/*------------------------------------------------------------------------- * drawElements Quality Program Tester Core * ---------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Texture lookup simulator that is capable of verifying generic * lookup results based on accuracy parameters. *//*--------------------------------------------------------------------*/ #include "tcuTexLookupVerifier.hpp" #include "tcuTexVerifierUtil.hpp" #include "tcuVectorUtil.hpp" #include "tcuTextureUtil.hpp" #include "deMath.h" namespace tcu { using namespace TexVerifierUtil; // Generic utilities #if defined(DE_DEBUG) static bool isSamplerSupported (const Sampler& sampler) { return sampler.compare == Sampler::COMPAREMODE_NONE && isWrapModeSupported(sampler.wrapS) && isWrapModeSupported(sampler.wrapT) && isWrapModeSupported(sampler.wrapR); } #endif // DE_DEBUG // Color read & compare utilities static inline bool coordsInBounds (const ConstPixelBufferAccess& access, int x, int y, int z) { return de::inBounds(x, 0, access.getWidth()) && de::inBounds(y, 0, access.getHeight()) && de::inBounds(z, 0, access.getDepth()); } template inline Vector lookup (const ConstPixelBufferAccess& access, const Sampler& sampler, int i, int j, int k) { if (coordsInBounds(access, i, j, k)) return access.getPixelT(i, j, k); else return sampleTextureBorder(access.getFormat(), sampler); } template<> inline Vector lookup (const ConstPixelBufferAccess& access, const Sampler& sampler, int i, int j, int k) { // Specialization for float lookups: sRGB conversion is performed as specified in format. if (coordsInBounds(access, i, j, k)) { const Vec4 p = access.getPixel(i, j, k); return isSRGB(access.getFormat()) ? sRGBToLinear(p) : p; } else return sampleTextureBorder(access.getFormat(), sampler); } static inline bool isColorValid (const LookupPrecision& prec, const Vec4& ref, const Vec4& result) { const Vec4 diff = abs(ref - result); return boolAll(logicalOr(lessThanEqual(diff, prec.colorThreshold), logicalNot(prec.colorMask))); } static inline bool isColorValid (const IntLookupPrecision& prec, const IVec4& ref, const IVec4& result) { return boolAll(logicalOr(lessThanEqual(absDiff(ref, result).asUint(), prec.colorThreshold), logicalNot(prec.colorMask))); } static inline bool isColorValid (const IntLookupPrecision& prec, const UVec4& ref, const UVec4& result) { return boolAll(logicalOr(lessThanEqual(absDiff(ref, result), prec.colorThreshold), logicalNot(prec.colorMask))); } struct ColorQuad { Vec4 p00; //!< (0, 0) Vec4 p01; //!< (1, 0) Vec4 p10; //!< (0, 1) Vec4 p11; //!< (1, 1) }; static void lookupQuad (ColorQuad& dst, const ConstPixelBufferAccess& level, const Sampler& sampler, int x0, int x1, int y0, int y1, int z) { dst.p00 = lookup(level, sampler, x0, y0, z); dst.p10 = lookup(level, sampler, x1, y0, z); dst.p01 = lookup(level, sampler, x0, y1, z); dst.p11 = lookup(level, sampler, x1, y1, z); } struct ColorLine { Vec4 p0; //!< 0 Vec4 p1; //!< 1 }; static void lookupLine (ColorLine& dst, const ConstPixelBufferAccess& level, const Sampler& sampler, int x0, int x1, int y) { dst.p0 = lookup(level, sampler, x0, y, 0); dst.p1 = lookup(level, sampler, x1, y, 0); } template static T minComp (const Vector& vec) { T minVal = vec[0]; for (int ndx = 1; ndx < Size; ndx++) minVal = de::min(minVal, vec[ndx]); return minVal; } template static T maxComp (const Vector& vec) { T maxVal = vec[0]; for (int ndx = 1; ndx < Size; ndx++) maxVal = de::max(maxVal, vec[ndx]); return maxVal; } static float computeBilinearSearchStepFromFloatLine (const LookupPrecision& prec, const ColorLine& line) { DE_ASSERT(boolAll(greaterThan(prec.colorThreshold, Vec4(0.0f)))); const int maxSteps = 1<<16; const Vec4 d = abs(line.p1 - line.p0); const Vec4 stepCount = d / prec.colorThreshold; const Vec4 minStep = 1.0f / (stepCount + 1.0f); const float step = de::max(minComp(minStep), 1.0f / float(maxSteps)); return step; } static float computeBilinearSearchStepFromFloatQuad (const LookupPrecision& prec, const ColorQuad& quad) { DE_ASSERT(boolAll(greaterThan(prec.colorThreshold, Vec4(0.0f)))); const int maxSteps = 1<<16; const Vec4 d0 = abs(quad.p10 - quad.p00); const Vec4 d1 = abs(quad.p01 - quad.p00); const Vec4 d2 = abs(quad.p11 - quad.p10); const Vec4 d3 = abs(quad.p11 - quad.p01); const Vec4 maxD = max(d0, max(d1, max(d2, d3))); const Vec4 stepCount = maxD / prec.colorThreshold; const Vec4 minStep = 1.0f / (stepCount + 1.0f); const float step = de::max(minComp(minStep), 1.0f / float(maxSteps)); return step; } static float computeBilinearSearchStepForUnorm (const LookupPrecision& prec) { DE_ASSERT(boolAll(greaterThan(prec.colorThreshold, Vec4(0.0f)))); const Vec4 stepCount = 1.0f / prec.colorThreshold; const Vec4 minStep = 1.0f / (stepCount + 1.0f); const float step = minComp(minStep); return step; } static float computeBilinearSearchStepForSnorm (const LookupPrecision& prec) { DE_ASSERT(boolAll(greaterThan(prec.colorThreshold, Vec4(0.0f)))); const Vec4 stepCount = 2.0f / prec.colorThreshold; const Vec4 minStep = 1.0f / (stepCount + 1.0f); const float step = minComp(minStep); return step; } static inline Vec4 min (const ColorLine& line) { return min(line.p0, line.p1); } static inline Vec4 max (const ColorLine& line) { return max(line.p0, line.p1); } static inline Vec4 min (const ColorQuad& quad) { return min(quad.p00, min(quad.p10, min(quad.p01, quad.p11))); } static inline Vec4 max (const ColorQuad& quad) { return max(quad.p00, max(quad.p10, max(quad.p01, quad.p11))); } static bool isInColorBounds (const LookupPrecision& prec, const ColorQuad& quad, const Vec4& result) { const tcu::Vec4 minVal = min(quad) - prec.colorThreshold; const tcu::Vec4 maxVal = max(quad) + prec.colorThreshold; return boolAll(logicalOr(logicalAnd(greaterThanEqual(result, minVal), lessThanEqual(result, maxVal)), logicalNot(prec.colorMask))); } static bool isInColorBounds (const LookupPrecision& prec, const ColorQuad& quad0, const ColorQuad& quad1, const Vec4& result) { const tcu::Vec4 minVal = min(min(quad0), min(quad1)) - prec.colorThreshold; const tcu::Vec4 maxVal = max(max(quad0), max(quad1)) + prec.colorThreshold; return boolAll(logicalOr(logicalAnd(greaterThanEqual(result, minVal), lessThanEqual(result, maxVal)), logicalNot(prec.colorMask))); } static bool isInColorBounds (const LookupPrecision& prec, const ColorLine& line0, const ColorLine& line1, const Vec4& result) { const tcu::Vec4 minVal = min(min(line0), min(line1)) - prec.colorThreshold; const tcu::Vec4 maxVal = max(max(line0), max(line1)) + prec.colorThreshold; return boolAll(logicalOr(logicalAnd(greaterThanEqual(result, minVal), lessThanEqual(result, maxVal)), logicalNot(prec.colorMask))); } static bool isInColorBounds (const LookupPrecision& prec, const ColorQuad& quad00, const ColorQuad& quad01, const ColorQuad& quad10, const ColorQuad& quad11, const Vec4& result) { const tcu::Vec4 minVal = min(min(quad00), min(min(quad01), min(min(quad10), min(quad11)))) - prec.colorThreshold; const tcu::Vec4 maxVal = max(max(quad00), max(max(quad01), max(max(quad10), max(quad11)))) + prec.colorThreshold; return boolAll(logicalOr(logicalAnd(greaterThanEqual(result, minVal), lessThanEqual(result, maxVal)), logicalNot(prec.colorMask))); } // Range search utilities static bool isLinearRangeValid (const LookupPrecision& prec, const Vec4& c0, const Vec4& c1, const Vec2& fBounds, const Vec4& result) { // This is basically line segment - AABB test. Valid interpolation line is checked // against result AABB constructed by applying threshold. const Vec4 i0 = c0*(1.0f - fBounds[0]) + c1*fBounds[0]; const Vec4 i1 = c0*(1.0f - fBounds[1]) + c1*fBounds[1]; const Vec4 rMin = result - prec.colorThreshold; const Vec4 rMax = result + prec.colorThreshold; bool allIntersect = true; // Algorithm: For each component check whether segment endpoints are inside, or intersect with slab. // If all intersect or are inside, line segment intersects the whole 4D AABB. for (int compNdx = 0; compNdx < 4; compNdx++) { if (!prec.colorMask[compNdx]) continue; // Signs for both bounds: false = left, true = right. const bool sMin0 = i0[compNdx] >= rMin[compNdx]; const bool sMin1 = i1[compNdx] >= rMin[compNdx]; const bool sMax0 = i0[compNdx] > rMax[compNdx]; const bool sMax1 = i1[compNdx] > rMax[compNdx]; // If all signs are equal, line segment is outside bounds. if (sMin0 == sMin1 && sMin1 == sMax0 && sMax0 == sMax1) { allIntersect = false; break; } } return allIntersect; } static bool isBilinearRangeValid (const LookupPrecision& prec, const ColorQuad& quad, const Vec2& xBounds, const Vec2& yBounds, const float searchStep, const Vec4& result) { DE_ASSERT(xBounds.x() <= xBounds.y()); DE_ASSERT(yBounds.x() <= yBounds.y()); DE_ASSERT(xBounds.x() + searchStep > xBounds.x()); // step is not effectively 0 DE_ASSERT(xBounds.y() + searchStep > xBounds.y()); if (!isInColorBounds(prec, quad, result)) return false; for (float x = xBounds.x(); x < xBounds.y()+searchStep; x += searchStep) { const float a = de::min(x, xBounds.y()); const Vec4 c0 = quad.p00*(1.0f - a) + quad.p10*a; const Vec4 c1 = quad.p01*(1.0f - a) + quad.p11*a; if (isLinearRangeValid(prec, c0, c1, yBounds, result)) return true; } return false; } static bool isTrilinearRangeValid (const LookupPrecision& prec, const ColorQuad& quad0, const ColorQuad& quad1, const Vec2& xBounds, const Vec2& yBounds, const Vec2& zBounds, const float searchStep, const Vec4& result) { DE_ASSERT(xBounds.x() <= xBounds.y()); DE_ASSERT(yBounds.x() <= yBounds.y()); DE_ASSERT(zBounds.x() <= zBounds.y()); DE_ASSERT(xBounds.x() + searchStep > xBounds.x()); // step is not effectively 0 DE_ASSERT(xBounds.y() + searchStep > xBounds.y()); DE_ASSERT(yBounds.x() + searchStep > yBounds.x()); DE_ASSERT(yBounds.y() + searchStep > yBounds.y()); if (!isInColorBounds(prec, quad0, quad1, result)) return false; for (float x = xBounds.x(); x < xBounds.y()+searchStep; x += searchStep) { for (float y = yBounds.x(); y < yBounds.y()+searchStep; y += searchStep) { const float a = de::min(x, xBounds.y()); const float b = de::min(y, yBounds.y()); const Vec4 c0 = quad0.p00*(1.0f-a)*(1.0f-b) + quad0.p10*a*(1.0f-b) + quad0.p01*(1.0f-a)*b + quad0.p11*a*b; const Vec4 c1 = quad1.p00*(1.0f-a)*(1.0f-b) + quad1.p10*a*(1.0f-b) + quad1.p01*(1.0f-a)*b + quad1.p11*a*b; if (isLinearRangeValid(prec, c0, c1, zBounds, result)) return true; } } return false; } static bool is1DTrilinearFilterResultValid (const LookupPrecision& prec, const ColorLine& line0, const ColorLine& line1, const Vec2& xBounds0, const Vec2& xBounds1, const Vec2& zBounds, const float searchStep, const Vec4& result) { DE_ASSERT(xBounds0.x() <= xBounds0.y()); DE_ASSERT(xBounds1.x() <= xBounds1.y()); DE_ASSERT(xBounds0.x() + searchStep > xBounds0.x()); // step is not effectively 0 DE_ASSERT(xBounds0.y() + searchStep > xBounds0.y()); DE_ASSERT(xBounds1.x() + searchStep > xBounds1.x()); DE_ASSERT(xBounds1.y() + searchStep > xBounds1.y()); if (!isInColorBounds(prec, line0, line1, result)) return false; for (float x0 = xBounds0.x(); x0 < xBounds0.y()+searchStep; x0 += searchStep) { const float a0 = de::min(x0, xBounds0.y()); const Vec4 c0 = line0.p0*(1.0f-a0) + line0.p1*a0; for (float x1 = xBounds1.x(); x1 <= xBounds1.y(); x1 += searchStep) { const float a1 = de::min(x1, xBounds1.y()); const Vec4 c1 = line1.p0*(1.0f-a1) + line1.p1*a1; if (isLinearRangeValid(prec, c0, c1, zBounds, result)) return true; } } return false; } static bool is2DTrilinearFilterResultValid (const LookupPrecision& prec, const ColorQuad& quad0, const ColorQuad& quad1, const Vec2& xBounds0, const Vec2& yBounds0, const Vec2& xBounds1, const Vec2& yBounds1, const Vec2& zBounds, const float searchStep, const Vec4& result) { DE_ASSERT(xBounds0.x() <= xBounds0.y()); DE_ASSERT(yBounds0.x() <= yBounds0.y()); DE_ASSERT(xBounds1.x() <= xBounds1.y()); DE_ASSERT(yBounds1.x() <= yBounds1.y()); DE_ASSERT(xBounds0.x() + searchStep > xBounds0.x()); // step is not effectively 0 DE_ASSERT(xBounds0.y() + searchStep > xBounds0.y()); DE_ASSERT(yBounds0.x() + searchStep > yBounds0.x()); DE_ASSERT(yBounds0.y() + searchStep > yBounds0.y()); DE_ASSERT(xBounds1.x() + searchStep > xBounds1.x()); DE_ASSERT(xBounds1.y() + searchStep > xBounds1.y()); DE_ASSERT(yBounds1.x() + searchStep > yBounds1.x()); DE_ASSERT(yBounds1.y() + searchStep > yBounds1.y()); if (!isInColorBounds(prec, quad0, quad1, result)) return false; for (float x0 = xBounds0.x(); x0 < xBounds0.y()+searchStep; x0 += searchStep) { for (float y0 = yBounds0.x(); y0 < yBounds0.y()+searchStep; y0 += searchStep) { const float a0 = de::min(x0, xBounds0.y()); const float b0 = de::min(y0, yBounds0.y()); const Vec4 c0 = quad0.p00*(1.0f-a0)*(1.0f-b0) + quad0.p10*a0*(1.0f-b0) + quad0.p01*(1.0f-a0)*b0 + quad0.p11*a0*b0; for (float x1 = xBounds1.x(); x1 <= xBounds1.y(); x1 += searchStep) { for (float y1 = yBounds1.x(); y1 <= yBounds1.y(); y1 += searchStep) { const float a1 = de::min(x1, xBounds1.y()); const float b1 = de::min(y1, yBounds1.y()); const Vec4 c1 = quad1.p00*(1.0f-a1)*(1.0f-b1) + quad1.p10*a1*(1.0f-b1) + quad1.p01*(1.0f-a1)*b1 + quad1.p11*a1*b1; if (isLinearRangeValid(prec, c0, c1, zBounds, result)) return true; } } } } return false; } static bool is3DTrilinearFilterResultValid (const LookupPrecision& prec, const ColorQuad& quad00, const ColorQuad& quad01, const ColorQuad& quad10, const ColorQuad& quad11, const Vec2& xBounds0, const Vec2& yBounds0, const Vec2& zBounds0, const Vec2& xBounds1, const Vec2& yBounds1, const Vec2& zBounds1, const Vec2& wBounds, const float searchStep, const Vec4& result) { DE_ASSERT(xBounds0.x() <= xBounds0.y()); DE_ASSERT(yBounds0.x() <= yBounds0.y()); DE_ASSERT(zBounds0.x() <= zBounds0.y()); DE_ASSERT(xBounds1.x() <= xBounds1.y()); DE_ASSERT(yBounds1.x() <= yBounds1.y()); DE_ASSERT(zBounds1.x() <= zBounds1.y()); DE_ASSERT(xBounds0.x() + searchStep > xBounds0.x()); // step is not effectively 0 DE_ASSERT(xBounds0.y() + searchStep > xBounds0.y()); DE_ASSERT(yBounds0.x() + searchStep > yBounds0.x()); DE_ASSERT(yBounds0.y() + searchStep > yBounds0.y()); DE_ASSERT(zBounds0.x() + searchStep > zBounds0.x()); DE_ASSERT(zBounds0.y() + searchStep > zBounds0.y()); DE_ASSERT(xBounds1.x() + searchStep > xBounds1.x()); DE_ASSERT(xBounds1.y() + searchStep > xBounds1.y()); DE_ASSERT(yBounds1.x() + searchStep > yBounds1.x()); DE_ASSERT(yBounds1.y() + searchStep > yBounds1.y()); DE_ASSERT(zBounds1.x() + searchStep > zBounds1.x()); DE_ASSERT(zBounds1.y() + searchStep > zBounds1.y()); if (!isInColorBounds(prec, quad00, quad01, quad10, quad11, result)) return false; for (float x0 = xBounds0.x(); x0 < xBounds0.y()+searchStep; x0 += searchStep) { for (float y0 = yBounds0.x(); y0 < yBounds0.y()+searchStep; y0 += searchStep) { const float a0 = de::min(x0, xBounds0.y()); const float b0 = de::min(y0, yBounds0.y()); const Vec4 c00 = quad00.p00*(1.0f-a0)*(1.0f-b0) + quad00.p10*a0*(1.0f-b0) + quad00.p01*(1.0f-a0)*b0 + quad00.p11*a0*b0; const Vec4 c01 = quad01.p00*(1.0f-a0)*(1.0f-b0) + quad01.p10*a0*(1.0f-b0) + quad01.p01*(1.0f-a0)*b0 + quad01.p11*a0*b0; for (float z0 = zBounds0.x(); z0 < zBounds0.y()+searchStep; z0 += searchStep) { const float c0 = de::min(z0, zBounds0.y()); const Vec4 cz0 = c00*(1.0f-c0) + c01*c0; for (float x1 = xBounds1.x(); x1 < xBounds1.y()+searchStep; x1 += searchStep) { for (float y1 = yBounds1.x(); y1 < yBounds1.y()+searchStep; y1 += searchStep) { const float a1 = de::min(x1, xBounds1.y()); const float b1 = de::min(y1, yBounds1.y()); const Vec4 c10 = quad10.p00*(1.0f-a1)*(1.0f-b1) + quad10.p10*a1*(1.0f-b1) + quad10.p01*(1.0f-a1)*b1 + quad10.p11*a1*b1; const Vec4 c11 = quad11.p00*(1.0f-a1)*(1.0f-b1) + quad11.p10*a1*(1.0f-b1) + quad11.p01*(1.0f-a1)*b1 + quad11.p11*a1*b1; for (float z1 = zBounds1.x(); z1 < zBounds1.y()+searchStep; z1 += searchStep) { const float c1 = de::min(z1, zBounds1.y()); const Vec4 cz1 = c10*(1.0f - c1) + c11*c1; if (isLinearRangeValid(prec, cz0, cz1, wBounds, result)) return true; } } } } } } return false; } template static bool isNearestSampleResultValid (const ConstPixelBufferAccess& level, const Sampler& sampler, const PrecType& prec, const float coordX, const int coordY, const Vector& result) { DE_ASSERT(level.getDepth() == 1); const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coordX, prec.coordBits.x(), prec.uvwBits.x()); const int minI = deFloorFloatToInt32(uBounds.x()); const int maxI = deFloorFloatToInt32(uBounds.y()); for (int i = minI; i <= maxI; i++) { const int x = wrap(sampler.wrapS, i, level.getWidth()); const Vector color = lookup(level, sampler, x, coordY, 0); if (isColorValid(prec, color, result)) return true; } return false; } template static bool isNearestSampleResultValid (const ConstPixelBufferAccess& level, const Sampler& sampler, const PrecType& prec, const Vec2& coord, const int coordZ, const Vector& result) { const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coord.x(), prec.coordBits.x(), prec.uvwBits.x()); const Vec2 vBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getHeight(), coord.y(), prec.coordBits.y(), prec.uvwBits.y()); // Integer coordinates - without wrap mode const int minI = deFloorFloatToInt32(uBounds.x()); const int maxI = deFloorFloatToInt32(uBounds.y()); const int minJ = deFloorFloatToInt32(vBounds.x()); const int maxJ = deFloorFloatToInt32(vBounds.y()); // \todo [2013-07-03 pyry] This could be optimized by first computing ranges based on wrap mode. for (int j = minJ; j <= maxJ; j++) { for (int i = minI; i <= maxI; i++) { const int x = wrap(sampler.wrapS, i, level.getWidth()); const int y = wrap(sampler.wrapT, j, level.getHeight()); const Vector color = lookup(level, sampler, x, y, coordZ); if (isColorValid(prec, color, result)) return true; } } return false; } template static bool isNearestSampleResultValid (const ConstPixelBufferAccess& level, const Sampler& sampler, const PrecType& prec, const Vec3& coord, const Vector& result) { const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coord.x(), prec.coordBits.x(), prec.uvwBits.x()); const Vec2 vBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getHeight(), coord.y(), prec.coordBits.y(), prec.uvwBits.y()); const Vec2 wBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getDepth(), coord.z(), prec.coordBits.z(), prec.uvwBits.z()); // Integer coordinates - without wrap mode const int minI = deFloorFloatToInt32(uBounds.x()); const int maxI = deFloorFloatToInt32(uBounds.y()); const int minJ = deFloorFloatToInt32(vBounds.x()); const int maxJ = deFloorFloatToInt32(vBounds.y()); const int minK = deFloorFloatToInt32(wBounds.x()); const int maxK = deFloorFloatToInt32(wBounds.y()); // \todo [2013-07-03 pyry] This could be optimized by first computing ranges based on wrap mode. for (int k = minK; k <= maxK; k++) { for (int j = minJ; j <= maxJ; j++) { for (int i = minI; i <= maxI; i++) { const int x = wrap(sampler.wrapS, i, level.getWidth()); const int y = wrap(sampler.wrapT, j, level.getHeight()); const int z = wrap(sampler.wrapR, k, level.getDepth()); const Vector color = lookup(level, sampler, x, y, z); if (isColorValid(prec, color, result)) return true; } } } return false; } bool isLinearSampleResultValid (const ConstPixelBufferAccess& level, const Sampler& sampler, const LookupPrecision& prec, const float coordX, const int coordY, const Vec4& result) { const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coordX, prec.coordBits.x(), prec.uvwBits.x()); const int minI = deFloorFloatToInt32(uBounds.x()-0.5f); const int maxI = deFloorFloatToInt32(uBounds.y()-0.5f); const int w = level.getWidth(); const TextureFormat format = level.getFormat(); const TextureChannelClass texClass = getTextureChannelClass(format.type); DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_FLOATING_POINT); DE_UNREF(texClass); DE_UNREF(format); for (int i = minI; i <= maxI; i++) { // Wrapped coordinates const int x0 = wrap(sampler.wrapS, i , w); const int x1 = wrap(sampler.wrapS, i+1, w); // Bounds for filtering factors const float minA = de::clamp((uBounds.x()-0.5f)-float(i), 0.0f, 1.0f); const float maxA = de::clamp((uBounds.y()-0.5f)-float(i), 0.0f, 1.0f); const Vec4 colorA = lookup(level, sampler, x0, coordY, 0); const Vec4 colorB = lookup(level, sampler, x1, coordY, 0); if (isLinearRangeValid(prec, colorA, colorB, Vec2(minA, maxA), result)) return true; } return false; } bool isLinearSampleResultValid (const ConstPixelBufferAccess& level, const Sampler& sampler, const LookupPrecision& prec, const Vec2& coord, const int coordZ, const Vec4& result) { const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coord.x(), prec.coordBits.x(), prec.uvwBits.x()); const Vec2 vBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getHeight(), coord.y(), prec.coordBits.y(), prec.uvwBits.y()); // Integer coordinate bounds for (x0,y0) - without wrap mode const int minI = deFloorFloatToInt32(uBounds.x()-0.5f); const int maxI = deFloorFloatToInt32(uBounds.y()-0.5f); const int minJ = deFloorFloatToInt32(vBounds.x()-0.5f); const int maxJ = deFloorFloatToInt32(vBounds.y()-0.5f); const int w = level.getWidth(); const int h = level.getHeight(); const TextureChannelClass texClass = getTextureChannelClass(level.getFormat().type); float searchStep = texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ? computeBilinearSearchStepForUnorm(prec) : texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ? computeBilinearSearchStepForSnorm(prec) : 0.0f; // Step is computed for floating-point quads based on texel values. DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_FLOATING_POINT); // \todo [2013-07-03 pyry] This could be optimized by first computing ranges based on wrap mode. for (int j = minJ; j <= maxJ; j++) { for (int i = minI; i <= maxI; i++) { // Wrapped coordinates const int x0 = wrap(sampler.wrapS, i , w); const int x1 = wrap(sampler.wrapS, i+1, w); const int y0 = wrap(sampler.wrapT, j , h); const int y1 = wrap(sampler.wrapT, j+1, h); // Bounds for filtering factors const float minA = de::clamp((uBounds.x()-0.5f)-float(i), 0.0f, 1.0f); const float maxA = de::clamp((uBounds.y()-0.5f)-float(i), 0.0f, 1.0f); const float minB = de::clamp((vBounds.x()-0.5f)-float(j), 0.0f, 1.0f); const float maxB = de::clamp((vBounds.y()-0.5f)-float(j), 0.0f, 1.0f); ColorQuad quad; lookupQuad(quad, level, sampler, x0, x1, y0, y1, coordZ); if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) searchStep = computeBilinearSearchStepFromFloatQuad(prec, quad); if (isBilinearRangeValid(prec, quad, Vec2(minA, maxA), Vec2(minB, maxB), searchStep, result)) return true; } } return false; } static bool isLinearSampleResultValid (const ConstPixelBufferAccess& level, const Sampler& sampler, const LookupPrecision& prec, const Vec3& coord, const Vec4& result) { const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coord.x(), prec.coordBits.x(), prec.uvwBits.x()); const Vec2 vBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getHeight(), coord.y(), prec.coordBits.y(), prec.uvwBits.y()); const Vec2 wBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getDepth(), coord.z(), prec.coordBits.z(), prec.uvwBits.z()); // Integer coordinate bounds for (x0,y0) - without wrap mode const int minI = deFloorFloatToInt32(uBounds.x()-0.5f); const int maxI = deFloorFloatToInt32(uBounds.y()-0.5f); const int minJ = deFloorFloatToInt32(vBounds.x()-0.5f); const int maxJ = deFloorFloatToInt32(vBounds.y()-0.5f); const int minK = deFloorFloatToInt32(wBounds.x()-0.5f); const int maxK = deFloorFloatToInt32(wBounds.y()-0.5f); const int w = level.getWidth(); const int h = level.getHeight(); const int d = level.getDepth(); const TextureChannelClass texClass = getTextureChannelClass(level.getFormat().type); float searchStep = texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ? computeBilinearSearchStepForUnorm(prec) : texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ? computeBilinearSearchStepForSnorm(prec) : 0.0f; // Step is computed for floating-point quads based on texel values. DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_FLOATING_POINT); // \todo [2013-07-03 pyry] This could be optimized by first computing ranges based on wrap mode. for (int k = minK; k <= maxK; k++) { for (int j = minJ; j <= maxJ; j++) { for (int i = minI; i <= maxI; i++) { // Wrapped coordinates const int x0 = wrap(sampler.wrapS, i , w); const int x1 = wrap(sampler.wrapS, i+1, w); const int y0 = wrap(sampler.wrapT, j , h); const int y1 = wrap(sampler.wrapT, j+1, h); const int z0 = wrap(sampler.wrapR, k , d); const int z1 = wrap(sampler.wrapR, k+1, d); // Bounds for filtering factors const float minA = de::clamp((uBounds.x()-0.5f)-float(i), 0.0f, 1.0f); const float maxA = de::clamp((uBounds.y()-0.5f)-float(i), 0.0f, 1.0f); const float minB = de::clamp((vBounds.x()-0.5f)-float(j), 0.0f, 1.0f); const float maxB = de::clamp((vBounds.y()-0.5f)-float(j), 0.0f, 1.0f); const float minC = de::clamp((wBounds.x()-0.5f)-float(k), 0.0f, 1.0f); const float maxC = de::clamp((wBounds.y()-0.5f)-float(k), 0.0f, 1.0f); ColorQuad quad0, quad1; lookupQuad(quad0, level, sampler, x0, x1, y0, y1, z0); lookupQuad(quad1, level, sampler, x0, x1, y0, y1, z1); if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) searchStep = de::min(computeBilinearSearchStepFromFloatQuad(prec, quad0), computeBilinearSearchStepFromFloatQuad(prec, quad1)); if (isTrilinearRangeValid(prec, quad0, quad1, Vec2(minA, maxA), Vec2(minB, maxB), Vec2(minC, maxC), searchStep, result)) return true; } } } return false; } static bool isNearestMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, const ConstPixelBufferAccess& level1, const Sampler& sampler, const LookupPrecision& prec, const float coord, const int coordY, const Vec2& fBounds, const Vec4& result) { const int w0 = level0.getWidth(); const int w1 = level1.getWidth(); const Vec2 uBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0, coord, prec.coordBits.x(), prec.uvwBits.x()); const Vec2 uBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1, coord, prec.coordBits.x(), prec.uvwBits.x()); // Integer coordinates - without wrap mode const int minI0 = deFloorFloatToInt32(uBounds0.x()); const int maxI0 = deFloorFloatToInt32(uBounds0.y()); const int minI1 = deFloorFloatToInt32(uBounds1.x()); const int maxI1 = deFloorFloatToInt32(uBounds1.y()); for (int i0 = minI0; i0 <= maxI0; i0++) { for (int i1 = minI1; i1 <= maxI1; i1++) { const Vec4 c0 = lookup(level0, sampler, wrap(sampler.wrapS, i0, w0), coordY, 0); const Vec4 c1 = lookup(level1, sampler, wrap(sampler.wrapS, i1, w1), coordY, 0); if (isLinearRangeValid(prec, c0, c1, fBounds, result)) return true; } } return false; } static bool isNearestMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, const ConstPixelBufferAccess& level1, const Sampler& sampler, const LookupPrecision& prec, const Vec2& coord, const int coordZ, const Vec2& fBounds, const Vec4& result) { const int w0 = level0.getWidth(); const int w1 = level1.getWidth(); const int h0 = level0.getHeight(); const int h1 = level1.getHeight(); const Vec2 uBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); const Vec2 uBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); const Vec2 vBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h0, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); const Vec2 vBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h1, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); // Integer coordinates - without wrap mode const int minI0 = deFloorFloatToInt32(uBounds0.x()); const int maxI0 = deFloorFloatToInt32(uBounds0.y()); const int minI1 = deFloorFloatToInt32(uBounds1.x()); const int maxI1 = deFloorFloatToInt32(uBounds1.y()); const int minJ0 = deFloorFloatToInt32(vBounds0.x()); const int maxJ0 = deFloorFloatToInt32(vBounds0.y()); const int minJ1 = deFloorFloatToInt32(vBounds1.x()); const int maxJ1 = deFloorFloatToInt32(vBounds1.y()); for (int j0 = minJ0; j0 <= maxJ0; j0++) { for (int i0 = minI0; i0 <= maxI0; i0++) { for (int j1 = minJ1; j1 <= maxJ1; j1++) { for (int i1 = minI1; i1 <= maxI1; i1++) { const Vec4 c0 = lookup(level0, sampler, wrap(sampler.wrapS, i0, w0), wrap(sampler.wrapT, j0, h0), coordZ); const Vec4 c1 = lookup(level1, sampler, wrap(sampler.wrapS, i1, w1), wrap(sampler.wrapT, j1, h1), coordZ); if (isLinearRangeValid(prec, c0, c1, fBounds, result)) return true; } } } } return false; } static bool isNearestMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, const ConstPixelBufferAccess& level1, const Sampler& sampler, const LookupPrecision& prec, const Vec3& coord, const Vec2& fBounds, const Vec4& result) { const int w0 = level0.getWidth(); const int w1 = level1.getWidth(); const int h0 = level0.getHeight(); const int h1 = level1.getHeight(); const int d0 = level0.getDepth(); const int d1 = level1.getDepth(); const Vec2 uBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); const Vec2 uBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); const Vec2 vBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h0, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); const Vec2 vBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h1, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); const Vec2 wBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, d0, coord.z(), prec.coordBits.z(), prec.uvwBits.z()); const Vec2 wBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, d1, coord.z(), prec.coordBits.z(), prec.uvwBits.z()); // Integer coordinates - without wrap mode const int minI0 = deFloorFloatToInt32(uBounds0.x()); const int maxI0 = deFloorFloatToInt32(uBounds0.y()); const int minI1 = deFloorFloatToInt32(uBounds1.x()); const int maxI1 = deFloorFloatToInt32(uBounds1.y()); const int minJ0 = deFloorFloatToInt32(vBounds0.x()); const int maxJ0 = deFloorFloatToInt32(vBounds0.y()); const int minJ1 = deFloorFloatToInt32(vBounds1.x()); const int maxJ1 = deFloorFloatToInt32(vBounds1.y()); const int minK0 = deFloorFloatToInt32(wBounds0.x()); const int maxK0 = deFloorFloatToInt32(wBounds0.y()); const int minK1 = deFloorFloatToInt32(wBounds1.x()); const int maxK1 = deFloorFloatToInt32(wBounds1.y()); for (int k0 = minK0; k0 <= maxK0; k0++) { for (int j0 = minJ0; j0 <= maxJ0; j0++) { for (int i0 = minI0; i0 <= maxI0; i0++) { for (int k1 = minK1; k1 <= maxK1; k1++) { for (int j1 = minJ1; j1 <= maxJ1; j1++) { for (int i1 = minI1; i1 <= maxI1; i1++) { const Vec4 c0 = lookup(level0, sampler, wrap(sampler.wrapS, i0, w0), wrap(sampler.wrapT, j0, h0), wrap(sampler.wrapR, k0, d0)); const Vec4 c1 = lookup(level1, sampler, wrap(sampler.wrapS, i1, w1), wrap(sampler.wrapT, j1, h1), wrap(sampler.wrapR, k1, d1)); if (isLinearRangeValid(prec, c0, c1, fBounds, result)) return true; } } } } } } return false; } static bool isLinearMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, const ConstPixelBufferAccess& level1, const Sampler& sampler, const LookupPrecision& prec, const float coordX, const int coordY, const Vec2& fBounds, const Vec4& result) { // \todo [2013-07-04 pyry] This is strictly not correct as coordinates between levels should be dependent. // Right now this allows pairing any two valid bilinear quads. const int w0 = level0.getWidth(); const int w1 = level1.getWidth(); const Vec2 uBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0, coordX, prec.coordBits.x(), prec.uvwBits.x()); const Vec2 uBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1, coordX, prec.coordBits.x(), prec.uvwBits.x()); // Integer coordinates - without wrap mode const int minI0 = deFloorFloatToInt32(uBounds0.x()-0.5f); const int maxI0 = deFloorFloatToInt32(uBounds0.y()-0.5f); const int minI1 = deFloorFloatToInt32(uBounds1.x()-0.5f); const int maxI1 = deFloorFloatToInt32(uBounds1.y()-0.5f); const TextureChannelClass texClass = getTextureChannelClass(level0.getFormat().type); const float cSearchStep = texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ? computeBilinearSearchStepForUnorm(prec) : texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ? computeBilinearSearchStepForSnorm(prec) : 0.0f; // Step is computed for floating-point quads based on texel values. DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_FLOATING_POINT); for (int i0 = minI0; i0 <= maxI0; i0++) { ColorLine line0; float searchStep0; { const int x0 = wrap(sampler.wrapS, i0 , w0); const int x1 = wrap(sampler.wrapS, i0+1, w0); lookupLine(line0, level0, sampler, x0, x1, coordY); if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) searchStep0 = computeBilinearSearchStepFromFloatLine(prec, line0); else searchStep0 = cSearchStep; } const float minA0 = de::clamp((uBounds0.x()-0.5f)-float(i0), 0.0f, 1.0f); const float maxA0 = de::clamp((uBounds0.y()-0.5f)-float(i0), 0.0f, 1.0f); for (int i1 = minI1; i1 <= maxI1; i1++) { ColorLine line1; float searchStep1; { const int x0 = wrap(sampler.wrapS, i1 , w1); const int x1 = wrap(sampler.wrapS, i1+1, w1); lookupLine(line1, level1, sampler, x0, x1, coordY); if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) searchStep1 = computeBilinearSearchStepFromFloatLine(prec, line1); else searchStep1 = cSearchStep; } const float minA1 = de::clamp((uBounds1.x()-0.5f)-float(i1), 0.0f, 1.0f); const float maxA1 = de::clamp((uBounds1.y()-0.5f)-float(i1), 0.0f, 1.0f); if (is1DTrilinearFilterResultValid(prec, line0, line1, Vec2(minA0, maxA0), Vec2(minA1, maxA1), fBounds, de::min(searchStep0, searchStep1), result)) return true; } } return false; } static bool isLinearMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, const ConstPixelBufferAccess& level1, const Sampler& sampler, const LookupPrecision& prec, const Vec2& coord, const int coordZ, const Vec2& fBounds, const Vec4& result) { // \todo [2013-07-04 pyry] This is strictly not correct as coordinates between levels should be dependent. // Right now this allows pairing any two valid bilinear quads. const int w0 = level0.getWidth(); const int w1 = level1.getWidth(); const int h0 = level0.getHeight(); const int h1 = level1.getHeight(); const Vec2 uBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); const Vec2 uBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); const Vec2 vBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h0, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); const Vec2 vBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h1, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); // Integer coordinates - without wrap mode const int minI0 = deFloorFloatToInt32(uBounds0.x()-0.5f); const int maxI0 = deFloorFloatToInt32(uBounds0.y()-0.5f); const int minI1 = deFloorFloatToInt32(uBounds1.x()-0.5f); const int maxI1 = deFloorFloatToInt32(uBounds1.y()-0.5f); const int minJ0 = deFloorFloatToInt32(vBounds0.x()-0.5f); const int maxJ0 = deFloorFloatToInt32(vBounds0.y()-0.5f); const int minJ1 = deFloorFloatToInt32(vBounds1.x()-0.5f); const int maxJ1 = deFloorFloatToInt32(vBounds1.y()-0.5f); const TextureChannelClass texClass = getTextureChannelClass(level0.getFormat().type); const float cSearchStep = texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ? computeBilinearSearchStepForUnorm(prec) : texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ? computeBilinearSearchStepForSnorm(prec) : 0.0f; // Step is computed for floating-point quads based on texel values. DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_FLOATING_POINT); for (int j0 = minJ0; j0 <= maxJ0; j0++) { for (int i0 = minI0; i0 <= maxI0; i0++) { ColorQuad quad0; float searchStep0; { const int x0 = wrap(sampler.wrapS, i0 , w0); const int x1 = wrap(sampler.wrapS, i0+1, w0); const int y0 = wrap(sampler.wrapT, j0 , h0); const int y1 = wrap(sampler.wrapT, j0+1, h0); lookupQuad(quad0, level0, sampler, x0, x1, y0, y1, coordZ); if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) searchStep0 = computeBilinearSearchStepFromFloatQuad(prec, quad0); else searchStep0 = cSearchStep; } const float minA0 = de::clamp((uBounds0.x()-0.5f)-float(i0), 0.0f, 1.0f); const float maxA0 = de::clamp((uBounds0.y()-0.5f)-float(i0), 0.0f, 1.0f); const float minB0 = de::clamp((vBounds0.x()-0.5f)-float(j0), 0.0f, 1.0f); const float maxB0 = de::clamp((vBounds0.y()-0.5f)-float(j0), 0.0f, 1.0f); for (int j1 = minJ1; j1 <= maxJ1; j1++) { for (int i1 = minI1; i1 <= maxI1; i1++) { ColorQuad quad1; float searchStep1; { const int x0 = wrap(sampler.wrapS, i1 , w1); const int x1 = wrap(sampler.wrapS, i1+1, w1); const int y0 = wrap(sampler.wrapT, j1 , h1); const int y1 = wrap(sampler.wrapT, j1+1, h1); lookupQuad(quad1, level1, sampler, x0, x1, y0, y1, coordZ); if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) searchStep1 = computeBilinearSearchStepFromFloatQuad(prec, quad1); else searchStep1 = cSearchStep; } const float minA1 = de::clamp((uBounds1.x()-0.5f)-float(i1), 0.0f, 1.0f); const float maxA1 = de::clamp((uBounds1.y()-0.5f)-float(i1), 0.0f, 1.0f); const float minB1 = de::clamp((vBounds1.x()-0.5f)-float(j1), 0.0f, 1.0f); const float maxB1 = de::clamp((vBounds1.y()-0.5f)-float(j1), 0.0f, 1.0f); if (is2DTrilinearFilterResultValid(prec, quad0, quad1, Vec2(minA0, maxA0), Vec2(minB0, maxB0), Vec2(minA1, maxA1), Vec2(minB1, maxB1), fBounds, de::min(searchStep0, searchStep1), result)) return true; } } } } return false; } static bool isLinearMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, const ConstPixelBufferAccess& level1, const Sampler& sampler, const LookupPrecision& prec, const Vec3& coord, const Vec2& fBounds, const Vec4& result) { // \todo [2013-07-04 pyry] This is strictly not correct as coordinates between levels should be dependent. // Right now this allows pairing any two valid bilinear quads. const int w0 = level0.getWidth(); const int w1 = level1.getWidth(); const int h0 = level0.getHeight(); const int h1 = level1.getHeight(); const int d0 = level0.getDepth(); const int d1 = level1.getDepth(); const Vec2 uBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w0, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); const Vec2 uBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, w1, coord.x(), prec.coordBits.x(), prec.uvwBits.x()); const Vec2 vBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h0, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); const Vec2 vBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, h1, coord.y(), prec.coordBits.y(), prec.uvwBits.y()); const Vec2 wBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, d0, coord.z(), prec.coordBits.z(), prec.uvwBits.z()); const Vec2 wBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, d1, coord.z(), prec.coordBits.z(), prec.uvwBits.z()); // Integer coordinates - without wrap mode const int minI0 = deFloorFloatToInt32(uBounds0.x()-0.5f); const int maxI0 = deFloorFloatToInt32(uBounds0.y()-0.5f); const int minI1 = deFloorFloatToInt32(uBounds1.x()-0.5f); const int maxI1 = deFloorFloatToInt32(uBounds1.y()-0.5f); const int minJ0 = deFloorFloatToInt32(vBounds0.x()-0.5f); const int maxJ0 = deFloorFloatToInt32(vBounds0.y()-0.5f); const int minJ1 = deFloorFloatToInt32(vBounds1.x()-0.5f); const int maxJ1 = deFloorFloatToInt32(vBounds1.y()-0.5f); const int minK0 = deFloorFloatToInt32(wBounds0.x()-0.5f); const int maxK0 = deFloorFloatToInt32(wBounds0.y()-0.5f); const int minK1 = deFloorFloatToInt32(wBounds1.x()-0.5f); const int maxK1 = deFloorFloatToInt32(wBounds1.y()-0.5f); const TextureChannelClass texClass = getTextureChannelClass(level0.getFormat().type); const float cSearchStep = texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ? computeBilinearSearchStepForUnorm(prec) : texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ? computeBilinearSearchStepForSnorm(prec) : 0.0f; // Step is computed for floating-point quads based on texel values. DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_FLOATING_POINT); for (int k0 = minK0; k0 <= maxK0; k0++) { for (int j0 = minJ0; j0 <= maxJ0; j0++) { for (int i0 = minI0; i0 <= maxI0; i0++) { ColorQuad quad00, quad01; float searchStep0; { const int x0 = wrap(sampler.wrapS, i0 , w0); const int x1 = wrap(sampler.wrapS, i0+1, w0); const int y0 = wrap(sampler.wrapT, j0 , h0); const int y1 = wrap(sampler.wrapT, j0+1, h0); const int z0 = wrap(sampler.wrapR, k0 , d0); const int z1 = wrap(sampler.wrapR, k0+1, d0); lookupQuad(quad00, level0, sampler, x0, x1, y0, y1, z0); lookupQuad(quad01, level0, sampler, x0, x1, y0, y1, z1); if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) searchStep0 = de::min(computeBilinearSearchStepFromFloatQuad(prec, quad00), computeBilinearSearchStepFromFloatQuad(prec, quad01)); else searchStep0 = cSearchStep; } const float minA0 = de::clamp((uBounds0.x()-0.5f)-float(i0), 0.0f, 1.0f); const float maxA0 = de::clamp((uBounds0.y()-0.5f)-float(i0), 0.0f, 1.0f); const float minB0 = de::clamp((vBounds0.x()-0.5f)-float(j0), 0.0f, 1.0f); const float maxB0 = de::clamp((vBounds0.y()-0.5f)-float(j0), 0.0f, 1.0f); const float minC0 = de::clamp((wBounds0.x()-0.5f)-float(k0), 0.0f, 1.0f); const float maxC0 = de::clamp((wBounds0.y()-0.5f)-float(k0), 0.0f, 1.0f); for (int k1 = minK1; k1 <= maxK1; k1++) { for (int j1 = minJ1; j1 <= maxJ1; j1++) { for (int i1 = minI1; i1 <= maxI1; i1++) { ColorQuad quad10, quad11; float searchStep1; { const int x0 = wrap(sampler.wrapS, i1 , w1); const int x1 = wrap(sampler.wrapS, i1+1, w1); const int y0 = wrap(sampler.wrapT, j1 , h1); const int y1 = wrap(sampler.wrapT, j1+1, h1); const int z0 = wrap(sampler.wrapR, k1 , d1); const int z1 = wrap(sampler.wrapR, k1+1, d1); lookupQuad(quad10, level1, sampler, x0, x1, y0, y1, z0); lookupQuad(quad11, level1, sampler, x0, x1, y0, y1, z1); if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) searchStep1 = de::min(computeBilinearSearchStepFromFloatQuad(prec, quad10), computeBilinearSearchStepFromFloatQuad(prec, quad11)); else searchStep1 = cSearchStep; } const float minA1 = de::clamp((uBounds1.x()-0.5f)-float(i1), 0.0f, 1.0f); const float maxA1 = de::clamp((uBounds1.y()-0.5f)-float(i1), 0.0f, 1.0f); const float minB1 = de::clamp((vBounds1.x()-0.5f)-float(j1), 0.0f, 1.0f); const float maxB1 = de::clamp((vBounds1.y()-0.5f)-float(j1), 0.0f, 1.0f); const float minC1 = de::clamp((wBounds1.x()-0.5f)-float(k1), 0.0f, 1.0f); const float maxC1 = de::clamp((wBounds1.y()-0.5f)-float(k1), 0.0f, 1.0f); if (is3DTrilinearFilterResultValid(prec, quad00, quad01, quad10, quad11, Vec2(minA0, maxA0), Vec2(minB0, maxB0), Vec2(minC0, maxC0), Vec2(minA1, maxA1), Vec2(minB1, maxB1), Vec2(minC1, maxC1), fBounds, de::min(searchStep0, searchStep1), result)) return true; } } } } } } return false; } static bool isLevelSampleResultValid (const ConstPixelBufferAccess& level, const Sampler& sampler, const Sampler::FilterMode filterMode, const LookupPrecision& prec, const float coordX, const int coordY, const Vec4& result) { if (filterMode == Sampler::LINEAR) return isLinearSampleResultValid(level, sampler, prec, coordX, coordY, result); else return isNearestSampleResultValid(level, sampler, prec, coordX, coordY, result); } static bool isLevelSampleResultValid (const ConstPixelBufferAccess& level, const Sampler& sampler, const Sampler::FilterMode filterMode, const LookupPrecision& prec, const Vec2& coord, const int coordZ, const Vec4& result) { if (filterMode == Sampler::LINEAR) return isLinearSampleResultValid(level, sampler, prec, coord, coordZ, result); else return isNearestSampleResultValid(level, sampler, prec, coord, coordZ, result); } static bool isMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, const ConstPixelBufferAccess& level1, const Sampler& sampler, const Sampler::FilterMode levelFilter, const LookupPrecision& prec, const float coordX, const int coordY, const Vec2& fBounds, const Vec4& result) { if (levelFilter == Sampler::LINEAR) return isLinearMipmapLinearSampleResultValid(level0, level1, sampler, prec, coordX, coordY, fBounds, result); else return isNearestMipmapLinearSampleResultValid(level0, level1, sampler, prec, coordX, coordY, fBounds, result); } static bool isMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, const ConstPixelBufferAccess& level1, const Sampler& sampler, const Sampler::FilterMode levelFilter, const LookupPrecision& prec, const Vec2& coord, const int coordZ, const Vec2& fBounds, const Vec4& result) { if (levelFilter == Sampler::LINEAR) return isLinearMipmapLinearSampleResultValid(level0, level1, sampler, prec, coord, coordZ, fBounds, result); else return isNearestMipmapLinearSampleResultValid(level0, level1, sampler, prec, coord, coordZ, fBounds, result); } bool isLookupResultValid (const Texture2DView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec2& coord, const Vec2& lodBounds, const Vec4& result) { const float minLod = lodBounds.x(); const float maxLod = lodBounds.y(); const bool canBeMagnified = minLod <= sampler.lodThreshold; const bool canBeMinified = maxLod > sampler.lodThreshold; DE_ASSERT(isSamplerSupported(sampler)); if (canBeMagnified) { if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coord, 0, result)) return true; } if (canBeMinified) { const bool isNearestMipmap = isNearestMipmapFilter(sampler.minFilter); const bool isLinearMipmap = isLinearMipmapFilter(sampler.minFilter); const int minTexLevel = 0; const int maxTexLevel = texture.getNumLevels()-1; DE_ASSERT(minTexLevel <= maxTexLevel); if (isLinearMipmap && minTexLevel < maxTexLevel) { const int minLevel = de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1); const int maxLevel = de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1); DE_ASSERT(minLevel <= maxLevel); for (int level = minLevel; level <= maxLevel; level++) { const float minF = de::clamp(minLod - float(level), 0.0f, 1.0f); const float maxF = de::clamp(maxLod - float(level), 0.0f, 1.0f); if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coord, 0, Vec2(minF, maxF), result)) return true; } } else if (isNearestMipmap) { // \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made // decision to allow floor(lod + 0.5) as well. const int minLevel = de::clamp((int)deFloatCeil(minLod + 0.5f) - 1, minTexLevel, maxTexLevel); const int maxLevel = de::clamp((int)deFloatFloor(maxLod + 0.5f), minTexLevel, maxTexLevel); DE_ASSERT(minLevel <= maxLevel); for (int level = minLevel; level <= maxLevel; level++) { if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coord, 0, result)) return true; } } else { if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coord, 0, result)) return true; } } return false; } bool isLookupResultValid (const Texture1DView& texture, const Sampler& sampler, const LookupPrecision& prec, const float coord, const Vec2& lodBounds, const Vec4& result) { const float minLod = lodBounds.x(); const float maxLod = lodBounds.y(); const bool canBeMagnified = minLod <= sampler.lodThreshold; const bool canBeMinified = maxLod > sampler.lodThreshold; DE_ASSERT(isSamplerSupported(sampler)); if (canBeMagnified) { if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coord, 0, result)) return true; } if (canBeMinified) { const bool isNearestMipmap = isNearestMipmapFilter(sampler.minFilter); const bool isLinearMipmap = isLinearMipmapFilter(sampler.minFilter); const int minTexLevel = 0; const int maxTexLevel = texture.getNumLevels()-1; DE_ASSERT(minTexLevel <= maxTexLevel); if (isLinearMipmap && minTexLevel < maxTexLevel) { const int minLevel = de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1); const int maxLevel = de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1); DE_ASSERT(minLevel <= maxLevel); for (int level = minLevel; level <= maxLevel; level++) { const float minF = de::clamp(minLod - float(level), 0.0f, 1.0f); const float maxF = de::clamp(maxLod - float(level), 0.0f, 1.0f); if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coord, 0, Vec2(minF, maxF), result)) return true; } } else if (isNearestMipmap) { // \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made // decision to allow floor(lod + 0.5) as well. const int minLevel = de::clamp((int)deFloatCeil(minLod + 0.5f) - 1, minTexLevel, maxTexLevel); const int maxLevel = de::clamp((int)deFloatFloor(maxLod + 0.5f), minTexLevel, maxTexLevel); DE_ASSERT(minLevel <= maxLevel); for (int level = minLevel; level <= maxLevel; level++) { if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coord, 0, result)) return true; } } else { if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coord, 0, result)) return true; } } return false; } static bool isSeamlessLinearSampleResultValid (const ConstPixelBufferAccess (&faces)[CUBEFACE_LAST], const Sampler& sampler, const LookupPrecision& prec, const CubeFaceFloatCoords& coords, const Vec4& result) { const int size = faces[coords.face].getWidth(); const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, size, coords.s, prec.coordBits.x(), prec.uvwBits.x()); const Vec2 vBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, size, coords.t, prec.coordBits.y(), prec.uvwBits.y()); // Integer coordinate bounds for (x0,y0) - without wrap mode const int minI = deFloorFloatToInt32(uBounds.x()-0.5f); const int maxI = deFloorFloatToInt32(uBounds.y()-0.5f); const int minJ = deFloorFloatToInt32(vBounds.x()-0.5f); const int maxJ = deFloorFloatToInt32(vBounds.y()-0.5f); const TextureChannelClass texClass = getTextureChannelClass(faces[coords.face].getFormat().type); float searchStep = texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ? computeBilinearSearchStepForUnorm(prec) : texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ? computeBilinearSearchStepForSnorm(prec) : 0.0f; // Step is computed for floating-point quads based on texel values. DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_FLOATING_POINT); for (int j = minJ; j <= maxJ; j++) { for (int i = minI; i <= maxI; i++) { const CubeFaceIntCoords c00 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i+0, j+0)), size); const CubeFaceIntCoords c10 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i+1, j+0)), size); const CubeFaceIntCoords c01 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i+0, j+1)), size); const CubeFaceIntCoords c11 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i+1, j+1)), size); // If any of samples is out of both edges, implementations can do pretty much anything according to spec. // \todo [2013-07-08 pyry] Test the special case where all corner pixels have exactly the same color. if (c00.face == CUBEFACE_LAST || c01.face == CUBEFACE_LAST || c10.face == CUBEFACE_LAST || c11.face == CUBEFACE_LAST) return true; // Bounds for filtering factors const float minA = de::clamp((uBounds.x()-0.5f)-float(i), 0.0f, 1.0f); const float maxA = de::clamp((uBounds.y()-0.5f)-float(i), 0.0f, 1.0f); const float minB = de::clamp((vBounds.x()-0.5f)-float(j), 0.0f, 1.0f); const float maxB = de::clamp((vBounds.y()-0.5f)-float(j), 0.0f, 1.0f); ColorQuad quad; quad.p00 = lookup(faces[c00.face], sampler, c00.s, c00.t, 0); quad.p10 = lookup(faces[c10.face], sampler, c10.s, c10.t, 0); quad.p01 = lookup(faces[c01.face], sampler, c01.s, c01.t, 0); quad.p11 = lookup(faces[c11.face], sampler, c11.s, c11.t, 0); if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) searchStep = computeBilinearSearchStepFromFloatQuad(prec, quad); if (isBilinearRangeValid(prec, quad, Vec2(minA, maxA), Vec2(minB, maxB), searchStep, result)) return true; } } return false; } static bool isSeamplessLinearMipmapLinearSampleResultValid (const ConstPixelBufferAccess (&faces0)[CUBEFACE_LAST], const ConstPixelBufferAccess (&faces1)[CUBEFACE_LAST], const Sampler& sampler, const LookupPrecision& prec, const CubeFaceFloatCoords& coords, const Vec2& fBounds, const Vec4& result) { // \todo [2013-07-04 pyry] This is strictly not correct as coordinates between levels should be dependent. // Right now this allows pairing any two valid bilinear quads. const int size0 = faces0[coords.face].getWidth(); const int size1 = faces1[coords.face].getWidth(); const Vec2 uBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, size0, coords.s, prec.coordBits.x(), prec.uvwBits.x()); const Vec2 uBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, size1, coords.s, prec.coordBits.x(), prec.uvwBits.x()); const Vec2 vBounds0 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, size0, coords.t, prec.coordBits.y(), prec.uvwBits.y()); const Vec2 vBounds1 = computeNonNormalizedCoordBounds(sampler.normalizedCoords, size1, coords.t, prec.coordBits.y(), prec.uvwBits.y()); // Integer coordinates - without wrap mode const int minI0 = deFloorFloatToInt32(uBounds0.x()-0.5f); const int maxI0 = deFloorFloatToInt32(uBounds0.y()-0.5f); const int minI1 = deFloorFloatToInt32(uBounds1.x()-0.5f); const int maxI1 = deFloorFloatToInt32(uBounds1.y()-0.5f); const int minJ0 = deFloorFloatToInt32(vBounds0.x()-0.5f); const int maxJ0 = deFloorFloatToInt32(vBounds0.y()-0.5f); const int minJ1 = deFloorFloatToInt32(vBounds1.x()-0.5f); const int maxJ1 = deFloorFloatToInt32(vBounds1.y()-0.5f); const TextureChannelClass texClass = getTextureChannelClass(faces0[coords.face].getFormat().type); const float cSearchStep = texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT ? computeBilinearSearchStepForUnorm(prec) : texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT ? computeBilinearSearchStepForSnorm(prec) : 0.0f; // Step is computed for floating-point quads based on texel values. DE_ASSERT(texClass == TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_SIGNED_FIXED_POINT || texClass == TEXTURECHANNELCLASS_FLOATING_POINT); for (int j0 = minJ0; j0 <= maxJ0; j0++) { for (int i0 = minI0; i0 <= maxI0; i0++) { ColorQuad quad0; float searchStep0; { const CubeFaceIntCoords c00 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i0+0, j0+0)), size0); const CubeFaceIntCoords c10 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i0+1, j0+0)), size0); const CubeFaceIntCoords c01 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i0+0, j0+1)), size0); const CubeFaceIntCoords c11 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i0+1, j0+1)), size0); // If any of samples is out of both edges, implementations can do pretty much anything according to spec. // \todo [2013-07-08 pyry] Test the special case where all corner pixels have exactly the same color. if (c00.face == CUBEFACE_LAST || c01.face == CUBEFACE_LAST || c10.face == CUBEFACE_LAST || c11.face == CUBEFACE_LAST) return true; quad0.p00 = lookup(faces0[c00.face], sampler, c00.s, c00.t, 0); quad0.p10 = lookup(faces0[c10.face], sampler, c10.s, c10.t, 0); quad0.p01 = lookup(faces0[c01.face], sampler, c01.s, c01.t, 0); quad0.p11 = lookup(faces0[c11.face], sampler, c11.s, c11.t, 0); if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) searchStep0 = computeBilinearSearchStepFromFloatQuad(prec, quad0); else searchStep0 = cSearchStep; } const float minA0 = de::clamp((uBounds0.x()-0.5f)-float(i0), 0.0f, 1.0f); const float maxA0 = de::clamp((uBounds0.y()-0.5f)-float(i0), 0.0f, 1.0f); const float minB0 = de::clamp((vBounds0.x()-0.5f)-float(j0), 0.0f, 1.0f); const float maxB0 = de::clamp((vBounds0.y()-0.5f)-float(j0), 0.0f, 1.0f); for (int j1 = minJ1; j1 <= maxJ1; j1++) { for (int i1 = minI1; i1 <= maxI1; i1++) { ColorQuad quad1; float searchStep1; { const CubeFaceIntCoords c00 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i1+0, j1+0)), size1); const CubeFaceIntCoords c10 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i1+1, j1+0)), size1); const CubeFaceIntCoords c01 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i1+0, j1+1)), size1); const CubeFaceIntCoords c11 = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, IVec2(i1+1, j1+1)), size1); if (c00.face == CUBEFACE_LAST || c01.face == CUBEFACE_LAST || c10.face == CUBEFACE_LAST || c11.face == CUBEFACE_LAST) return true; quad1.p00 = lookup(faces1[c00.face], sampler, c00.s, c00.t, 0); quad1.p10 = lookup(faces1[c10.face], sampler, c10.s, c10.t, 0); quad1.p01 = lookup(faces1[c01.face], sampler, c01.s, c01.t, 0); quad1.p11 = lookup(faces1[c11.face], sampler, c11.s, c11.t, 0); if (texClass == TEXTURECHANNELCLASS_FLOATING_POINT) searchStep1 = computeBilinearSearchStepFromFloatQuad(prec, quad1); else searchStep1 = cSearchStep; } const float minA1 = de::clamp((uBounds1.x()-0.5f)-float(i1), 0.0f, 1.0f); const float maxA1 = de::clamp((uBounds1.y()-0.5f)-float(i1), 0.0f, 1.0f); const float minB1 = de::clamp((vBounds1.x()-0.5f)-float(j1), 0.0f, 1.0f); const float maxB1 = de::clamp((vBounds1.y()-0.5f)-float(j1), 0.0f, 1.0f); if (is2DTrilinearFilterResultValid(prec, quad0, quad1, Vec2(minA0, maxA0), Vec2(minB0, maxB0), Vec2(minA1, maxA1), Vec2(minB1, maxB1), fBounds, de::min(searchStep0, searchStep1), result)) return true; } } } } return false; } static bool isCubeLevelSampleResultValid (const ConstPixelBufferAccess (&level)[CUBEFACE_LAST], const Sampler& sampler, const Sampler::FilterMode filterMode, const LookupPrecision& prec, const CubeFaceFloatCoords& coords, const Vec4& result) { if (filterMode == Sampler::LINEAR) { if (sampler.seamlessCubeMap) return isSeamlessLinearSampleResultValid(level, sampler, prec, coords, result); else return isLinearSampleResultValid(level[coords.face], sampler, prec, Vec2(coords.s, coords.t), 0, result); } else return isNearestSampleResultValid(level[coords.face], sampler, prec, Vec2(coords.s, coords.t), 0, result); } static bool isCubeMipmapLinearSampleResultValid (const ConstPixelBufferAccess (&faces0)[CUBEFACE_LAST], const ConstPixelBufferAccess (&faces1)[CUBEFACE_LAST], const Sampler& sampler, const Sampler::FilterMode levelFilter, const LookupPrecision& prec, const CubeFaceFloatCoords& coords, const Vec2& fBounds, const Vec4& result) { if (levelFilter == Sampler::LINEAR) { if (sampler.seamlessCubeMap) return isSeamplessLinearMipmapLinearSampleResultValid(faces0, faces1, sampler, prec, coords, fBounds, result); else return isLinearMipmapLinearSampleResultValid(faces0[coords.face], faces1[coords.face], sampler, prec, Vec2(coords.s, coords.t), 0, fBounds, result); } else return isNearestMipmapLinearSampleResultValid(faces0[coords.face], faces1[coords.face], sampler, prec, Vec2(coords.s, coords.t), 0, fBounds, result); } static void getCubeLevelFaces (const TextureCubeView& texture, const int levelNdx, ConstPixelBufferAccess (&out)[CUBEFACE_LAST]) { for (int faceNdx = 0; faceNdx < CUBEFACE_LAST; faceNdx++) out[faceNdx] = texture.getLevelFace(levelNdx, (CubeFace)faceNdx); } bool isLookupResultValid (const TextureCubeView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec3& coord, const Vec2& lodBounds, const Vec4& result) { int numPossibleFaces = 0; CubeFace possibleFaces[CUBEFACE_LAST]; DE_ASSERT(isSamplerSupported(sampler)); getPossibleCubeFaces(coord, prec.coordBits, &possibleFaces[0], numPossibleFaces); if (numPossibleFaces == 0) return true; // Result is undefined. for (int tryFaceNdx = 0; tryFaceNdx < numPossibleFaces; tryFaceNdx++) { const CubeFaceFloatCoords faceCoords (possibleFaces[tryFaceNdx], projectToFace(possibleFaces[tryFaceNdx], coord)); const float minLod = lodBounds.x(); const float maxLod = lodBounds.y(); const bool canBeMagnified = minLod <= sampler.lodThreshold; const bool canBeMinified = maxLod > sampler.lodThreshold; if (canBeMagnified) { ConstPixelBufferAccess faces[CUBEFACE_LAST]; getCubeLevelFaces(texture, 0, faces); if (isCubeLevelSampleResultValid(faces, sampler, sampler.magFilter, prec, faceCoords, result)) return true; } if (canBeMinified) { const bool isNearestMipmap = isNearestMipmapFilter(sampler.minFilter); const bool isLinearMipmap = isLinearMipmapFilter(sampler.minFilter); const int minTexLevel = 0; const int maxTexLevel = texture.getNumLevels()-1; DE_ASSERT(minTexLevel <= maxTexLevel); if (isLinearMipmap && minTexLevel < maxTexLevel) { const int minLevel = de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1); const int maxLevel = de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1); DE_ASSERT(minLevel <= maxLevel); for (int levelNdx = minLevel; levelNdx <= maxLevel; levelNdx++) { const float minF = de::clamp(minLod - float(levelNdx), 0.0f, 1.0f); const float maxF = de::clamp(maxLod - float(levelNdx), 0.0f, 1.0f); ConstPixelBufferAccess faces0[CUBEFACE_LAST]; ConstPixelBufferAccess faces1[CUBEFACE_LAST]; getCubeLevelFaces(texture, levelNdx, faces0); getCubeLevelFaces(texture, levelNdx + 1, faces1); if (isCubeMipmapLinearSampleResultValid(faces0, faces1, sampler, getLevelFilter(sampler.minFilter), prec, faceCoords, Vec2(minF, maxF), result)) return true; } } else if (isNearestMipmap) { // \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made // decision to allow floor(lod + 0.5) as well. const int minLevel = de::clamp((int)deFloatCeil(minLod + 0.5f) - 1, minTexLevel, maxTexLevel); const int maxLevel = de::clamp((int)deFloatFloor(maxLod + 0.5f), minTexLevel, maxTexLevel); DE_ASSERT(minLevel <= maxLevel); for (int levelNdx = minLevel; levelNdx <= maxLevel; levelNdx++) { ConstPixelBufferAccess faces[CUBEFACE_LAST]; getCubeLevelFaces(texture, levelNdx, faces); if (isCubeLevelSampleResultValid(faces, sampler, getLevelFilter(sampler.minFilter), prec, faceCoords, result)) return true; } } else { ConstPixelBufferAccess faces[CUBEFACE_LAST]; getCubeLevelFaces(texture, 0, faces); if (isCubeLevelSampleResultValid(faces, sampler, sampler.minFilter, prec, faceCoords, result)) return true; } } } return false; } static inline IVec2 computeLayerRange (int numLayers, int numCoordBits, float layerCoord) { const float err = computeFloatingPointError(layerCoord, numCoordBits); const int minL = (int)deFloatFloor(layerCoord - err + 0.5f); // Round down const int maxL = (int)deFloatCeil(layerCoord + err + 0.5f) - 1; // Round up DE_ASSERT(minL <= maxL); return IVec2(de::clamp(minL, 0, numLayers-1), de::clamp(maxL, 0, numLayers-1)); } bool isLookupResultValid (const Texture1DArrayView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec2& coord, const Vec2& lodBounds, const Vec4& result) { const IVec2 layerRange = computeLayerRange(texture.getNumLayers(), prec.coordBits.y(), coord.y()); const float coordX = coord.x(); const float minLod = lodBounds.x(); const float maxLod = lodBounds.y(); const bool canBeMagnified = minLod <= sampler.lodThreshold; const bool canBeMinified = maxLod > sampler.lodThreshold; DE_ASSERT(isSamplerSupported(sampler)); for (int layer = layerRange.x(); layer <= layerRange.y(); layer++) { if (canBeMagnified) { if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coordX, layer, result)) return true; } if (canBeMinified) { const bool isNearestMipmap = isNearestMipmapFilter(sampler.minFilter); const bool isLinearMipmap = isLinearMipmapFilter(sampler.minFilter); const int minTexLevel = 0; const int maxTexLevel = texture.getNumLevels()-1; DE_ASSERT(minTexLevel <= maxTexLevel); if (isLinearMipmap && minTexLevel < maxTexLevel) { const int minLevel = de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1); const int maxLevel = de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1); DE_ASSERT(minLevel <= maxLevel); for (int level = minLevel; level <= maxLevel; level++) { const float minF = de::clamp(minLod - float(level), 0.0f, 1.0f); const float maxF = de::clamp(maxLod - float(level), 0.0f, 1.0f); if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coordX, layer, Vec2(minF, maxF), result)) return true; } } else if (isNearestMipmap) { // \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made // decision to allow floor(lod + 0.5) as well. const int minLevel = de::clamp((int)deFloatCeil(minLod + 0.5f) - 1, minTexLevel, maxTexLevel); const int maxLevel = de::clamp((int)deFloatFloor(maxLod + 0.5f), minTexLevel, maxTexLevel); DE_ASSERT(minLevel <= maxLevel); for (int level = minLevel; level <= maxLevel; level++) { if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coordX, layer, result)) return true; } } else { if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coordX, layer, result)) return true; } } } return false; } bool isLookupResultValid (const Texture2DArrayView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec3& coord, const Vec2& lodBounds, const Vec4& result) { const IVec2 layerRange = computeLayerRange(texture.getNumLayers(), prec.coordBits.z(), coord.z()); const Vec2 coordXY = coord.swizzle(0,1); const float minLod = lodBounds.x(); const float maxLod = lodBounds.y(); const bool canBeMagnified = minLod <= sampler.lodThreshold; const bool canBeMinified = maxLod > sampler.lodThreshold; DE_ASSERT(isSamplerSupported(sampler)); for (int layer = layerRange.x(); layer <= layerRange.y(); layer++) { if (canBeMagnified) { if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coordXY, layer, result)) return true; } if (canBeMinified) { const bool isNearestMipmap = isNearestMipmapFilter(sampler.minFilter); const bool isLinearMipmap = isLinearMipmapFilter(sampler.minFilter); const int minTexLevel = 0; const int maxTexLevel = texture.getNumLevels()-1; DE_ASSERT(minTexLevel <= maxTexLevel); if (isLinearMipmap && minTexLevel < maxTexLevel) { const int minLevel = de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1); const int maxLevel = de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1); DE_ASSERT(minLevel <= maxLevel); for (int level = minLevel; level <= maxLevel; level++) { const float minF = de::clamp(minLod - float(level), 0.0f, 1.0f); const float maxF = de::clamp(maxLod - float(level), 0.0f, 1.0f); if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coordXY, layer, Vec2(minF, maxF), result)) return true; } } else if (isNearestMipmap) { // \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made // decision to allow floor(lod + 0.5) as well. const int minLevel = de::clamp((int)deFloatCeil(minLod + 0.5f) - 1, minTexLevel, maxTexLevel); const int maxLevel = de::clamp((int)deFloatFloor(maxLod + 0.5f), minTexLevel, maxTexLevel); DE_ASSERT(minLevel <= maxLevel); for (int level = minLevel; level <= maxLevel; level++) { if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coordXY, layer, result)) return true; } } else { if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coordXY, layer, result)) return true; } } } return false; } static bool isLevelSampleResultValid (const ConstPixelBufferAccess& level, const Sampler& sampler, const Sampler::FilterMode filterMode, const LookupPrecision& prec, const Vec3& coord, const Vec4& result) { if (filterMode == Sampler::LINEAR) return isLinearSampleResultValid(level, sampler, prec, coord, result); else return isNearestSampleResultValid(level, sampler, prec, coord, result); } static bool isMipmapLinearSampleResultValid (const ConstPixelBufferAccess& level0, const ConstPixelBufferAccess& level1, const Sampler& sampler, const Sampler::FilterMode levelFilter, const LookupPrecision& prec, const Vec3& coord, const Vec2& fBounds, const Vec4& result) { if (levelFilter == Sampler::LINEAR) return isLinearMipmapLinearSampleResultValid(level0, level1, sampler, prec, coord, fBounds, result); else return isNearestMipmapLinearSampleResultValid(level0, level1, sampler, prec, coord, fBounds, result); } bool isLookupResultValid (const Texture3DView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec3& coord, const Vec2& lodBounds, const Vec4& result) { const float minLod = lodBounds.x(); const float maxLod = lodBounds.y(); const bool canBeMagnified = minLod <= sampler.lodThreshold; const bool canBeMinified = maxLod > sampler.lodThreshold; DE_ASSERT(isSamplerSupported(sampler)); if (canBeMagnified) { if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.magFilter, prec, coord, result)) return true; } if (canBeMinified) { const bool isNearestMipmap = isNearestMipmapFilter(sampler.minFilter); const bool isLinearMipmap = isLinearMipmapFilter(sampler.minFilter); const int minTexLevel = 0; const int maxTexLevel = texture.getNumLevels()-1; DE_ASSERT(minTexLevel <= maxTexLevel); if (isLinearMipmap && minTexLevel < maxTexLevel) { const int minLevel = de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1); const int maxLevel = de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1); DE_ASSERT(minLevel <= maxLevel); for (int level = minLevel; level <= maxLevel; level++) { const float minF = de::clamp(minLod - float(level), 0.0f, 1.0f); const float maxF = de::clamp(maxLod - float(level), 0.0f, 1.0f); if (isMipmapLinearSampleResultValid(texture.getLevel(level), texture.getLevel(level+1), sampler, getLevelFilter(sampler.minFilter), prec, coord, Vec2(minF, maxF), result)) return true; } } else if (isNearestMipmap) { // \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made // decision to allow floor(lod + 0.5) as well. const int minLevel = de::clamp((int)deFloatCeil(minLod + 0.5f) - 1, minTexLevel, maxTexLevel); const int maxLevel = de::clamp((int)deFloatFloor(maxLod + 0.5f), minTexLevel, maxTexLevel); DE_ASSERT(minLevel <= maxLevel); for (int level = minLevel; level <= maxLevel; level++) { if (isLevelSampleResultValid(texture.getLevel(level), sampler, getLevelFilter(sampler.minFilter), prec, coord, result)) return true; } } else { if (isLevelSampleResultValid(texture.getLevel(0), sampler, sampler.minFilter, prec, coord, result)) return true; } } return false; } static void getCubeArrayLevelFaces (const TextureCubeArrayView& texture, const int levelNdx, const int layerNdx, ConstPixelBufferAccess (&out)[CUBEFACE_LAST]) { const ConstPixelBufferAccess& level = texture.getLevel(levelNdx); const int layerDepth = layerNdx * 6; for (int faceNdx = 0; faceNdx < CUBEFACE_LAST; faceNdx++) { const CubeFace face = (CubeFace)faceNdx; out[faceNdx] = getSubregion(level, 0, 0, layerDepth + getCubeArrayFaceIndex(face), level.getWidth(), level.getHeight(), 1); } } bool isLookupResultValid (const TextureCubeArrayView& texture, const Sampler& sampler, const LookupPrecision& prec, const IVec4& coordBits, const Vec4& coord, const Vec2& lodBounds, const Vec4& result) { const IVec2 layerRange = computeLayerRange(texture.getNumLayers(), coordBits.w(), coord.w()); const Vec3 layerCoord = coord.toWidth<3>(); int numPossibleFaces = 0; CubeFace possibleFaces[CUBEFACE_LAST]; DE_ASSERT(isSamplerSupported(sampler)); getPossibleCubeFaces(layerCoord, prec.coordBits, &possibleFaces[0], numPossibleFaces); if (numPossibleFaces == 0) return true; // Result is undefined. for (int layerNdx = layerRange.x(); layerNdx <= layerRange.y(); layerNdx++) { for (int tryFaceNdx = 0; tryFaceNdx < numPossibleFaces; tryFaceNdx++) { const CubeFaceFloatCoords faceCoords (possibleFaces[tryFaceNdx], projectToFace(possibleFaces[tryFaceNdx], layerCoord)); const float minLod = lodBounds.x(); const float maxLod = lodBounds.y(); const bool canBeMagnified = minLod <= sampler.lodThreshold; const bool canBeMinified = maxLod > sampler.lodThreshold; if (canBeMagnified) { ConstPixelBufferAccess faces[CUBEFACE_LAST]; getCubeArrayLevelFaces(texture, 0, layerNdx, faces); if (isCubeLevelSampleResultValid(faces, sampler, sampler.magFilter, prec, faceCoords, result)) return true; } if (canBeMinified) { const bool isNearestMipmap = isNearestMipmapFilter(sampler.minFilter); const bool isLinearMipmap = isLinearMipmapFilter(sampler.minFilter); const int minTexLevel = 0; const int maxTexLevel = texture.getNumLevels()-1; DE_ASSERT(minTexLevel <= maxTexLevel); if (isLinearMipmap && minTexLevel < maxTexLevel) { const int minLevel = de::clamp((int)deFloatFloor(minLod), minTexLevel, maxTexLevel-1); const int maxLevel = de::clamp((int)deFloatFloor(maxLod), minTexLevel, maxTexLevel-1); DE_ASSERT(minLevel <= maxLevel); for (int levelNdx = minLevel; levelNdx <= maxLevel; levelNdx++) { const float minF = de::clamp(minLod - float(levelNdx), 0.0f, 1.0f); const float maxF = de::clamp(maxLod - float(levelNdx), 0.0f, 1.0f); ConstPixelBufferAccess faces0[CUBEFACE_LAST]; ConstPixelBufferAccess faces1[CUBEFACE_LAST]; getCubeArrayLevelFaces(texture, levelNdx, layerNdx, faces0); getCubeArrayLevelFaces(texture, levelNdx + 1, layerNdx, faces1); if (isCubeMipmapLinearSampleResultValid(faces0, faces1, sampler, getLevelFilter(sampler.minFilter), prec, faceCoords, Vec2(minF, maxF), result)) return true; } } else if (isNearestMipmap) { // \note The accurate formula for nearest mipmapping is level = ceil(lod + 0.5) - 1 but Khronos has made // decision to allow floor(lod + 0.5) as well. const int minLevel = de::clamp((int)deFloatCeil(minLod + 0.5f) - 1, minTexLevel, maxTexLevel); const int maxLevel = de::clamp((int)deFloatFloor(maxLod + 0.5f), minTexLevel, maxTexLevel); DE_ASSERT(minLevel <= maxLevel); for (int levelNdx = minLevel; levelNdx <= maxLevel; levelNdx++) { ConstPixelBufferAccess faces[CUBEFACE_LAST]; getCubeArrayLevelFaces(texture, levelNdx, layerNdx, faces); if (isCubeLevelSampleResultValid(faces, sampler, getLevelFilter(sampler.minFilter), prec, faceCoords, result)) return true; } } else { ConstPixelBufferAccess faces[CUBEFACE_LAST]; getCubeArrayLevelFaces(texture, 0, layerNdx, faces); if (isCubeLevelSampleResultValid(faces, sampler, sampler.minFilter, prec, faceCoords, result)) return true; } } } } return false; } Vec4 computeFixedPointThreshold (const IVec4& bits) { return computeFixedPointError(bits); } Vec4 computeFloatingPointThreshold (const IVec4& bits, const Vec4& value) { return computeFloatingPointError(value, bits); } Vec2 computeLodBoundsFromDerivates (const float dudx, const float dvdx, const float dwdx, const float dudy, const float dvdy, const float dwdy, const LodPrecision& prec) { const float mux = deFloatAbs(dudx); const float mvx = deFloatAbs(dvdx); const float mwx = deFloatAbs(dwdx); const float muy = deFloatAbs(dudy); const float mvy = deFloatAbs(dvdy); const float mwy = deFloatAbs(dwdy); // Ideal: // px = deFloatSqrt2(mux*mux + mvx*mvx + mwx*mwx); // py = deFloatSqrt2(muy*muy + mvy*mvy + mwy*mwy); // fx, fy estimate lower bounds const float fxMin = de::max(de::max(mux, mvx), mwx); const float fyMin = de::max(de::max(muy, mvy), mwy); // fx, fy estimate upper bounds const float sqrt2 = deFloatSqrt(2.0f); const float fxMax = sqrt2 * (mux + mvx + mwx); const float fyMax = sqrt2 * (muy + mvy + mwy); // p = max(px, py) (isotropic filtering) const float pMin = de::max(fxMin, fyMin); const float pMax = de::max(fxMax, fyMax); // error terms const float pMinErr = computeFloatingPointError(pMin, prec.derivateBits); const float pMaxErr = computeFloatingPointError(pMax, prec.derivateBits); const float minLod = deFloatLog2(pMin-pMinErr); const float maxLod = deFloatLog2(pMax+pMaxErr); const float lodErr = computeFixedPointError(prec.lodBits); DE_ASSERT(minLod <= maxLod); return Vec2(minLod-lodErr, maxLod+lodErr); } Vec2 computeLodBoundsFromDerivates (const float dudx, const float dvdx, const float dudy, const float dvdy, const LodPrecision& prec) { return computeLodBoundsFromDerivates(dudx, dvdx, 0.0f, dudy, dvdy, 0.0f, prec); } Vec2 computeLodBoundsFromDerivates (const float dudx, const float dudy, const LodPrecision& prec) { return computeLodBoundsFromDerivates(dudx, 0.0f, 0.0f, dudy, 0.0f, 0.0f, prec); } Vec2 computeCubeLodBoundsFromDerivates (const Vec3& coord, const Vec3& coordDx, const Vec3& coordDy, const int faceSize, const LodPrecision& prec) { const bool allowBrokenEdgeDerivate = false; const CubeFace face = selectCubeFace(coord); int maNdx = 0; int sNdx = 0; int tNdx = 0; // \note Derivate signs don't matter when computing lod switch (face) { case CUBEFACE_NEGATIVE_X: case CUBEFACE_POSITIVE_X: maNdx = 0; sNdx = 2; tNdx = 1; break; case CUBEFACE_NEGATIVE_Y: case CUBEFACE_POSITIVE_Y: maNdx = 1; sNdx = 0; tNdx = 2; break; case CUBEFACE_NEGATIVE_Z: case CUBEFACE_POSITIVE_Z: maNdx = 2; sNdx = 0; tNdx = 1; break; default: DE_ASSERT(DE_FALSE); } { const float sc = coord[sNdx]; const float tc = coord[tNdx]; const float ma = de::abs(coord[maNdx]); const float scdx = coordDx[sNdx]; const float tcdx = coordDx[tNdx]; const float madx = de::abs(coordDx[maNdx]); const float scdy = coordDy[sNdx]; const float tcdy = coordDy[tNdx]; const float mady = de::abs(coordDy[maNdx]); const float dudx = float(faceSize) * 0.5f * (scdx*ma - sc*madx) / (ma*ma); const float dvdx = float(faceSize) * 0.5f * (tcdx*ma - tc*madx) / (ma*ma); const float dudy = float(faceSize) * 0.5f * (scdy*ma - sc*mady) / (ma*ma); const float dvdy = float(faceSize) * 0.5f * (tcdy*ma - tc*mady) / (ma*ma); const Vec2 bounds = computeLodBoundsFromDerivates(dudx, dvdx, dudy, dvdy, prec); // Implementations may compute derivate from projected (s, t) resulting in incorrect values at edges. if (allowBrokenEdgeDerivate) { const Vec3 dxErr = computeFloatingPointError(coordDx, IVec3(prec.derivateBits)); const Vec3 dyErr = computeFloatingPointError(coordDy, IVec3(prec.derivateBits)); const Vec3 xoffs = abs(coordDx) + dxErr; const Vec3 yoffs = abs(coordDy) + dyErr; if (selectCubeFace(coord + xoffs) != face || selectCubeFace(coord - xoffs) != face || selectCubeFace(coord + yoffs) != face || selectCubeFace(coord - yoffs) != face) { return Vec2(bounds.x(), 1000.0f); } } return bounds; } } Vec2 clampLodBounds (const Vec2& lodBounds, const Vec2& lodMinMax, const LodPrecision& prec) { const float lodErr = computeFixedPointError(prec.lodBits); const float a = lodMinMax.x(); const float b = lodMinMax.y(); return Vec2(de::clamp(lodBounds.x(), a-lodErr, b-lodErr), de::clamp(lodBounds.y(), a+lodErr, b+lodErr)); } bool isLevel1DLookupResultValid (const ConstPixelBufferAccess& access, const Sampler& sampler, TexLookupScaleMode scaleMode, const LookupPrecision& prec, const float coordX, const int coordY, const Vec4& result) { const Sampler::FilterMode filterMode = scaleMode == TEX_LOOKUP_SCALE_MAGNIFY ? sampler.magFilter : sampler.minFilter; return isLevelSampleResultValid(access, sampler, filterMode, prec, coordX, coordY, result); } bool isLevel1DLookupResultValid (const ConstPixelBufferAccess& access, const Sampler& sampler, TexLookupScaleMode scaleMode, const IntLookupPrecision& prec, const float coordX, const int coordY, const IVec4& result) { DE_ASSERT(sampler.minFilter == Sampler::NEAREST && sampler.magFilter == Sampler::NEAREST); DE_UNREF(scaleMode); return isNearestSampleResultValid(access, sampler, prec, coordX, coordY, result); } bool isLevel1DLookupResultValid (const ConstPixelBufferAccess& access, const Sampler& sampler, TexLookupScaleMode scaleMode, const IntLookupPrecision& prec, const float coordX, const int coordY, const UVec4& result) { DE_ASSERT(sampler.minFilter == Sampler::NEAREST && sampler.magFilter == Sampler::NEAREST); DE_UNREF(scaleMode); return isNearestSampleResultValid(access, sampler, prec, coordX, coordY, result); } bool isLevel2DLookupResultValid (const ConstPixelBufferAccess& access, const Sampler& sampler, TexLookupScaleMode scaleMode, const LookupPrecision& prec, const Vec2& coord, const int coordZ, const Vec4& result) { const Sampler::FilterMode filterMode = scaleMode == TEX_LOOKUP_SCALE_MAGNIFY ? sampler.magFilter : sampler.minFilter; return isLevelSampleResultValid(access, sampler, filterMode, prec, coord, coordZ, result); } bool isLevel2DLookupResultValid (const ConstPixelBufferAccess& access, const Sampler& sampler, TexLookupScaleMode scaleMode, const IntLookupPrecision& prec, const Vec2& coord, const int coordZ, const IVec4& result) { DE_ASSERT(sampler.minFilter == Sampler::NEAREST && sampler.magFilter == Sampler::NEAREST); DE_UNREF(scaleMode); return isNearestSampleResultValid(access, sampler, prec, coord, coordZ, result); } bool isLevel2DLookupResultValid (const ConstPixelBufferAccess& access, const Sampler& sampler, TexLookupScaleMode scaleMode, const IntLookupPrecision& prec, const Vec2& coord, const int coordZ, const UVec4& result) { DE_ASSERT(sampler.minFilter == Sampler::NEAREST && sampler.magFilter == Sampler::NEAREST); DE_UNREF(scaleMode); return isNearestSampleResultValid(access, sampler, prec, coord, coordZ, result); } bool isLevel3DLookupResultValid (const ConstPixelBufferAccess& access, const Sampler& sampler, TexLookupScaleMode scaleMode, const LookupPrecision& prec, const Vec3& coord, const Vec4& result) { const tcu::Sampler::FilterMode filterMode = scaleMode == TEX_LOOKUP_SCALE_MAGNIFY ? sampler.magFilter : sampler.minFilter; return isLevelSampleResultValid(access, sampler, filterMode, prec, coord, result); } bool isLevel3DLookupResultValid (const ConstPixelBufferAccess& access, const Sampler& sampler, TexLookupScaleMode scaleMode, const IntLookupPrecision& prec, const Vec3& coord, const IVec4& result) { DE_ASSERT(sampler.minFilter == Sampler::NEAREST && sampler.magFilter == Sampler::NEAREST); DE_UNREF(scaleMode); return isNearestSampleResultValid(access, sampler, prec, coord, result); } bool isLevel3DLookupResultValid (const ConstPixelBufferAccess& access, const Sampler& sampler, TexLookupScaleMode scaleMode, const IntLookupPrecision& prec, const Vec3& coord, const UVec4& result) { DE_ASSERT(sampler.minFilter == Sampler::NEAREST && sampler.magFilter == Sampler::NEAREST); DE_UNREF(scaleMode); return isNearestSampleResultValid(access, sampler, prec, coord, result); } template static bool isGatherOffsetsResultValid (const ConstPixelBufferAccess& level, const Sampler& sampler, const PrecType& prec, const Vec2& coord, int coordZ, int componentNdx, const IVec2 (&offsets)[4], const Vector& result) { const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getWidth(), coord.x(), prec.coordBits.x(), prec.uvwBits.x()); const Vec2 vBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, level.getHeight(), coord.y(), prec.coordBits.y(), prec.uvwBits.y()); // Integer coordinate bounds for (x0, y0) - without wrap mode const int minI = deFloorFloatToInt32(uBounds.x()-0.5f); const int maxI = deFloorFloatToInt32(uBounds.y()-0.5f); const int minJ = deFloorFloatToInt32(vBounds.x()-0.5f); const int maxJ = deFloorFloatToInt32(vBounds.y()-0.5f); const int w = level.getWidth(); const int h = level.getHeight(); for (int j = minJ; j <= maxJ; j++) { for (int i = minI; i <= maxI; i++) { Vector color; for (int offNdx = 0; offNdx < 4; offNdx++) { // offNdx-th coordinate offset and then wrapped. const int x = wrap(sampler.wrapS, i+offsets[offNdx].x(), w); const int y = wrap(sampler.wrapT, j+offsets[offNdx].y(), h); color[offNdx] = lookup(level, sampler, x, y, coordZ)[componentNdx]; } if (isColorValid(prec, color, result)) return true; } } return false; } bool isGatherOffsetsResultValid (const Texture2DView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec2& coord, int componentNdx, const IVec2 (&offsets)[4], const Vec4& result) { return isGatherOffsetsResultValid(texture.getLevel(0), sampler, prec, coord, 0, componentNdx, offsets, result); } bool isGatherOffsetsResultValid (const Texture2DView& texture, const Sampler& sampler, const IntLookupPrecision& prec, const Vec2& coord, int componentNdx, const IVec2 (&offsets)[4], const IVec4& result) { return isGatherOffsetsResultValid(texture.getLevel(0), sampler, prec, coord, 0, componentNdx, offsets, result); } bool isGatherOffsetsResultValid (const Texture2DView& texture, const Sampler& sampler, const IntLookupPrecision& prec, const Vec2& coord, int componentNdx, const IVec2 (&offsets)[4], const UVec4& result) { return isGatherOffsetsResultValid(texture.getLevel(0), sampler, prec, coord, 0, componentNdx, offsets, result); } template static bool is2DArrayGatherOffsetsResultValid (const Texture2DArrayView& texture, const Sampler& sampler, const PrecType& prec, const Vec3& coord, int componentNdx, const IVec2 (&offsets)[4], const Vector& result) { const IVec2 layerRange = computeLayerRange(texture.getNumLayers(), prec.coordBits.z(), coord.z()); for (int layer = layerRange.x(); layer <= layerRange.y(); layer++) { if (isGatherOffsetsResultValid(texture.getLevel(0), sampler, prec, coord.swizzle(0,1), layer, componentNdx, offsets, result)) return true; } return false; } bool isGatherOffsetsResultValid (const Texture2DArrayView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec3& coord, int componentNdx, const IVec2 (&offsets)[4], const Vec4& result) { return is2DArrayGatherOffsetsResultValid(texture, sampler, prec, coord, componentNdx, offsets, result); } bool isGatherOffsetsResultValid (const Texture2DArrayView& texture, const Sampler& sampler, const IntLookupPrecision& prec, const Vec3& coord, int componentNdx, const IVec2 (&offsets)[4], const IVec4& result) { return is2DArrayGatherOffsetsResultValid(texture, sampler, prec, coord, componentNdx, offsets, result); } bool isGatherOffsetsResultValid (const Texture2DArrayView& texture, const Sampler& sampler, const IntLookupPrecision& prec, const Vec3& coord, int componentNdx, const IVec2 (&offsets)[4], const UVec4& result) { return is2DArrayGatherOffsetsResultValid(texture, sampler, prec, coord, componentNdx, offsets, result); } template static bool isGatherResultValid (const TextureCubeView& texture, const Sampler& sampler, const PrecType& prec, const CubeFaceFloatCoords& coords, int componentNdx, const Vector& result) { const int size = texture.getLevelFace(0, coords.face).getWidth(); const Vec2 uBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, size, coords.s, prec.coordBits.x(), prec.uvwBits.x()); const Vec2 vBounds = computeNonNormalizedCoordBounds(sampler.normalizedCoords, size, coords.t, prec.coordBits.y(), prec.uvwBits.y()); // Integer coordinate bounds for (x0,y0) - without wrap mode const int minI = deFloorFloatToInt32(uBounds.x()-0.5f); const int maxI = deFloorFloatToInt32(uBounds.y()-0.5f); const int minJ = deFloorFloatToInt32(vBounds.x()-0.5f); const int maxJ = deFloorFloatToInt32(vBounds.y()-0.5f); // Face accesses ConstPixelBufferAccess faces[CUBEFACE_LAST]; for (int face = 0; face < CUBEFACE_LAST; face++) faces[face] = texture.getLevelFace(0, CubeFace(face)); for (int j = minJ; j <= maxJ; j++) { for (int i = minI; i <= maxI; i++) { static const IVec2 offsets[4] = { IVec2(0, 1), IVec2(1, 1), IVec2(1, 0), IVec2(0, 0) }; Vector color; for (int offNdx = 0; offNdx < 4; offNdx++) { const CubeFaceIntCoords c = remapCubeEdgeCoords(CubeFaceIntCoords(coords.face, i+offsets[offNdx].x(), j+offsets[offNdx].y()), size); // If any of samples is out of both edges, implementations can do pretty much anything according to spec. // \todo [2014-06-05 nuutti] Test the special case where all corner pixels have exactly the same color. // See also isSeamlessLinearSampleResultValid and similar. if (c.face == CUBEFACE_LAST) return true; color[offNdx] = lookup(faces[c.face], sampler, c.s, c.t, 0)[componentNdx]; } if (isColorValid(prec, color, result)) return true; } } return false; } template static bool isCubeGatherResultValid (const TextureCubeView& texture, const Sampler& sampler, const PrecType& prec, const Vec3& coord, int componentNdx, const Vector& result) { int numPossibleFaces = 0; CubeFace possibleFaces[CUBEFACE_LAST]; getPossibleCubeFaces(coord, prec.coordBits, &possibleFaces[0], numPossibleFaces); if (numPossibleFaces == 0) return true; // Result is undefined. for (int tryFaceNdx = 0; tryFaceNdx < numPossibleFaces; tryFaceNdx++) { const CubeFaceFloatCoords faceCoords(possibleFaces[tryFaceNdx], projectToFace(possibleFaces[tryFaceNdx], coord)); if (isGatherResultValid(texture, sampler, prec, faceCoords, componentNdx, result)) return true; } return false; } bool isGatherResultValid (const TextureCubeView& texture, const Sampler& sampler, const LookupPrecision& prec, const Vec3& coord, int componentNdx, const Vec4& result) { return isCubeGatherResultValid(texture, sampler, prec, coord, componentNdx, result); } bool isGatherResultValid (const TextureCubeView& texture, const Sampler& sampler, const IntLookupPrecision& prec, const Vec3& coord, int componentNdx, const IVec4& result) { return isCubeGatherResultValid(texture, sampler, prec, coord, componentNdx, result); } bool isGatherResultValid (const TextureCubeView& texture, const Sampler& sampler, const IntLookupPrecision& prec, const Vec3& coord, int componentNdx, const UVec4& result) { return isCubeGatherResultValid(texture, sampler, prec, coord, componentNdx, result); } } // tcu