update_pending is one if we have a KeyUpdate acknowledgment * outstanding. */ unsigned key_update_pending:1; /* wpend_pending is one if we have a pending write outstanding. */ unsigned wpend_pending:1; uint8_t send_alert[2]; /* pending_flight is the pending outgoing flight. This is used to flush each * handshake flight in a single write. |write_buffer| must be written out * before this data. */ BUF_MEM *pending_flight; /* pending_flight_offset is the number of bytes of |pending_flight| which have * been successfully written. */ uint32_t pending_flight_offset; /* aead_read_ctx is the current read cipher state. */ SSL_AEAD_CTX *aead_read_ctx; /* aead_write_ctx is the current write cipher state. */ SSL_AEAD_CTX *aead_write_ctx; /* hs is the handshake state for the current handshake or NULL if there isn't * one. */ SSL_HANDSHAKE *hs; uint8_t write_traffic_secret[EVP_MAX_MD_SIZE]; uint8_t read_traffic_secret[EVP_MAX_MD_SIZE]; uint8_t exporter_secret[EVP_MAX_MD_SIZE]; uint8_t early_exporter_secret[EVP_MAX_MD_SIZE]; uint8_t write_traffic_secret_len; uint8_t read_traffic_secret_len; uint8_t exporter_secret_len; uint8_t early_exporter_secret_len; /* Connection binding to prevent renegotiation attacks */ uint8_t previous_client_finished[12]; uint8_t previous_client_finished_len; uint8_t previous_server_finished_len; uint8_t previous_server_finished[12]; /* State pertaining to the pending handshake. * * TODO(davidben): Move everything not needed after the handshake completes to * |hs| and remove this. */ struct { int message_type; int reuse_message; uint8_t new_mac_secret_len; uint8_t new_key_len; uint8_t new_fixed_iv_len; } tmp; /* established_session is the session established by the connection. This * session is only filled upon the completion of the handshake and is * immutable. */ SSL_SESSION *established_session; /* Next protocol negotiation. For the client, this is the protocol that we * sent in NextProtocol and is set when handling ServerHello extensions. * * For a server, this is the client's selected_protocol from NextProtocol and * is set when handling the NextProtocol message, before the Finished * message. */ uint8_t *next_proto_negotiated; size_t next_proto_negotiated_len; /* ALPN information * (we are in the process of transitioning from NPN to ALPN.) */ /* In a server these point to the selected ALPN protocol after the * ClientHello has been processed. In a client these contain the protocol * that the server selected once the ServerHello has been processed. */ uint8_t *alpn_selected; size_t alpn_selected_len; /* For a server: * If |tlsext_channel_id_valid| is true, then this contains the * verified Channel ID from the client: a P256 point, (x,y), where * each are big-endian values. */ uint8_t tlsext_channel_id[64]; /* ticket_age_skew is the difference, in seconds, between the client-sent * ticket age and the server-computed value in TLS 1.3 server connections * which resumed a session. */ int32_t ticket_age_skew; } SSL3_STATE; /* lengths of messages */ #define DTLS1_COOKIE_LENGTH 256 #define DTLS1_RT_HEADER_LENGTH 13 #define DTLS1_HM_HEADER_LENGTH 12 #define DTLS1_CCS_HEADER_LENGTH 1 #define DTLS1_AL_HEADER_LENGTH 2 struct hm_header_st { uint8_t type; uint32_t msg_len; uint16_t seq; uint32_t frag_off; uint32_t frag_len; }; /* An hm_fragment is an incoming DTLS message, possibly not yet assembled. */ typedef struct hm_fragment_st { /* type is the type of the message. */ uint8_t type; /* seq is the sequence number of this message. */ uint16_t seq; /* msg_len is the length of the message body. */ uint32_t msg_len; /* data is a pointer to the message, including message header. It has length * |DTLS1_HM_HEADER_LENGTH| + |msg_len|. */ uint8_t *data; /* reassembly is a bitmask of |msg_len| bits corresponding to which parts of * the message have been received. It is NULL if the message is complete. */ uint8_t *reassembly; } hm_fragment; struct OPENSSL_timeval { uint64_t tv_sec; uint32_t tv_usec; }; typedef struct dtls1_state_st { /* send_cookie is true if we are resending the ClientHello * with a cookie from a HelloVerifyRequest. */ unsigned int send_cookie; uint8_t cookie[DTLS1_COOKIE_LENGTH]; size_t cookie_len; /* The current data and handshake epoch. This is initially undefined, and * starts at zero once the initial handshake is completed. */ uint16_t r_epoch; uint16_t w_epoch; /* records being received in the current epoch */ DTLS1_BITMAP bitmap; uint16_t handshake_write_seq; uint16_t handshake_read_seq; /* save last sequence number for retransmissions */ uint8_t last_write_sequence[8]; /* incoming_messages is a ring buffer of incoming handshake messages that have * yet to be processed. The front of the ring buffer is message number * |handshake_read_seq|, at position |handshake_read_seq| % * |SSL_MAX_HANDSHAKE_FLIGHT|. */ hm_fragment *incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT]; /* outgoing_messages is the queue of outgoing messages from the last handshake * flight. */ DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT]; uint8_t outgoing_messages_len; /* outgoing_written is the number of outgoing messages that have been * written. */ uint8_t outgoing_written; /* outgoing_offset is the number of bytes of the next outgoing message have * been written. */ uint32_t outgoing_offset; unsigned int mtu; /* max DTLS packet size */ /* num_timeouts is the number of times the retransmit timer has fired since * the last time it was reset. */ unsigned int num_timeouts; /* Indicates when the last handshake msg or heartbeat sent will * timeout. */ struct OPENSSL_timeval next_timeout; /* timeout_duration_ms is the timeout duration in milliseconds. */ unsigned timeout_duration_ms; } DTLS1_STATE; struct ssl_st { /* method is the method table corresponding to the current protocol (DTLS or * TLS). */ const SSL_PROTOCOL_METHOD *method; /* version is the protocol version. */ uint16_t version; /* conf_max_version is the maximum acceptable protocol version configured by * |SSL_set_max_proto_version|. Note this version is normalized in DTLS and is * further constrainted by |SSL_OP_NO_*|. */ uint16_t conf_max_version; /* conf_min_version is the minimum acceptable protocol version configured by * |SSL_set_min_proto_version|. Note this version is normalized in DTLS and is * further constrainted by |SSL_OP_NO_*|. */ uint16_t conf_min_version; /* tls13_variant is the variant of TLS 1.3 we are using for this * configuration. */ enum tls13_variant_t tls13_variant; uint16_t max_send_fragment; /* There are 2 BIO's even though they are normally both the same. This is so * data can be read and written to different handlers */ BIO *rbio; /* used by SSL_read */ BIO *wbio; /* used by SSL_write */ int (*handshake_func)(SSL_HANDSHAKE *hs); BUF_MEM *init_buf; /* buffer used during init */ /* init_msg is a pointer to the current handshake message body. */ const uint8_t *init_msg; /* init_num is the length of the current handshake message body. */ uint32_t init_num; struct ssl3_state_st *s3; /* SSLv3 variables */ struct dtls1_state_st *d1; /* DTLSv1 variables */ /* callback that allows applications to peek at protocol messages */ void (*msg_callback)(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg); void *msg_callback_arg; X509_VERIFY_PARAM *param; /* crypto */ struct ssl_cipher_preference_list_st *cipher_list; /* session info */ /* client cert? */ /* This is used to hold the server certificate used */ struct cert_st /* CERT */ *cert; /* This holds a variable that indicates what we were doing when a 0 or -1 is * returned. This is needed for non-blocking IO so we know what request * needs re-doing when in SSL_accept or SSL_connect */ int rwstate; /* initial_timeout_duration_ms is the default DTLS timeout duration in * milliseconds. It's used to initialize the timer any time it's restarted. */ unsigned initial_timeout_duration_ms; /* session is the configured session to be offered by the client. This session * is immutable. */ SSL_SESSION *session; int (*verify_callback)(int ok, X509_STORE_CTX *ctx); /* fail if callback returns 0 */ void (*info_callback)(const SSL *ssl, int type, int value); /* Server-only: psk_identity_hint is the identity hint to send in * PSK-based key exchanges. */ char *psk_identity_hint; unsigned int (*psk_client_callback)(SSL *ssl, const char *hint, char *identity, unsigned int max_identity_len, uint8_t *psk, unsigned int max_psk_len); unsigned int (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk, unsigned int max_psk_len); SSL_CTX *ctx; /* extra application data */ CRYPTO_EX_DATA ex_data; /* for server side, keep the list of CA_dn we can use */ STACK_OF(CRYPTO_BUFFER) *client_CA; /* cached_x509_client_CA is a cache of parsed versions of the elements of * |client_CA|. */ STACK_OF(X509_NAME) *cached_x509_client_CA; uint32_t options; /* protocol behaviour */ uint32_t mode; /* API behaviour */ uint32_t max_cert_list; char *tlsext_hostname; size_t supported_group_list_len; uint16_t *supported_group_list; /* our list */ /* session_ctx is the |SSL_CTX| used for the session cache and related * settings. */ SSL_CTX *session_ctx; /* srtp_profiles is the list of configured SRTP protection profiles for * DTLS-SRTP. */ STACK_OF(SRTP_PROTECTION_PROFILE) *srtp_profiles; /* srtp_profile is the selected SRTP protection profile for * DTLS-SRTP. */ const SRTP_PROTECTION_PROFILE *srtp_profile; /* The client's Channel ID private key. */ EVP_PKEY *tlsext_channel_id_private; /* For a client, this contains the list of supported protocols in wire * format. */ uint8_t *alpn_client_proto_list; unsigned alpn_client_proto_list_len; /* renegotiate_mode controls how peer renegotiation attempts are handled. */ enum ssl_renegotiate_mode_t renegotiate_mode; /* verify_mode is a bitmask of |SSL_VERIFY_*| values. */ uint8_t verify_mode; /* server is true iff the this SSL* is the server half. Note: before the SSL* * is initialized by either SSL_set_accept_state or SSL_set_connect_state, * the side is not determined. In this state, server is always false. */ unsigned server:1; /* quiet_shutdown is true if the connection should not send a close_notify on * shutdown. */ unsigned quiet_shutdown:1; /* Enable signed certificate time stamps. Currently client only. */ unsigned signed_cert_timestamps_enabled:1; /* ocsp_stapling_enabled is only used by client connections and indicates * whether OCSP stapling will be requested. */ unsigned ocsp_stapling_enabled:1; /* tlsext_channel_id_enabled is copied from the |SSL_CTX|. For a server, * means that we'll accept Channel IDs from clients. For a client, means that * we'll advertise support. */ unsigned tlsext_channel_id_enabled:1; /* retain_only_sha256_of_client_certs is true if we should compute the SHA256 * hash of the peer's certificate and then discard it to save memory and * session space. Only effective on the server side. */ unsigned retain_only_sha256_of_client_certs:1; /* early_data_accepted is true if early data was accepted by the server. */ unsigned early_data_accepted:1; }; /* From draft-ietf-tls-tls13-18, used in determining PSK modes. */ #define SSL_PSK_KE 0x0 #define SSL_PSK_DHE_KE 0x1 /* From draft-ietf-tls-tls13-16, used in determining whether to respond with a * KeyUpdate. */ #define SSL_KEY_UPDATE_NOT_REQUESTED 0 #define SSL_KEY_UPDATE_REQUESTED 1 /* kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early * data that will be accepted. This value should be slightly below * kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext. */ static const size_t kMaxEarlyDataAccepted = 14336; CERT *ssl_cert_new(const SSL_X509_METHOD *x509_method); CERT *ssl_cert_dup(CERT *cert); void ssl_cert_clear_certs(CERT *c); void ssl_cert_free(CERT *c); int ssl_set_cert(CERT *cert, CRYPTO_BUFFER *buffer); int ssl_is_key_type_supported(int key_type); /* ssl_compare_public_and_private_key returns one if |pubkey| is the public * counterpart to |privkey|. Otherwise it returns zero and pushes a helpful * message on the error queue. */ int ssl_compare_public_and_private_key(const EVP_PKEY *pubkey, const EVP_PKEY *privkey); int ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey); int ssl_get_new_session(SSL_HANDSHAKE *hs, int is_server); int ssl_encrypt_ticket(SSL *ssl, CBB *out, const SSL_SESSION *session); /* ssl_session_new returns a newly-allocated blank |SSL_SESSION| or NULL on * error. */ SSL_SESSION *ssl_session_new(const SSL_X509_METHOD *x509_method); /* SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over * the parsed data. */ SSL_SESSION *SSL_SESSION_parse(CBS *cbs, const SSL_X509_METHOD *x509_method, CRYPTO_BUFFER_POOL *pool); /* ssl_session_is_context_valid returns one if |session|'s session ID context * matches the one set on |ssl| and zero otherwise. */ int ssl_session_is_context_valid(const SSL *ssl, const SSL_SESSION *session); /* ssl_session_is_time_valid returns one if |session| is still valid and zero if * it has expired. */ int ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session); /* ssl_session_is_resumable returns one if |session| is resumable for |hs| and * zero otherwise. */ int ssl_session_is_resumable(const SSL_HANDSHAKE *hs, const SSL_SESSION *session); /* SSL_SESSION_protocol_version returns the protocol version associated with * |session|. */ uint16_t SSL_SESSION_protocol_version(const SSL_SESSION *session); /* SSL_SESSION_get_digest returns the digest used in |session|. */ const EVP_MD *SSL_SESSION_get_digest(const SSL_SESSION *session); void ssl_set_session(SSL *ssl, SSL_SESSION *session); enum ssl_session_result_t { ssl_session_success, ssl_session_error, ssl_session_retry, ssl_session_ticket_retry, }; /* ssl_get_prev_session looks up the previous session based on |client_hello|. * On success, it sets |*out_session| to the session or NULL if none was found. * If the session could not be looked up synchronously, it returns * |ssl_session_retry| and should be called again. If a ticket could not be * decrypted immediately it returns |ssl_session_ticket_retry| and should also * be called again. Otherwise, it returns |ssl_session_error|. */ enum ssl_session_result_t ssl_get_prev_session( SSL *ssl, SSL_SESSION **out_session, int *out_tickets_supported, int *out_renew_ticket, const SSL_CLIENT_HELLO *client_hello); /* The following flags determine which parts of the session are duplicated. */ #define SSL_SESSION_DUP_AUTH_ONLY 0x0 #define SSL_SESSION_INCLUDE_TICKET 0x1 #define SSL_SESSION_INCLUDE_NONAUTH 0x2 #define SSL_SESSION_DUP_ALL \ (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH) /* SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the * fields in |session| or NULL on error. The new session is non-resumable and * must be explicitly marked resumable once it has been filled in. */ OPENSSL_EXPORT SSL_SESSION *SSL_SESSION_dup(SSL_SESSION *session, int dup_flags); /* ssl_session_rebase_time updates |session|'s start time to the current time, * adjusting the timeout so the expiration time is unchanged. */ void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session); /* ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews * |session|'s timeout to |timeout| (measured from the current time). The * renewal is clamped to the session's auth_timeout. */ void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session, uint32_t timeout); void ssl_cipher_preference_list_free( struct ssl_cipher_preference_list_st *cipher_list); /* ssl_get_cipher_preferences returns the cipher preference list for TLS 1.2 and * below. */ const struct ssl_cipher_preference_list_st *ssl_get_cipher_preferences( const SSL *ssl); void ssl_update_cache(SSL_HANDSHAKE *hs, int mode); int ssl3_get_finished(SSL_HANDSHAKE *hs); int ssl3_send_alert(SSL *ssl, int level, int desc); int ssl3_get_message(SSL *ssl); void ssl3_get_current_message(const SSL *ssl, CBS *out); void ssl3_release_current_message(SSL *ssl, int free_buffer); int ssl3_send_finished(SSL_HANDSHAKE *hs); int ssl3_dispatch_alert(SSL *ssl); int ssl3_read_app_data(SSL *ssl, int *out_got_handshake, uint8_t *buf, int len, int peek); int ssl3_read_change_cipher_spec(SSL *ssl); void ssl3_read_close_notify(SSL *ssl); int ssl3_read_handshake_bytes(SSL *ssl, uint8_t *buf, int len); int ssl3_write_app_data(SSL *ssl, int *out_needs_handshake, const uint8_t *buf, int len); int ssl3_output_cert_chain(SSL *ssl); int ssl3_new(SSL *ssl); void ssl3_free(SSL *ssl); int ssl3_accept(SSL_HANDSHAKE *hs); int ssl3_connect(SSL_HANDSHAKE *hs); int ssl3_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); int ssl3_finish_message(SSL *ssl, CBB *cbb, uint8_t **out_msg, size_t *out_len); int ssl3_add_message(SSL *ssl, uint8_t *msg, size_t len); int ssl3_add_change_cipher_spec(SSL *ssl); int ssl3_add_alert(SSL *ssl, uint8_t level, uint8_t desc); int ssl3_flush_flight(SSL *ssl); int dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); int dtls1_finish_message(SSL *ssl, CBB *cbb, uint8_t **out_msg, size_t *out_len); int dtls1_add_message(SSL *ssl, uint8_t *msg, size_t len); int dtls1_add_change_cipher_spec(SSL *ssl); int dtls1_add_alert(SSL *ssl, uint8_t level, uint8_t desc); int dtls1_flush_flight(SSL *ssl); /* ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to * the pending flight. It returns one on success and zero on error. */ int ssl_add_message_cbb(SSL *ssl, CBB *cbb); /* ssl_hash_current_message incorporates the current handshake message into the * handshake hash. It returns one on success and zero on allocation failure. */ int ssl_hash_current_message(SSL_HANDSHAKE *hs); /* dtls1_get_record reads a new input record. On success, it places it in * |ssl->s3->rrec| and returns one. Otherwise it returns <= 0 on error or if * more data is needed. */ int dtls1_get_record(SSL *ssl); int dtls1_read_app_data(SSL *ssl, int *out_got_handshake, uint8_t *buf, int len, int peek); int dtls1_read_change_cipher_spec(SSL *ssl); void dtls1_read_close_notify(SSL *ssl); int dtls1_write_app_data(SSL *ssl, int *out_needs_handshake, const uint8_t *buf, int len); /* dtls1_write_record sends a record. It returns one on success and <= 0 on * error. */ int dtls1_write_record(SSL *ssl, int type, const uint8_t *buf, size_t len, enum dtls1_use_epoch_t use_epoch); int dtls1_send_finished(SSL *ssl, int a, int b, const char *sender, int slen); int dtls1_retransmit_outgoing_messages(SSL *ssl); void dtls1_clear_record_buffer(SSL *ssl); int dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr, CBS *out_body); int dtls1_check_timeout_num(SSL *ssl); int dtls1_handshake_write(SSL *ssl); void dtls1_start_timer(SSL *ssl); void dtls1_stop_timer(SSL *ssl); int dtls1_is_timer_expired(SSL *ssl); void dtls1_double_timeout(SSL *ssl); unsigned int dtls1_min_mtu(void); int dtls1_new(SSL *ssl); int dtls1_accept(SSL *ssl); int dtls1_connect(SSL *ssl); void dtls1_free(SSL *ssl); int dtls1_get_message(SSL *ssl); void dtls1_get_current_message(const SSL *ssl, CBS *out); void dtls1_release_current_message(SSL *ssl, int free_buffer); int dtls1_dispatch_alert(SSL *ssl); int tls1_change_cipher_state(SSL_HANDSHAKE *hs, int which); int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out, const uint8_t *premaster, size_t premaster_len); /* tls1_get_grouplist sets |*out_group_ids| and |*out_group_ids_len| to the * locally-configured group preference list. */ void tls1_get_grouplist(SSL *ssl, const uint16_t **out_group_ids, size_t *out_group_ids_len); /* tls1_check_group_id returns one if |group_id| is consistent with * locally-configured group preferences. */ int tls1_check_group_id(SSL *ssl, uint16_t group_id); /* tls1_get_shared_group sets |*out_group_id| to the first preferred shared * group between client and server preferences and returns one. If none may be * found, it returns zero. */ int tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id); /* tls1_set_curves converts the array of |ncurves| NIDs pointed to by |curves| * into a newly allocated array of TLS group IDs. On success, the function * returns one and writes the array to |*out_group_ids| and its size to * |*out_group_ids_len|. Otherwise, it returns zero. */ int tls1_set_curves(uint16_t **out_group_ids, size_t *out_group_ids_len, const int *curves, size_t ncurves); /* tls1_set_curves_list converts the string of curves pointed to by |curves| * into a newly allocated array of TLS group IDs. On success, the function * returns one and writes the array to |*out_group_ids| and its size to * |*out_group_ids_len|. Otherwise, it returns zero. */ int tls1_set_curves_list(uint16_t **out_group_ids, size_t *out_group_ids_len, const char *curves); /* ssl_add_clienthello_tlsext writes ClientHello extensions to |out|. It * returns one on success and zero on failure. The |header_len| argument is the * length of the ClientHello written so far and is used to compute the padding * length. (It does not include the record header.) */ int ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, size_t header_len); int ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out); int ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs, const SSL_CLIENT_HELLO *client_hello); int ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs); #define tlsext_tick_md EVP_sha256 /* ssl_process_ticket processes a session ticket from the client. It returns * one of: * |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and * |*out_renew_ticket| is set to whether the ticket should be renewed. * |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a * fresh ticket should be sent, but the given ticket cannot be used. * |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted. * Retry later. * |ssl_ticket_aead_error|: an error occured that is fatal to the connection. */ enum ssl_ticket_aead_result_t ssl_process_ticket( SSL *ssl, SSL_SESSION **out_session, int *out_renew_ticket, const uint8_t *ticket, size_t ticket_len, const uint8_t *session_id, size_t session_id_len); /* tls1_verify_channel_id processes the current message as a Channel ID message, * and verifies the signature. If the key is valid, it saves the Channel ID and * returns one. Otherwise, it returns zero. */ int tls1_verify_channel_id(SSL_HANDSHAKE *hs); /* tls1_write_channel_id generates a Channel ID message and puts the output in * |cbb|. |ssl->tlsext_channel_id_private| must already be set before calling. * This function returns one on success and zero on error. */ int tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb); /* tls1_channel_id_hash computes the hash to be signed by Channel ID and writes * it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns * one on success and zero on failure. */ int tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len); int tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs); /* ssl_do_channel_id_callback checks runs |ssl->ctx->channel_id_cb| if * necessary. It returns one on success and zero on fatal error. Note that, on * success, |ssl->tlsext_channel_id_private| may be unset, in which case the * operation should be retried later. */ int ssl_do_channel_id_callback(SSL *ssl); /* ssl3_can_false_start returns one if |ssl| is allowed to False Start and zero * otherwise. */ int ssl3_can_false_start(const SSL *ssl); /* ssl_can_write returns one if |ssl| is allowed to write and zero otherwise. */ int ssl_can_write(const SSL *ssl); /* ssl_can_read returns one if |ssl| is allowed to read and zero otherwise. */ int ssl_can_read(const SSL *ssl); void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock); /* ssl_reset_error_state resets state for |SSL_get_error|. */ void ssl_reset_error_state(SSL *ssl); #if defined(__cplusplus) } /* extern C */ #endif #endif /* OPENSSL_HEADER_SSL_INTERNAL_H */