/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 3.1 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Tessellation and geometry shader interaction tests. *//*--------------------------------------------------------------------*/ #include "es31fTessellationGeometryInteractionTests.hpp" #include "tcuTestLog.hpp" #include "tcuRenderTarget.hpp" #include "tcuSurface.hpp" #include "tcuImageCompare.hpp" #include "tcuVectorUtil.hpp" #include "tcuTextureUtil.hpp" #include "tcuStringTemplate.hpp" #include "gluRenderContext.hpp" #include "gluShaderProgram.hpp" #include "gluStrUtil.hpp" #include "gluContextInfo.hpp" #include "gluObjectWrapper.hpp" #include "gluPixelTransfer.hpp" #include "glwFunctions.hpp" #include "glwEnums.hpp" #include "deStringUtil.hpp" #include "deUniquePtr.hpp" #include #include #include namespace deqp { namespace gles31 { namespace Functional { namespace { static std::string specializeShader (const std::string& shaderSource, const glu::ContextType& contextType) { const bool supportsES32 = glu::contextSupports(contextType, glu::ApiType::es(3, 2)); std::map shaderArgs; shaderArgs["VERSION_DECL"] = glu::getGLSLVersionDeclaration(glu::getContextTypeGLSLVersion(contextType)); shaderArgs["EXTENSION_GEOMETRY_SHADER"] = (supportsES32) ? ("") : ("#extension GL_EXT_geometry_shader : require\n"); shaderArgs["EXTENSION_TESSELATION_SHADER"] = (supportsES32) ? ("") : ("#extension GL_EXT_tessellation_shader : require\n"); return tcu::StringTemplate(shaderSource).specialize(shaderArgs); } static const char* const s_positionVertexShader = "${VERSION_DECL}\n" "in highp vec4 a_position;\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" "}\n"; static const char* const s_whiteOutputFragmentShader = "${VERSION_DECL}\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " fragColor = vec4(1.0);\n" "}\n"; static bool isBlack (const tcu::RGBA& c) { return c.getRed() == 0 && c.getGreen() == 0 && c.getBlue() == 0; } class IdentityShaderCase : public TestCase { public: IdentityShaderCase (Context& context, const char* name, const char* description); protected: std::string getVertexSource (void) const; std::string getFragmentSource (void) const; }; IdentityShaderCase::IdentityShaderCase (Context& context, const char* name, const char* description) : TestCase(context, name, description) { } std::string IdentityShaderCase::getVertexSource (void) const { std::string source = "${VERSION_DECL}\n" "in highp vec4 a_position;\n" "out highp vec4 v_vertex_color;\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" " v_vertex_color = vec4(a_position.x * 0.5 + 0.5, a_position.y * 0.5 + 0.5, 1.0, 0.4);\n" "}\n"; return specializeShader(source, m_context.getRenderContext().getType()); } std::string IdentityShaderCase::getFragmentSource (void) const { std::string source = "${VERSION_DECL}\n" "in mediump vec4 v_fragment_color;\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " fragColor = v_fragment_color;\n" "}\n"; return specializeShader(source, m_context.getRenderContext().getType()); } class IdentityGeometryShaderCase : public IdentityShaderCase { public: enum CaseType { CASE_TRIANGLES = 0, CASE_QUADS, CASE_ISOLINES, }; IdentityGeometryShaderCase (Context& context, const char* name, const char* description, CaseType caseType); ~IdentityGeometryShaderCase (void); private: void init (void); void deinit (void); IterateResult iterate (void); std::string getTessellationControlSource (void) const; std::string getTessellationEvaluationSource (bool geometryActive) const; std::string getGeometrySource (void) const; enum { RENDER_SIZE = 128, }; const CaseType m_case; deUint32 m_patchBuffer; }; IdentityGeometryShaderCase::IdentityGeometryShaderCase (Context& context, const char* name, const char* description, CaseType caseType) : IdentityShaderCase (context, name, description) , m_case (caseType) , m_patchBuffer (0) { } IdentityGeometryShaderCase::~IdentityGeometryShaderCase (void) { deinit(); } void IdentityGeometryShaderCase::init (void) { // Requirements const bool supportsES32 = glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)); if (!supportsES32 && (!m_context.getContextInfo().isExtensionSupported("GL_EXT_tessellation_shader") || !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))) throw tcu::NotSupportedError("Test requires GL_EXT_tessellation_shader and GL_EXT_geometry_shader extensions"); if (m_context.getRenderTarget().getWidth() < RENDER_SIZE || m_context.getRenderTarget().getHeight() < RENDER_SIZE) throw tcu::NotSupportedError("Test requires " + de::toString(RENDER_SIZE) + "x" + de::toString(RENDER_SIZE) + " or larger render target."); // Log m_testCtx.getLog() << tcu::TestLog::Message << "Testing tessellating shader program output does not change when a passthrough geometry shader is attached.\n" << "Rendering two images, first with and second without a geometry shader. Expecting similar results.\n" << "Using additive blending to detect overlap.\n" << tcu::TestLog::EndMessage; // Resources { static const tcu::Vec4 patchBufferData[4] = { tcu::Vec4( -0.9f, -0.9f, 0.0f, 1.0f ), tcu::Vec4( -0.9f, 0.9f, 0.0f, 1.0f ), tcu::Vec4( 0.9f, -0.9f, 0.0f, 1.0f ), tcu::Vec4( 0.9f, 0.9f, 0.0f, 1.0f ), }; const glw::Functions& gl = m_context.getRenderContext().getFunctions(); gl.genBuffers(1, &m_patchBuffer); gl.bindBuffer(GL_ARRAY_BUFFER, m_patchBuffer); gl.bufferData(GL_ARRAY_BUFFER, sizeof(patchBufferData), patchBufferData, GL_STATIC_DRAW); GLU_EXPECT_NO_ERROR(gl.getError(), "gen buffer"); } } void IdentityGeometryShaderCase::deinit (void) { if (m_patchBuffer) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_patchBuffer); m_patchBuffer = 0; } } IdentityGeometryShaderCase::IterateResult IdentityGeometryShaderCase::iterate (void) { const float innerTessellationLevel = 14.0f; const float outerTessellationLevel = 14.0f; const glw::Functions& gl = m_context.getRenderContext().getFunctions(); tcu::Surface resultWithGeometry (RENDER_SIZE, RENDER_SIZE); tcu::Surface resultWithoutGeometry (RENDER_SIZE, RENDER_SIZE); const struct { const char* name; const char* description; bool containsGeometryShader; tcu::PixelBufferAccess surfaceAccess; } renderTargets[] = { { "RenderWithGeometryShader", "Render with geometry shader", true, resultWithGeometry.getAccess() }, { "RenderWithoutGeometryShader", "Render without geometry shader", false, resultWithoutGeometry.getAccess() }, }; gl.viewport(0, 0, RENDER_SIZE, RENDER_SIZE); gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f); GLU_EXPECT_NO_ERROR(gl.getError(), "set viewport"); gl.enable(GL_BLEND); gl.blendFunc(GL_SRC_ALPHA, GL_ONE); gl.blendEquation(GL_FUNC_ADD); GLU_EXPECT_NO_ERROR(gl.getError(), "set blend"); m_testCtx.getLog() << tcu::TestLog::Message << "Tessellation level: inner " << innerTessellationLevel << ", outer " << outerTessellationLevel << tcu::TestLog::EndMessage; // render with and without geometry shader for (int renderNdx = 0; renderNdx < DE_LENGTH_OF_ARRAY(renderTargets); ++renderNdx) { const tcu::ScopedLogSection section (m_testCtx.getLog(), renderTargets[renderNdx].name, renderTargets[renderNdx].description); glu::ProgramSources sources; sources << glu::VertexSource(getVertexSource()) << glu::FragmentSource(getFragmentSource()) << glu::TessellationControlSource(getTessellationControlSource()) << glu::TessellationEvaluationSource(getTessellationEvaluationSource(renderTargets[renderNdx].containsGeometryShader)); if (renderTargets[renderNdx].containsGeometryShader) sources << glu::GeometrySource(getGeometrySource()); { const glu::ShaderProgram program (m_context.getRenderContext(), sources); const glu::VertexArray vao (m_context.getRenderContext()); const int posLocation = gl.getAttribLocation(program.getProgram(), "a_position"); const int innerTessellationLoc = gl.getUniformLocation(program.getProgram(), "u_innerTessellationLevel"); const int outerTessellationLoc = gl.getUniformLocation(program.getProgram(), "u_outerTessellationLevel"); m_testCtx.getLog() << program; if (!program.isOk()) throw tcu::TestError("could not build program"); if (posLocation == -1) throw tcu::TestError("a_position location was -1"); if (outerTessellationLoc == -1) throw tcu::TestError("u_outerTessellationLevel location was -1"); gl.bindVertexArray(*vao); gl.bindBuffer(GL_ARRAY_BUFFER, m_patchBuffer); gl.vertexAttribPointer(posLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); gl.enableVertexAttribArray(posLocation); GLU_EXPECT_NO_ERROR(gl.getError(), "setup attribs"); gl.useProgram(program.getProgram()); gl.uniform1f(outerTessellationLoc, outerTessellationLevel); if (innerTessellationLoc == -1) gl.uniform1f(innerTessellationLoc, innerTessellationLevel); GLU_EXPECT_NO_ERROR(gl.getError(), "use program"); gl.patchParameteri(GL_PATCH_VERTICES, (m_case == CASE_TRIANGLES) ? (3): (4)); GLU_EXPECT_NO_ERROR(gl.getError(), "set patch param"); gl.clear(GL_COLOR_BUFFER_BIT); GLU_EXPECT_NO_ERROR(gl.getError(), "clear"); gl.drawArrays(GL_PATCHES, 0, 4); GLU_EXPECT_NO_ERROR(gl.getError(), "draw patches"); glu::readPixels(m_context.getRenderContext(), 0, 0, renderTargets[renderNdx].surfaceAccess); } } if (tcu::intThresholdPositionDeviationCompare(m_testCtx.getLog(), "ImageCompare", "Image comparison", resultWithoutGeometry.getAccess(), resultWithGeometry.getAccess(), tcu::UVec4(8, 8, 8, 255), tcu::IVec3(1, 1, 0), true, tcu::COMPARE_LOG_RESULT)) m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); else m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed"); return STOP; } std::string IdentityGeometryShaderCase::getTessellationControlSource (void) const { std::ostringstream buf; buf << "${VERSION_DECL}\n" "${EXTENSION_TESSELATION_SHADER}" "layout(vertices = 4) out;\n" "\n" "uniform highp float u_innerTessellationLevel;\n" "uniform highp float u_outerTessellationLevel;\n" "in highp vec4 v_vertex_color[];\n" "out highp vec4 v_patch_color[];\n" "\n" "void main (void)\n" "{\n" " gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n" " v_patch_color[gl_InvocationID] = v_vertex_color[gl_InvocationID];\n" "\n"; if (m_case == CASE_TRIANGLES) buf << " gl_TessLevelOuter[0] = u_outerTessellationLevel;\n" " gl_TessLevelOuter[1] = u_outerTessellationLevel;\n" " gl_TessLevelOuter[2] = u_outerTessellationLevel;\n" " gl_TessLevelInner[0] = u_innerTessellationLevel;\n"; else if (m_case == CASE_QUADS) buf << " gl_TessLevelOuter[0] = u_outerTessellationLevel;\n" " gl_TessLevelOuter[1] = u_outerTessellationLevel;\n" " gl_TessLevelOuter[2] = u_outerTessellationLevel;\n" " gl_TessLevelOuter[3] = u_outerTessellationLevel;\n" " gl_TessLevelInner[0] = u_innerTessellationLevel;\n" " gl_TessLevelInner[1] = u_innerTessellationLevel;\n"; else if (m_case == CASE_ISOLINES) buf << " gl_TessLevelOuter[0] = u_outerTessellationLevel;\n" " gl_TessLevelOuter[1] = u_outerTessellationLevel;\n"; else DE_ASSERT(false); buf << "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } std::string IdentityGeometryShaderCase::getTessellationEvaluationSource (bool geometryActive) const { const char* const colorOutputName = ((geometryActive) ? ("v_evaluated_color") : ("v_fragment_color")); std::ostringstream buf; buf << "${VERSION_DECL}\n" "${EXTENSION_TESSELATION_SHADER}" "layout(" << ((m_case == CASE_TRIANGLES) ? ("triangles") : (m_case == CASE_QUADS) ? ("quads") : ("isolines")) << ") in;\n" "\n" "in highp vec4 v_patch_color[];\n" "out highp vec4 " << colorOutputName << ";\n" "\n" "// note: No need to use precise gl_Position since we do not require gapless geometry\n" "void main (void)\n" "{\n"; if (m_case == CASE_TRIANGLES) buf << " vec3 weights = vec3(pow(gl_TessCoord.x, 1.3), pow(gl_TessCoord.y, 1.3), pow(gl_TessCoord.z, 1.3));\n" " vec3 cweights = gl_TessCoord;\n" " gl_Position = vec4(weights.x * gl_in[0].gl_Position.xyz + weights.y * gl_in[1].gl_Position.xyz + weights.z * gl_in[2].gl_Position.xyz, 1.0);\n" " " << colorOutputName << " = cweights.x * v_patch_color[0] + cweights.y * v_patch_color[1] + cweights.z * v_patch_color[2];\n"; else if (m_case == CASE_QUADS || m_case == CASE_ISOLINES) buf << " vec2 normalizedCoord = (gl_TessCoord.xy * 2.0 - vec2(1.0));\n" " vec2 normalizedWeights = normalizedCoord * (vec2(1.0) - 0.3 * cos(normalizedCoord.yx * 1.57));\n" " vec2 weights = normalizedWeights * 0.5 + vec2(0.5);\n" " vec2 cweights = gl_TessCoord.xy;\n" " gl_Position = mix(mix(gl_in[0].gl_Position, gl_in[1].gl_Position, weights.y), mix(gl_in[2].gl_Position, gl_in[3].gl_Position, weights.y), weights.x);\n" " " << colorOutputName << " = mix(mix(v_patch_color[0], v_patch_color[1], cweights.y), mix(v_patch_color[2], v_patch_color[3], cweights.y), cweights.x);\n"; else DE_ASSERT(false); buf << "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } std::string IdentityGeometryShaderCase::getGeometrySource (void) const { const char* const geometryInputPrimitive = (m_case == CASE_ISOLINES) ? ("lines") : ("triangles"); const char* const geometryOutputPrimitive = (m_case == CASE_ISOLINES) ? ("line_strip") : ("triangle_strip"); const int numEmitVertices = (m_case == CASE_ISOLINES) ? (2) : (3); std::ostringstream buf; buf << "${VERSION_DECL}\n" "${EXTENSION_GEOMETRY_SHADER}" "layout(" << geometryInputPrimitive << ") in;\n" "layout(" << geometryOutputPrimitive << ", max_vertices=" << numEmitVertices <<") out;\n" "\n" "in highp vec4 v_evaluated_color[];\n" "out highp vec4 v_fragment_color;\n" "\n" "void main (void)\n" "{\n" " for (int ndx = 0; ndx < gl_in.length(); ++ndx)\n" " {\n" " gl_Position = gl_in[ndx].gl_Position;\n" " v_fragment_color = v_evaluated_color[ndx];\n" " EmitVertex();\n" " }\n" "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } class IdentityTessellationShaderCase : public IdentityShaderCase { public: enum CaseType { CASE_TRIANGLES = 0, CASE_ISOLINES, }; IdentityTessellationShaderCase (Context& context, const char* name, const char* description, CaseType caseType); ~IdentityTessellationShaderCase (void); private: void init (void); void deinit (void); IterateResult iterate (void); std::string getTessellationControlSource (void) const; std::string getTessellationEvaluationSource (void) const; std::string getGeometrySource (bool tessellationActive) const; enum { RENDER_SIZE = 256, }; const CaseType m_case; deUint32 m_dataBuffer; }; IdentityTessellationShaderCase::IdentityTessellationShaderCase (Context& context, const char* name, const char* description, CaseType caseType) : IdentityShaderCase (context, name, description) , m_case (caseType) , m_dataBuffer (0) { } IdentityTessellationShaderCase::~IdentityTessellationShaderCase (void) { deinit(); } void IdentityTessellationShaderCase::init (void) { // Requirements const bool supportsES32 = glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)); if (!supportsES32 && (!m_context.getContextInfo().isExtensionSupported("GL_EXT_tessellation_shader") || !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))) throw tcu::NotSupportedError("Test requires GL_EXT_tessellation_shader and GL_EXT_geometry_shader extensions"); if (m_context.getRenderTarget().getWidth() < RENDER_SIZE || m_context.getRenderTarget().getHeight() < RENDER_SIZE) throw tcu::NotSupportedError("Test requires " + de::toString(RENDER_SIZE) + "x" + de::toString(RENDER_SIZE) + " or larger render target."); // Log m_testCtx.getLog() << tcu::TestLog::Message << "Testing geometry shading shader program output does not change when a passthrough tessellation shader is attached.\n" << "Rendering two images, first with and second without a tessellation shader. Expecting similar results.\n" << "Using additive blending to detect overlap.\n" << tcu::TestLog::EndMessage; // Resources { static const tcu::Vec4 pointData[] = { tcu::Vec4( -0.4f, 0.4f, 0.0f, 1.0f ), tcu::Vec4( 0.0f, -0.5f, 0.0f, 1.0f ), tcu::Vec4( 0.4f, 0.4f, 0.0f, 1.0f ), }; const glw::Functions& gl = m_context.getRenderContext().getFunctions(); gl.genBuffers(1, &m_dataBuffer); gl.bindBuffer(GL_ARRAY_BUFFER, m_dataBuffer); gl.bufferData(GL_ARRAY_BUFFER, sizeof(pointData), pointData, GL_STATIC_DRAW); GLU_EXPECT_NO_ERROR(gl.getError(), "gen buffer"); } } void IdentityTessellationShaderCase::deinit (void) { if (m_dataBuffer) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_dataBuffer); m_dataBuffer = 0; } } IdentityTessellationShaderCase::IterateResult IdentityTessellationShaderCase::iterate (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); tcu::Surface resultWithTessellation (RENDER_SIZE, RENDER_SIZE); tcu::Surface resultWithoutTessellation (RENDER_SIZE, RENDER_SIZE); const int numPrimitiveVertices = (m_case == CASE_TRIANGLES) ? (3) : (2); const struct { const char* name; const char* description; bool containsTessellationShaders; tcu::PixelBufferAccess surfaceAccess; } renderTargets[] = { { "RenderWithTessellationShader", "Render with tessellation shader", true, resultWithTessellation.getAccess() }, { "RenderWithoutTessellationShader", "Render without tessellation shader", false, resultWithoutTessellation.getAccess() }, }; gl.viewport(0, 0, RENDER_SIZE, RENDER_SIZE); gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f); GLU_EXPECT_NO_ERROR(gl.getError(), "set viewport"); gl.enable(GL_BLEND); gl.blendFunc(GL_SRC_ALPHA, GL_ONE); gl.blendEquation(GL_FUNC_ADD); GLU_EXPECT_NO_ERROR(gl.getError(), "set blend"); // render with and without tessellation shader for (int renderNdx = 0; renderNdx < DE_LENGTH_OF_ARRAY(renderTargets); ++renderNdx) { const tcu::ScopedLogSection section (m_testCtx.getLog(), renderTargets[renderNdx].name, renderTargets[renderNdx].description); glu::ProgramSources sources; sources << glu::VertexSource(getVertexSource()) << glu::FragmentSource(getFragmentSource()) << glu::GeometrySource(getGeometrySource(renderTargets[renderNdx].containsTessellationShaders)); if (renderTargets[renderNdx].containsTessellationShaders) sources << glu::TessellationControlSource(getTessellationControlSource()) << glu::TessellationEvaluationSource(getTessellationEvaluationSource()); { const glu::ShaderProgram program (m_context.getRenderContext(), sources); const glu::VertexArray vao (m_context.getRenderContext()); const int posLocation = gl.getAttribLocation(program.getProgram(), "a_position"); m_testCtx.getLog() << program; if (!program.isOk()) throw tcu::TestError("could not build program"); if (posLocation == -1) throw tcu::TestError("a_position location was -1"); gl.bindVertexArray(*vao); gl.bindBuffer(GL_ARRAY_BUFFER, m_dataBuffer); gl.vertexAttribPointer(posLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); gl.enableVertexAttribArray(posLocation); GLU_EXPECT_NO_ERROR(gl.getError(), "setup attribs"); gl.useProgram(program.getProgram()); GLU_EXPECT_NO_ERROR(gl.getError(), "use program"); gl.clear(GL_COLOR_BUFFER_BIT); GLU_EXPECT_NO_ERROR(gl.getError(), "clear"); if (renderTargets[renderNdx].containsTessellationShaders) { gl.patchParameteri(GL_PATCH_VERTICES, numPrimitiveVertices); GLU_EXPECT_NO_ERROR(gl.getError(), "set patch param"); gl.drawArrays(GL_PATCHES, 0, numPrimitiveVertices); GLU_EXPECT_NO_ERROR(gl.getError(), "draw patches"); } else { gl.drawArrays((m_case == CASE_TRIANGLES) ? (GL_TRIANGLES) : (GL_LINES), 0, numPrimitiveVertices); GLU_EXPECT_NO_ERROR(gl.getError(), "draw primitives"); } glu::readPixels(m_context.getRenderContext(), 0, 0, renderTargets[renderNdx].surfaceAccess); } } // compare { bool imageOk; if (m_context.getRenderTarget().getNumSamples() > 1) imageOk = tcu::fuzzyCompare(m_testCtx.getLog(), "ImageCompare", "Image comparison", resultWithoutTessellation.getAccess(), resultWithTessellation.getAccess(), 0.03f, tcu::COMPARE_LOG_RESULT); else imageOk = tcu::intThresholdPositionDeviationCompare(m_testCtx.getLog(), "ImageCompare", "Image comparison", resultWithoutTessellation.getAccess(), resultWithTessellation.getAccess(), tcu::UVec4(8, 8, 8, 255), //!< threshold tcu::IVec3(1, 1, 0), //!< 3x3 search kernel true, //!< fragments may end up over the viewport, just ignore them tcu::COMPARE_LOG_RESULT); if (imageOk) m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); else m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed"); } return STOP; } std::string IdentityTessellationShaderCase::getTessellationControlSource (void) const { std::ostringstream buf; buf << "${VERSION_DECL}\n" "${EXTENSION_TESSELATION_SHADER}" "layout(vertices = " << ((m_case == CASE_TRIANGLES) ? (3) : (2)) << ") out;\n" "\n" "in highp vec4 v_vertex_color[];\n" "out highp vec4 v_control_color[];\n" "\n" "void main (void)\n" "{\n" " gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n" " v_control_color[gl_InvocationID] = v_vertex_color[gl_InvocationID];\n" "\n"; if (m_case == CASE_TRIANGLES) buf << " gl_TessLevelOuter[0] = 1.0;\n" " gl_TessLevelOuter[1] = 1.0;\n" " gl_TessLevelOuter[2] = 1.0;\n" " gl_TessLevelInner[0] = 1.0;\n"; else if (m_case == CASE_ISOLINES) buf << " gl_TessLevelOuter[0] = 1.0;\n" " gl_TessLevelOuter[1] = 1.0;\n"; else DE_ASSERT(false); buf << "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } std::string IdentityTessellationShaderCase::getTessellationEvaluationSource (void) const { std::ostringstream buf; buf << "${VERSION_DECL}\n" "${EXTENSION_TESSELATION_SHADER}" "layout(" << ((m_case == CASE_TRIANGLES) ? ("triangles") : ("isolines")) << ") in;\n" "\n" "in highp vec4 v_control_color[];\n" "out highp vec4 v_evaluated_color;\n" "\n" "// note: No need to use precise gl_Position since we do not require gapless geometry\n" "void main (void)\n" "{\n"; if (m_case == CASE_TRIANGLES) buf << " gl_Position = gl_TessCoord.x * gl_in[0].gl_Position + gl_TessCoord.y * gl_in[1].gl_Position + gl_TessCoord.z * gl_in[2].gl_Position;\n" " v_evaluated_color = gl_TessCoord.x * v_control_color[0] + gl_TessCoord.y * v_control_color[1] + gl_TessCoord.z * v_control_color[2];\n"; else if (m_case == CASE_ISOLINES) buf << " gl_Position = mix(gl_in[0].gl_Position, gl_in[1].gl_Position, gl_TessCoord.x);\n" " v_evaluated_color = mix(v_control_color[0], v_control_color[1], gl_TessCoord.x);\n"; else DE_ASSERT(false); buf << "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } std::string IdentityTessellationShaderCase::getGeometrySource (bool tessellationActive) const { const char* const colorSourceName = (tessellationActive) ? ("v_evaluated_color") : ("v_vertex_color"); const char* const geometryInputPrimitive = (m_case == CASE_ISOLINES) ? ("lines") : ("triangles"); const char* const geometryOutputPrimitive = (m_case == CASE_ISOLINES) ? ("line_strip") : ("triangle_strip"); const int numEmitVertices = (m_case == CASE_ISOLINES) ? (11) : (8); std::ostringstream buf; buf << "${VERSION_DECL}\n" "${EXTENSION_GEOMETRY_SHADER}" "layout(" << geometryInputPrimitive << ") in;\n" "layout(" << geometryOutputPrimitive << ", max_vertices=" << numEmitVertices <<") out;\n" "\n" "in highp vec4 " << colorSourceName << "[];\n" "out highp vec4 v_fragment_color;\n" "\n" "void main (void)\n" "{\n"; if (m_case == CASE_TRIANGLES) { buf << " vec4 centerPos = (gl_in[0].gl_Position + gl_in[1].gl_Position + gl_in[2].gl_Position) / 3.0f;\n" "\n" " for (int ndx = 0; ndx < 4; ++ndx)\n" " {\n" " gl_Position = centerPos + (centerPos - gl_in[ndx % 3].gl_Position);\n" " v_fragment_color = " << colorSourceName << "[ndx % 3];\n" " EmitVertex();\n" "\n" " gl_Position = centerPos + 0.7 * (centerPos - gl_in[ndx % 3].gl_Position);\n" " v_fragment_color = " << colorSourceName << "[ndx % 3];\n" " EmitVertex();\n" " }\n"; } else if (m_case == CASE_ISOLINES) { buf << " vec4 mdir = vec4(gl_in[0].gl_Position.y - gl_in[1].gl_Position.y, gl_in[1].gl_Position.x - gl_in[0].gl_Position.x, 0.0, 0.0);\n" " for (int i = 0; i <= 10; ++i)\n" " {\n" " float xweight = cos(float(i) / 10.0 * 6.28) * 0.5 + 0.5;\n" " float mweight = sin(float(i) / 10.0 * 6.28) * 0.1 + 0.1;\n" " gl_Position = mix(gl_in[0].gl_Position, gl_in[1].gl_Position, xweight) + mweight * mdir;\n" " v_fragment_color = mix(" << colorSourceName << "[0], " << colorSourceName << "[1], xweight);\n" " EmitVertex();\n" " }\n"; } else DE_ASSERT(false); buf << "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } class FeedbackPrimitiveTypeCase : public TestCase { public: enum TessellationOutputType { TESSELLATION_OUT_TRIANGLES = 0, TESSELLATION_OUT_QUADS, TESSELLATION_OUT_ISOLINES, TESSELLATION_OUT_LAST }; enum TessellationPointMode { TESSELLATION_POINTMODE_OFF = 0, TESSELLATION_POINTMODE_ON, TESSELLATION_POINTMODE_LAST }; enum GeometryOutputType { GEOMETRY_OUTPUT_POINTS = 0, GEOMETRY_OUTPUT_LINES, GEOMETRY_OUTPUT_TRIANGLES, GEOMETRY_OUTPUT_LAST }; FeedbackPrimitiveTypeCase (Context& context, const char* name, const char* description, TessellationOutputType tessellationOutput, TessellationPointMode tessellationPointMode, GeometryOutputType geometryOutputType); ~FeedbackPrimitiveTypeCase (void); private: void init (void); void deinit (void); IterateResult iterate (void); void renderWithFeedback (tcu::Surface& dst); void renderWithoutFeedback (tcu::Surface& dst); void verifyFeedbackResults (const std::vector& feedbackResult); void verifyRenderedImage (const tcu::Surface& image, const std::vector& vertices); void genTransformFeedback (void); int getNumGeneratedElementsPerPrimitive (void) const; int getNumGeneratedPrimitives (void) const; int getNumTessellatedPrimitives (void) const; int getGeometryAmplification (void) const; std::string getVertexSource (void) const; std::string getFragmentSource (void) const; std::string getTessellationControlSource (void) const; std::string getTessellationEvaluationSource (void) const; std::string getGeometrySource (void) const; static const char* getTessellationOutputDescription (TessellationOutputType tessellationOutput, TessellationPointMode tessellationPointMode); static const char* getGeometryInputDescription (TessellationOutputType tessellationOutput, TessellationPointMode tessellationPointMode); static const char* getGeometryOutputDescription (GeometryOutputType geometryOutput); glw::GLenum getOutputPrimitiveGLType (void) const; enum { RENDER_SIZE = 128, }; const TessellationOutputType m_tessellationOutput; const TessellationPointMode m_tessellationPointMode; const GeometryOutputType m_geometryOutputType; glu::ShaderProgram* m_feedbackProgram; glu::ShaderProgram* m_nonFeedbackProgram; deUint32 m_patchBuffer; deUint32 m_feedbackID; deUint32 m_feedbackBuffer; }; FeedbackPrimitiveTypeCase::FeedbackPrimitiveTypeCase (Context& context, const char* name, const char* description, TessellationOutputType tessellationOutput, TessellationPointMode tessellationPointMode, GeometryOutputType geometryOutputType) : TestCase (context, name, description) , m_tessellationOutput (tessellationOutput) , m_tessellationPointMode (tessellationPointMode) , m_geometryOutputType (geometryOutputType) , m_feedbackProgram (DE_NULL) , m_nonFeedbackProgram (DE_NULL) , m_patchBuffer (0) , m_feedbackID (0) , m_feedbackBuffer (0) { DE_ASSERT(tessellationOutput < TESSELLATION_OUT_LAST); DE_ASSERT(tessellationPointMode < TESSELLATION_POINTMODE_LAST); DE_ASSERT(geometryOutputType < GEOMETRY_OUTPUT_LAST); } FeedbackPrimitiveTypeCase::~FeedbackPrimitiveTypeCase (void) { deinit(); } void FeedbackPrimitiveTypeCase::init (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); // Requirements const bool supportsES32 = glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)); if (!supportsES32 && (!m_context.getContextInfo().isExtensionSupported("GL_EXT_tessellation_shader") || !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))) throw tcu::NotSupportedError("Test requires GL_EXT_tessellation_shader and GL_EXT_geometry_shader extensions"); if (m_context.getRenderTarget().getWidth() < RENDER_SIZE || m_context.getRenderTarget().getHeight() < RENDER_SIZE) throw tcu::NotSupportedError("Test requires " + de::toString(RENDER_SIZE) + "x" + de::toString(RENDER_SIZE) + " or larger render target."); // Log m_testCtx.getLog() << tcu::TestLog::Message << "Testing " << getTessellationOutputDescription(m_tessellationOutput, m_tessellationPointMode) << "->" << getGeometryInputDescription(m_tessellationOutput, m_tessellationPointMode) << " primitive conversion with and without transform feedback.\n" << "Sending a patch of 4 vertices (2x2 uniform grid) to tessellation control shader.\n" << "Control shader emits a patch of 9 vertices (3x3 uniform grid).\n" << "Setting outer tessellation level = 3, inner = 3.\n" << "Primitive generator emits " << getTessellationOutputDescription(m_tessellationOutput, m_tessellationPointMode) << "\n" << "Geometry shader transforms emitted primitives to " << getGeometryOutputDescription(m_geometryOutputType) << "\n" << "Reading back vertex positions of generated primitives using transform feedback.\n" << "Verifying rendered image and feedback vertices are consistent.\n" << "Rendering scene again with identical shader program, but without setting feedback varying. Expecting similar output image." << tcu::TestLog::EndMessage; // Resources { static const tcu::Vec4 patchBufferData[4] = { tcu::Vec4( -0.9f, -0.9f, 0.0f, 1.0f ), tcu::Vec4( -0.9f, 0.9f, 0.0f, 1.0f ), tcu::Vec4( 0.9f, -0.9f, 0.0f, 1.0f ), tcu::Vec4( 0.9f, 0.9f, 0.0f, 1.0f ), }; gl.genBuffers(1, &m_patchBuffer); gl.bindBuffer(GL_ARRAY_BUFFER, m_patchBuffer); gl.bufferData(GL_ARRAY_BUFFER, sizeof(patchBufferData), patchBufferData, GL_STATIC_DRAW); GLU_EXPECT_NO_ERROR(gl.getError(), "gen buffer"); } m_feedbackProgram = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(getVertexSource()) << glu::FragmentSource(getFragmentSource()) << glu::TessellationControlSource(getTessellationControlSource()) << glu::TessellationEvaluationSource(getTessellationEvaluationSource()) << glu::GeometrySource(getGeometrySource()) << glu::TransformFeedbackVarying("tf_someVertexPosition") << glu::TransformFeedbackMode(GL_INTERLEAVED_ATTRIBS)); m_testCtx.getLog() << *m_feedbackProgram; if (!m_feedbackProgram->isOk()) throw tcu::TestError("failed to build program"); m_nonFeedbackProgram = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(getVertexSource()) << glu::FragmentSource(getFragmentSource()) << glu::TessellationControlSource(getTessellationControlSource()) << glu::TessellationEvaluationSource(getTessellationEvaluationSource()) << glu::GeometrySource(getGeometrySource())); if (!m_nonFeedbackProgram->isOk()) { m_testCtx.getLog() << *m_nonFeedbackProgram; throw tcu::TestError("failed to build program"); } genTransformFeedback(); } void FeedbackPrimitiveTypeCase::deinit (void) { if (m_patchBuffer) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_patchBuffer); m_patchBuffer = 0; } if (m_feedbackBuffer) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_feedbackBuffer); m_feedbackBuffer = 0; } if (m_feedbackID) { m_context.getRenderContext().getFunctions().deleteTransformFeedbacks(1, &m_feedbackID); m_feedbackID = 0; } if (m_feedbackProgram) { delete m_feedbackProgram; m_feedbackProgram = DE_NULL; } if (m_nonFeedbackProgram) { delete m_nonFeedbackProgram; m_nonFeedbackProgram = DE_NULL; } } FeedbackPrimitiveTypeCase::IterateResult FeedbackPrimitiveTypeCase::iterate (void) { tcu::Surface feedbackResult (RENDER_SIZE, RENDER_SIZE); tcu::Surface nonFeedbackResult (RENDER_SIZE, RENDER_SIZE); m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); // render with and without XFB renderWithFeedback(feedbackResult); renderWithoutFeedback(nonFeedbackResult); // compare { bool imageOk; m_testCtx.getLog() << tcu::TestLog::Message << "Comparing the image rendered with no transform feedback against the image rendered with enabled transform feedback." << tcu::TestLog::EndMessage; if (m_context.getRenderTarget().getNumSamples() > 1) imageOk = tcu::fuzzyCompare(m_testCtx.getLog(), "ImageCompare", "Image comparison", feedbackResult.getAccess(), nonFeedbackResult.getAccess(), 0.03f, tcu::COMPARE_LOG_RESULT); else imageOk = tcu::intThresholdPositionDeviationCompare(m_testCtx.getLog(), "ImageCompare", "Image comparison", feedbackResult.getAccess(), nonFeedbackResult.getAccess(), tcu::UVec4(8, 8, 8, 255), //!< threshold tcu::IVec3(1, 1, 0), //!< 3x3 search kernel true, //!< fragments may end up over the viewport, just ignore them tcu::COMPARE_LOG_RESULT); if (!imageOk) m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed"); } return STOP; } void FeedbackPrimitiveTypeCase::renderWithFeedback(tcu::Surface& dst) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const glu::VertexArray vao (m_context.getRenderContext()); const glu::Query primitivesGeneratedQuery (m_context.getRenderContext()); const int posLocation = gl.getAttribLocation(m_feedbackProgram->getProgram(), "a_position"); const glw::GLenum feedbackPrimitiveMode = getOutputPrimitiveGLType(); if (posLocation == -1) throw tcu::TestError("a_position was -1"); m_testCtx.getLog() << tcu::TestLog::Message << "Rendering with transform feedback" << tcu::TestLog::EndMessage; gl.viewport(0, 0, dst.getWidth(), dst.getHeight()); gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f); gl.clear(GL_COLOR_BUFFER_BIT); GLU_EXPECT_NO_ERROR(gl.getError(), "clear"); gl.bindVertexArray(*vao); gl.bindBuffer(GL_ARRAY_BUFFER, m_patchBuffer); gl.vertexAttribPointer(posLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); gl.enableVertexAttribArray(posLocation); GLU_EXPECT_NO_ERROR(gl.getError(), "setup attribs"); gl.useProgram(m_feedbackProgram->getProgram()); GLU_EXPECT_NO_ERROR(gl.getError(), "use program"); gl.patchParameteri(GL_PATCH_VERTICES, 4); GLU_EXPECT_NO_ERROR(gl.getError(), "set patch param"); gl.beginQuery(GL_PRIMITIVES_GENERATED, *primitivesGeneratedQuery); GLU_EXPECT_NO_ERROR(gl.getError(), "begin GL_PRIMITIVES_GENERATED query"); m_testCtx.getLog() << tcu::TestLog::Message << "Begin transform feedback with mode " << glu::getPrimitiveTypeStr(feedbackPrimitiveMode) << tcu::TestLog::EndMessage; gl.beginTransformFeedback(feedbackPrimitiveMode); GLU_EXPECT_NO_ERROR(gl.getError(), "begin xfb"); m_testCtx.getLog() << tcu::TestLog::Message << "Calling drawArrays with mode GL_PATCHES" << tcu::TestLog::EndMessage; gl.drawArrays(GL_PATCHES, 0, 4); GLU_EXPECT_NO_ERROR(gl.getError(), "draw patches"); gl.endTransformFeedback(); GLU_EXPECT_NO_ERROR(gl.getError(), "end xfb"); gl.endQuery(GL_PRIMITIVES_GENERATED); GLU_EXPECT_NO_ERROR(gl.getError(), "end GL_PRIMITIVES_GENERATED query"); glu::readPixels(m_context.getRenderContext(), 0, 0, dst.getAccess()); GLU_EXPECT_NO_ERROR(gl.getError(), "readPixels"); // verify GL_PRIMITIVES_GENERATED { glw::GLuint primitivesGeneratedResult = 0; gl.getQueryObjectuiv(*primitivesGeneratedQuery, GL_QUERY_RESULT, &primitivesGeneratedResult); GLU_EXPECT_NO_ERROR(gl.getError(), "get GL_PRIMITIVES_GENERATED value"); m_testCtx.getLog() << tcu::TestLog::Message << "Verifying GL_PRIMITIVES_GENERATED, expecting " << getNumGeneratedPrimitives() << tcu::TestLog::EndMessage; if ((int)primitivesGeneratedResult != getNumGeneratedPrimitives()) { m_testCtx.getLog() << tcu::TestLog::Message << "Error, GL_PRIMITIVES_GENERATED was " << primitivesGeneratedResult << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Got unexpected GL_PRIMITIVES_GENERATED"); } else m_testCtx.getLog() << tcu::TestLog::Message << "GL_PRIMITIVES_GENERATED valid." << tcu::TestLog::EndMessage; } // feedback { std::vector feedbackResults (getNumGeneratedElementsPerPrimitive() * getNumGeneratedPrimitives()); const void* mappedPtr = gl.mapBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, 0, (glw::GLsizeiptr)(feedbackResults.size() * sizeof(tcu::Vec4)), GL_MAP_READ_BIT); glw::GLboolean unmapResult; GLU_EXPECT_NO_ERROR(gl.getError(), "mapBufferRange"); m_testCtx.getLog() << tcu::TestLog::Message << "Reading transform feedback buffer." << tcu::TestLog::EndMessage; if (!mappedPtr) throw tcu::TestError("mapBufferRange returned null"); deMemcpy(feedbackResults[0].getPtr(), mappedPtr, (int)(feedbackResults.size() * sizeof(tcu::Vec4))); unmapResult = gl.unmapBuffer(GL_TRANSFORM_FEEDBACK_BUFFER); GLU_EXPECT_NO_ERROR(gl.getError(), "unmapBuffer"); if (unmapResult != GL_TRUE) throw tcu::TestError("unmapBuffer failed, did not return true"); // verify transform results verifyFeedbackResults(feedbackResults); // verify feedback results are consistent with rendered image verifyRenderedImage(dst, feedbackResults); } } void FeedbackPrimitiveTypeCase::renderWithoutFeedback (tcu::Surface& dst) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const glu::VertexArray vao (m_context.getRenderContext()); const int posLocation = gl.getAttribLocation(m_nonFeedbackProgram->getProgram(), "a_position"); if (posLocation == -1) throw tcu::TestError("a_position was -1"); m_testCtx.getLog() << tcu::TestLog::Message << "Rendering without transform feedback" << tcu::TestLog::EndMessage; gl.viewport(0, 0, dst.getWidth(), dst.getHeight()); gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f); gl.clear(GL_COLOR_BUFFER_BIT); GLU_EXPECT_NO_ERROR(gl.getError(), "clear"); gl.bindVertexArray(*vao); gl.bindBuffer(GL_ARRAY_BUFFER, m_patchBuffer); gl.vertexAttribPointer(posLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); gl.enableVertexAttribArray(posLocation); GLU_EXPECT_NO_ERROR(gl.getError(), "setup attribs"); gl.useProgram(m_nonFeedbackProgram->getProgram()); GLU_EXPECT_NO_ERROR(gl.getError(), "use program"); gl.patchParameteri(GL_PATCH_VERTICES, 4); GLU_EXPECT_NO_ERROR(gl.getError(), "set patch param"); m_testCtx.getLog() << tcu::TestLog::Message << "Calling drawArrays with mode GL_PATCHES" << tcu::TestLog::EndMessage; gl.drawArrays(GL_PATCHES, 0, 4); GLU_EXPECT_NO_ERROR(gl.getError(), "draw patches"); glu::readPixels(m_context.getRenderContext(), 0, 0, dst.getAccess()); GLU_EXPECT_NO_ERROR(gl.getError(), "readPixels"); } void FeedbackPrimitiveTypeCase::verifyFeedbackResults (const std::vector& feedbackResult) { const int geometryAmplification = getGeometryAmplification(); const int elementsPerPrimitive = getNumGeneratedElementsPerPrimitive(); const int errorFloodThreshold = 8; int readNdx = 0; int numErrors = 0; m_testCtx.getLog() << tcu::TestLog::Message << "Verifying feedback results." << tcu::TestLog::EndMessage; for (int tessellatedPrimitiveNdx = 0; tessellatedPrimitiveNdx < getNumTessellatedPrimitives(); ++tessellatedPrimitiveNdx) { const tcu::Vec4 primitiveVertex = feedbackResult[readNdx]; // check the generated vertices are in the proper range (range: -0.4 <-> 0.4) { const float equalThreshold = 1.0e-6f; const bool centroidOk = (primitiveVertex.x() >= -0.4f - equalThreshold) && (primitiveVertex.x() <= 0.4f + equalThreshold) && (primitiveVertex.y() >= -0.4f - equalThreshold) && (primitiveVertex.y() <= 0.4f + equalThreshold) && (de::abs(primitiveVertex.z()) < equalThreshold) && (de::abs(primitiveVertex.w() - 1.0f) < equalThreshold); if (!centroidOk && numErrors++ < errorFloodThreshold) { m_testCtx.getLog() << tcu::TestLog::Message << "Element at index " << (readNdx) << " (tessellation invocation " << tessellatedPrimitiveNdx << ")\n" << "\texpected vertex in range: ( [-0.4, 0.4], [-0.4, 0.4], 0.0, 1.0 )\n" << "\tgot: " << primitiveVertex << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "invalid feedback output"); ++readNdx; continue; } } // check all other primitives generated from this tessellated primitive have the same feedback value for (int generatedPrimitiveNdx = 0; generatedPrimitiveNdx < geometryAmplification; ++generatedPrimitiveNdx) for (int primitiveVertexNdx = 0; primitiveVertexNdx < elementsPerPrimitive; ++primitiveVertexNdx) { const tcu::Vec4 generatedElementVertex = feedbackResult[readNdx]; const tcu::Vec4 equalThreshold (1.0e-6f); if (tcu::boolAny(tcu::greaterThan(tcu::abs(primitiveVertex - generatedElementVertex), equalThreshold))) { if (numErrors++ < errorFloodThreshold) { m_testCtx.getLog() << tcu::TestLog::Message << "Element at index " << (readNdx) << " (tessellation invocation " << tessellatedPrimitiveNdx << ", geometry primitive " << generatedPrimitiveNdx << ", emitted vertex " << primitiveVertexNdx << "):\n" << "\tfeedback result was not contant over whole primitive.\n" << "\tfirst emitted value: " << primitiveVertex << "\n" << "\tcurrent emitted value:" << generatedElementVertex << "\n" << tcu::TestLog::EndMessage; } m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "got multiple different feedback values for a single primitive"); } readNdx++; } } if (numErrors > errorFloodThreshold) m_testCtx.getLog() << tcu::TestLog::Message << "Omitted " << (numErrors - errorFloodThreshold) << " error(s)." << tcu::TestLog::EndMessage; } static bool feedbackResultCompare (const tcu::Vec4& a, const tcu::Vec4& b) { if (a.x() < b.x()) return true; if (a.x() > b.x()) return false; return a.y() < b.y(); } void FeedbackPrimitiveTypeCase::verifyRenderedImage (const tcu::Surface& image, const std::vector& tfVertices) { std::vector vertices; m_testCtx.getLog() << tcu::TestLog::Message << "Comparing result image against feedback results." << tcu::TestLog::EndMessage; // Check only unique vertices std::unique_copy(tfVertices.begin(), tfVertices.end(), std::back_insert_iterator >(vertices)); std::sort(vertices.begin(), vertices.end(), feedbackResultCompare); vertices.erase(std::unique(vertices.begin(), vertices.end()), vertices.end()); // Verifying vertices recorded with feedback actually ended up on the result image for (int ndx = 0; ndx < (int)vertices.size(); ++ndx) { // Rasterization (of lines) may deviate by one pixel. In addition to that, allow minimal errors in rasterized position vs. feedback result. // This minimal error could result in a difference in rounding => allow one additional pixel in deviation const int rasterDeviation = 2; const tcu::IVec2 rasterPos ((int)deFloatRound((vertices[ndx].x() * 0.5f + 0.5f) * (float)image.getWidth()), (int)deFloatRound((vertices[ndx].y() * 0.5f + 0.5f) * (float)image.getHeight())); // Find produced rasterization results bool found = false; for (int dy = -rasterDeviation; dy <= rasterDeviation && !found; ++dy) for (int dx = -rasterDeviation; dx <= rasterDeviation && !found; ++dx) { // Raster result could end up outside the viewport if (rasterPos.x() + dx < 0 || rasterPos.x() + dx >= image.getWidth() || rasterPos.y() + dy < 0 || rasterPos.y() + dy >= image.getHeight()) found = true; else { const tcu::RGBA result = image.getPixel(rasterPos.x() + dx, rasterPos.y() + dy); if(!isBlack(result)) found = true; } } if (!found) { m_testCtx.getLog() << tcu::TestLog::Message << "Vertex " << vertices[ndx] << "\n" << "\tCould not find rasterization output for vertex.\n" << "\tExpected non-black pixels near " << rasterPos << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "invalid result image"); } } } void FeedbackPrimitiveTypeCase::genTransformFeedback (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const int elementsPerPrimitive = getNumGeneratedElementsPerPrimitive(); const int feedbackPrimitives = getNumGeneratedPrimitives(); const int feedbackElements = elementsPerPrimitive * feedbackPrimitives; const std::vector initialBuffer (feedbackElements, tcu::Vec4(-1.0f, -1.0f, -1.0f, -1.0f)); gl.genTransformFeedbacks(1, &m_feedbackID); gl.bindTransformFeedback(GL_TRANSFORM_FEEDBACK, m_feedbackID); GLU_EXPECT_NO_ERROR(gl.getError(), "gen transform feedback"); gl.genBuffers(1, &m_feedbackBuffer); gl.bindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, m_feedbackBuffer); gl.bufferData(GL_TRANSFORM_FEEDBACK_BUFFER, sizeof(tcu::Vec4) * initialBuffer.size(), initialBuffer[0].getPtr(), GL_STATIC_COPY); GLU_EXPECT_NO_ERROR(gl.getError(), "gen feedback buffer"); gl.bindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, m_feedbackBuffer); GLU_EXPECT_NO_ERROR(gl.getError(), "bind feedback buffer"); } static int getTriangleNumOutputPrimitives (int tessellationLevel) { if (tessellationLevel == 1) return 1; else if (tessellationLevel == 2) return 6; else return 3 * (2 + 2 * (tessellationLevel - 2)) + getTriangleNumOutputPrimitives(tessellationLevel - 2); } static int getTriangleNumOutputPrimitivesPoints (int tessellationLevel) { if (tessellationLevel == 0) return 1; else if (tessellationLevel == 1) return 3; else return 3 + 3 * (tessellationLevel - 1) + getTriangleNumOutputPrimitivesPoints(tessellationLevel - 2); } int FeedbackPrimitiveTypeCase::getNumGeneratedElementsPerPrimitive (void) const { if (m_geometryOutputType == GEOMETRY_OUTPUT_TRIANGLES) return 3; else if (m_geometryOutputType == GEOMETRY_OUTPUT_LINES) return 2; else if (m_geometryOutputType == GEOMETRY_OUTPUT_POINTS) return 1; else { DE_ASSERT(false); return -1; } } int FeedbackPrimitiveTypeCase::getNumGeneratedPrimitives (void) const { return getNumTessellatedPrimitives() * getGeometryAmplification(); } int FeedbackPrimitiveTypeCase::getNumTessellatedPrimitives (void) const { const int tessellationLevel = 3; if (m_tessellationPointMode == TESSELLATION_POINTMODE_OFF) { if (m_tessellationOutput == TESSELLATION_OUT_TRIANGLES) return getTriangleNumOutputPrimitives(tessellationLevel); else if (m_tessellationOutput == TESSELLATION_OUT_QUADS) return tessellationLevel * tessellationLevel * 2; // tessellated as triangles else if (m_tessellationOutput == TESSELLATION_OUT_ISOLINES) return tessellationLevel * tessellationLevel; } else if (m_tessellationPointMode == TESSELLATION_POINTMODE_ON) { if (m_tessellationOutput == TESSELLATION_OUT_TRIANGLES) return getTriangleNumOutputPrimitivesPoints(tessellationLevel); else if (m_tessellationOutput == TESSELLATION_OUT_QUADS) return (tessellationLevel + 1) * (tessellationLevel + 1); else if (m_tessellationOutput == TESSELLATION_OUT_ISOLINES) return tessellationLevel * (tessellationLevel + 1); } DE_ASSERT(false); return -1; } int FeedbackPrimitiveTypeCase::getGeometryAmplification (void) const { const int outputAmplification = (m_geometryOutputType == GEOMETRY_OUTPUT_LINES) ? (2) : (1); const int numInputVertices = (m_tessellationPointMode) ? (1) : (m_tessellationOutput == TESSELLATION_OUT_ISOLINES) ? (2) : (3); return outputAmplification * numInputVertices; } glw::GLenum FeedbackPrimitiveTypeCase::getOutputPrimitiveGLType (void) const { if (m_geometryOutputType == GEOMETRY_OUTPUT_TRIANGLES) return GL_TRIANGLES; else if (m_geometryOutputType == GEOMETRY_OUTPUT_LINES) return GL_LINES; else if (m_geometryOutputType == GEOMETRY_OUTPUT_POINTS) return GL_POINTS; else { DE_ASSERT(false); return -1; } } std::string FeedbackPrimitiveTypeCase::getVertexSource (void) const { return specializeShader(s_positionVertexShader, m_context.getRenderContext().getType()); } std::string FeedbackPrimitiveTypeCase::getFragmentSource (void) const { return specializeShader(s_whiteOutputFragmentShader, m_context.getRenderContext().getType()); } std::string FeedbackPrimitiveTypeCase::getTessellationControlSource (void) const { std::ostringstream buf; buf << "${VERSION_DECL}\n" "${EXTENSION_TESSELATION_SHADER}" "layout(vertices = 9) out;\n" "\n" "uniform highp float u_innerTessellationLevel;\n" "uniform highp float u_outerTessellationLevel;\n" "\n" "void main (void)\n" "{\n" " if (gl_PatchVerticesIn != 4)\n" " return;\n" "\n" " // Convert input 2x2 grid to 3x3 grid\n" " float xweight = float(gl_InvocationID % 3) / 2.0f;\n" " float yweight = float(gl_InvocationID / 3) / 2.0f;\n" "\n" " vec4 y0 = mix(gl_in[0].gl_Position, gl_in[1].gl_Position, yweight);\n" " vec4 y1 = mix(gl_in[2].gl_Position, gl_in[3].gl_Position, yweight);\n" "\n" " gl_out[gl_InvocationID].gl_Position = mix(y0, y1, xweight);\n" "\n"; if (m_tessellationOutput == TESSELLATION_OUT_TRIANGLES) buf << " gl_TessLevelOuter[0] = 3.0;\n" " gl_TessLevelOuter[1] = 3.0;\n" " gl_TessLevelOuter[2] = 3.0;\n" " gl_TessLevelInner[0] = 3.0;\n"; else if (m_tessellationOutput == TESSELLATION_OUT_QUADS) buf << " gl_TessLevelOuter[0] = 3.0;\n" " gl_TessLevelOuter[1] = 3.0;\n" " gl_TessLevelOuter[2] = 3.0;\n" " gl_TessLevelOuter[3] = 3.0;\n" " gl_TessLevelInner[0] = 3.0;\n" " gl_TessLevelInner[1] = 3.0;\n"; else if (m_tessellationOutput == TESSELLATION_OUT_ISOLINES) buf << " gl_TessLevelOuter[0] = 3.0;\n" " gl_TessLevelOuter[1] = 3.0;\n"; else DE_ASSERT(false); buf << "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } std::string FeedbackPrimitiveTypeCase::getTessellationEvaluationSource (void) const { std::ostringstream buf; buf << "${VERSION_DECL}\n" "${EXTENSION_TESSELATION_SHADER}" "layout(" << ((m_tessellationOutput == TESSELLATION_OUT_TRIANGLES) ? ("triangles") : (m_tessellationOutput == TESSELLATION_OUT_QUADS) ? ("quads") : ("isolines")) << ((m_tessellationPointMode) ? (", point_mode") : ("")) << ") in;\n" "\n" "out highp vec4 v_tessellationCoords;\n" "\n" "// note: No need to use precise gl_Position since we do not require gapless geometry\n" "void main (void)\n" "{\n" " if (gl_PatchVerticesIn != 9)\n" " return;\n" "\n" " vec4 patchCentroid = vec4(0.0);\n" " for (int ndx = 0; ndx < gl_PatchVerticesIn; ++ndx)\n" " patchCentroid += gl_in[ndx].gl_Position;\n" " patchCentroid /= patchCentroid.w;\n" "\n"; if (m_tessellationOutput == TESSELLATION_OUT_TRIANGLES) buf << " // map barycentric coords to 2d coords\n" " const vec3 tessDirX = vec3( 0.4, 0.4, 0.0);\n" " const vec3 tessDirY = vec3( 0.0, -0.4, 0.0);\n" " const vec3 tessDirZ = vec3(-0.4, 0.4, 0.0);\n" " gl_Position = patchCentroid + vec4(gl_TessCoord.x * tessDirX + gl_TessCoord.y * tessDirY + gl_TessCoord.z * tessDirZ, 0.0);\n"; else if (m_tessellationOutput == TESSELLATION_OUT_QUADS || m_tessellationOutput == TESSELLATION_OUT_ISOLINES) buf << " gl_Position = patchCentroid + vec4(gl_TessCoord.x * 0.8 - 0.4, gl_TessCoord.y * 0.8 - 0.4, 0.0, 0.0);\n"; else DE_ASSERT(false); buf << " v_tessellationCoords = vec4(gl_TessCoord, 0.0);\n" "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } std::string FeedbackPrimitiveTypeCase::getGeometrySource (void) const { const char* const geometryInputPrimitive = (m_tessellationPointMode) ? ("points") : (m_tessellationOutput == TESSELLATION_OUT_ISOLINES) ? ("lines") : ("triangles"); const char* const geometryOutputPrimitive = (m_geometryOutputType == GEOMETRY_OUTPUT_POINTS) ? ("points") : (m_geometryOutputType == GEOMETRY_OUTPUT_LINES) ? ("line_strip") : ("triangle_strip"); const int numInputVertices = (m_tessellationPointMode) ? (1) : (m_tessellationOutput == TESSELLATION_OUT_ISOLINES) ? (2) : (3); const int numSingleVertexOutputVertices = (m_geometryOutputType == GEOMETRY_OUTPUT_POINTS) ? (1) : (m_geometryOutputType == GEOMETRY_OUTPUT_LINES) ? (4) : (3); const int numEmitVertices = numInputVertices * numSingleVertexOutputVertices; std::ostringstream buf; buf << "${VERSION_DECL}\n" "${EXTENSION_GEOMETRY_SHADER}" "layout(" << geometryInputPrimitive << ") in;\n" "layout(" << geometryOutputPrimitive << ", max_vertices=" << numEmitVertices <<") out;\n" "\n" "in highp vec4 v_tessellationCoords[];\n" "out highp vec4 tf_someVertexPosition;\n" "\n" "void main (void)\n" "{\n" " // Emit primitive\n" " for (int ndx = 0; ndx < gl_in.length(); ++ndx)\n" " {\n"; switch (m_geometryOutputType) { case GEOMETRY_OUTPUT_POINTS: buf << " // Draw point on vertex\n" " gl_Position = gl_in[ndx].gl_Position;\n" " tf_someVertexPosition = gl_in[gl_in.length() - 1].gl_Position;\n" " EmitVertex();\n"; break; case GEOMETRY_OUTPUT_LINES: buf << " // Draw cross on vertex\n" " gl_Position = gl_in[ndx].gl_Position + vec4(-0.02, -0.02, 0.0, 0.0);\n" " tf_someVertexPosition = gl_in[gl_in.length() - 1].gl_Position;\n" " EmitVertex();\n" " gl_Position = gl_in[ndx].gl_Position + vec4( 0.02, 0.02, 0.0, 0.0);\n" " tf_someVertexPosition = gl_in[gl_in.length() - 1].gl_Position;\n" " EmitVertex();\n" " EndPrimitive();\n" " gl_Position = gl_in[ndx].gl_Position + vec4( 0.02, -0.02, 0.0, 0.0);\n" " tf_someVertexPosition = gl_in[gl_in.length() - 1].gl_Position;\n" " EmitVertex();\n" " gl_Position = gl_in[ndx].gl_Position + vec4(-0.02, 0.02, 0.0, 0.0);\n" " tf_someVertexPosition = gl_in[gl_in.length() - 1].gl_Position;\n" " EmitVertex();\n" " EndPrimitive();\n"; break; case GEOMETRY_OUTPUT_TRIANGLES: buf << " // Draw triangle on vertex\n" " gl_Position = gl_in[ndx].gl_Position + vec4( 0.00, -0.02, 0.0, 0.0);\n" " tf_someVertexPosition = gl_in[gl_in.length() - 1].gl_Position;\n" " EmitVertex();\n" " gl_Position = gl_in[ndx].gl_Position + vec4( 0.02, 0.00, 0.0, 0.0);\n" " tf_someVertexPosition = gl_in[gl_in.length() - 1].gl_Position;\n" " EmitVertex();\n" " gl_Position = gl_in[ndx].gl_Position + vec4( -0.02, 0.00, 0.0, 0.0);\n" " tf_someVertexPosition = gl_in[gl_in.length() - 1].gl_Position;\n" " EmitVertex();\n" " EndPrimitive();\n"; break; default: DE_ASSERT(false); return ""; } buf << " }\n" "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } const char* FeedbackPrimitiveTypeCase::getTessellationOutputDescription (TessellationOutputType tessellationOutput, TessellationPointMode pointMode) { switch (tessellationOutput) { case TESSELLATION_OUT_TRIANGLES: return (pointMode) ? ("points (triangles in point mode)") : ("triangles"); case TESSELLATION_OUT_QUADS: return (pointMode) ? ("points (quads in point mode)") : ("quads"); case TESSELLATION_OUT_ISOLINES: return (pointMode) ? ("points (isolines in point mode)") : ("isolines"); default: DE_ASSERT(false); return DE_NULL; } } const char* FeedbackPrimitiveTypeCase::getGeometryInputDescription (TessellationOutputType tessellationOutput, TessellationPointMode pointMode) { switch (tessellationOutput) { case TESSELLATION_OUT_TRIANGLES: return (pointMode) ? ("points") : ("triangles"); case TESSELLATION_OUT_QUADS: return (pointMode) ? ("points") : ("triangles"); case TESSELLATION_OUT_ISOLINES: return (pointMode) ? ("points") : ("lines"); default: DE_ASSERT(false); return DE_NULL; } } const char* FeedbackPrimitiveTypeCase::getGeometryOutputDescription (GeometryOutputType geometryOutput) { switch (geometryOutput) { case GEOMETRY_OUTPUT_POINTS: return "points"; case GEOMETRY_OUTPUT_LINES: return "lines"; case GEOMETRY_OUTPUT_TRIANGLES: return "triangles"; default: DE_ASSERT(false); return DE_NULL; } } class PointSizeCase : public TestCase { public: enum Flags { FLAG_VERTEX_SET = 0x01, // !< set gl_PointSize in vertex shader FLAG_TESSELLATION_CONTROL_SET = 0x02, // !< set gl_PointSize in tessellation evaluation shader FLAG_TESSELLATION_EVALUATION_SET = 0x04, // !< set gl_PointSize in tessellation control shader FLAG_TESSELLATION_ADD = 0x08, // !< read and add to gl_PointSize in tessellation shader pair FLAG_TESSELLATION_DONT_SET = 0x10, // !< don't set gl_PointSize in tessellation shader FLAG_GEOMETRY_SET = 0x20, // !< set gl_PointSize in geometry shader FLAG_GEOMETRY_ADD = 0x40, // !< read and add to gl_PointSize in geometry shader FLAG_GEOMETRY_DONT_SET = 0x80, // !< don't set gl_PointSize in geometry shader }; PointSizeCase (Context& context, const char* name, const char* description, int flags); ~PointSizeCase (void); static std::string genTestCaseName (int flags); static std::string genTestCaseDescription (int flags); private: void init (void); void deinit (void); IterateResult iterate (void); void checkExtensions (void) const; void checkPointSizeRequirements (void) const; void renderTo (tcu::Surface& dst); bool verifyImage (const tcu::Surface& src); int getExpectedPointSize (void) const; std::string genVertexSource (void) const; std::string genFragmentSource (void) const; std::string genTessellationControlSource (void) const; std::string genTessellationEvaluationSource (void) const; std::string genGeometrySource (void) const; enum { RENDER_SIZE = 32, }; const int m_flags; glu::ShaderProgram* m_program; }; PointSizeCase::PointSizeCase (Context& context, const char* name, const char* description, int flags) : TestCase (context, name, description) , m_flags (flags) , m_program (DE_NULL) { } PointSizeCase::~PointSizeCase (void) { deinit(); } std::string PointSizeCase::genTestCaseName (int flags) { std::ostringstream buf; // join per-bit descriptions into a single string with '_' separator if (flags & FLAG_VERTEX_SET) buf << "vertex_set"; if (flags & FLAG_TESSELLATION_CONTROL_SET) buf << ((flags & (FLAG_TESSELLATION_CONTROL_SET-1)) ? ("_") : ("")) << "control_set"; if (flags & FLAG_TESSELLATION_EVALUATION_SET) buf << ((flags & (FLAG_TESSELLATION_EVALUATION_SET-1)) ? ("_") : ("")) << "evaluation_set"; if (flags & FLAG_TESSELLATION_ADD) buf << ((flags & (FLAG_TESSELLATION_ADD-1)) ? ("_") : ("")) << "control_pass_eval_add"; if (flags & FLAG_TESSELLATION_DONT_SET) buf << ((flags & (FLAG_TESSELLATION_DONT_SET-1)) ? ("_") : ("")) << "eval_default"; if (flags & FLAG_GEOMETRY_SET) buf << ((flags & (FLAG_GEOMETRY_SET-1)) ? ("_") : ("")) << "geometry_set"; if (flags & FLAG_GEOMETRY_ADD) buf << ((flags & (FLAG_GEOMETRY_ADD-1)) ? ("_") : ("")) << "geometry_add"; if (flags & FLAG_GEOMETRY_DONT_SET) buf << ((flags & (FLAG_GEOMETRY_DONT_SET-1)) ? ("_") : ("")) << "geometry_default"; return buf.str(); } std::string PointSizeCase::genTestCaseDescription (int flags) { std::ostringstream buf; // join per-bit descriptions into a single string with ", " separator if (flags & FLAG_VERTEX_SET) buf << "set point size in vertex shader"; if (flags & FLAG_TESSELLATION_CONTROL_SET) buf << ((flags & (FLAG_TESSELLATION_CONTROL_SET-1)) ? (", ") : ("")) << "set point size in tessellation control shader"; if (flags & FLAG_TESSELLATION_EVALUATION_SET) buf << ((flags & (FLAG_TESSELLATION_EVALUATION_SET-1)) ? (", ") : ("")) << "set point size in tessellation evaluation shader"; if (flags & FLAG_TESSELLATION_ADD) buf << ((flags & (FLAG_TESSELLATION_ADD-1)) ? (", ") : ("")) << "add to point size in tessellation shader"; if (flags & FLAG_TESSELLATION_DONT_SET) buf << ((flags & (FLAG_TESSELLATION_DONT_SET-1)) ? (", ") : ("")) << "don't set point size in tessellation evaluation shader"; if (flags & FLAG_GEOMETRY_SET) buf << ((flags & (FLAG_GEOMETRY_SET-1)) ? (", ") : ("")) << "set point size in geometry shader"; if (flags & FLAG_GEOMETRY_ADD) buf << ((flags & (FLAG_GEOMETRY_ADD-1)) ? (", ") : ("")) << "add to point size in geometry shader"; if (flags & FLAG_GEOMETRY_DONT_SET) buf << ((flags & (FLAG_GEOMETRY_DONT_SET-1)) ? (", ") : ("")) << "don't set point size in geometry shader"; return buf.str(); } void PointSizeCase::init (void) { checkExtensions(); checkPointSizeRequirements(); // log if (m_flags & FLAG_VERTEX_SET) m_testCtx.getLog() << tcu::TestLog::Message << "Setting point size in vertex shader to 2.0." << tcu::TestLog::EndMessage; if (m_flags & FLAG_TESSELLATION_CONTROL_SET) m_testCtx.getLog() << tcu::TestLog::Message << "Setting point size in tessellation control shader to 4.0. (And ignoring it in evaluation)." << tcu::TestLog::EndMessage; if (m_flags & FLAG_TESSELLATION_EVALUATION_SET) m_testCtx.getLog() << tcu::TestLog::Message << "Setting point size in tessellation evaluation shader to 4.0." << tcu::TestLog::EndMessage; if (m_flags & FLAG_TESSELLATION_ADD) m_testCtx.getLog() << tcu::TestLog::Message << "Reading point size in tessellation control shader and adding 2.0 to it in evaluation." << tcu::TestLog::EndMessage; if (m_flags & FLAG_TESSELLATION_DONT_SET) m_testCtx.getLog() << tcu::TestLog::Message << "Not setting point size in tessellation evaluation shader (resulting in the default point size)." << tcu::TestLog::EndMessage; if (m_flags & FLAG_GEOMETRY_SET) m_testCtx.getLog() << tcu::TestLog::Message << "Setting point size in geometry shader to 6.0." << tcu::TestLog::EndMessage; if (m_flags & FLAG_GEOMETRY_ADD) m_testCtx.getLog() << tcu::TestLog::Message << "Reading point size in geometry shader and adding 2.0." << tcu::TestLog::EndMessage; if (m_flags & FLAG_GEOMETRY_DONT_SET) m_testCtx.getLog() << tcu::TestLog::Message << "Not setting point size in geometry shader (resulting in the default point size)." << tcu::TestLog::EndMessage; // program { glu::ProgramSources sources; sources << glu::VertexSource(genVertexSource()) << glu::FragmentSource(genFragmentSource()); if (m_flags & (FLAG_TESSELLATION_CONTROL_SET | FLAG_TESSELLATION_EVALUATION_SET | FLAG_TESSELLATION_ADD | FLAG_TESSELLATION_DONT_SET)) sources << glu::TessellationControlSource(genTessellationControlSource()) << glu::TessellationEvaluationSource(genTessellationEvaluationSource()); if (m_flags & (FLAG_GEOMETRY_SET | FLAG_GEOMETRY_ADD | FLAG_GEOMETRY_DONT_SET)) sources << glu::GeometrySource(genGeometrySource()); m_program = new glu::ShaderProgram(m_context.getRenderContext(), sources); m_testCtx.getLog() << *m_program; if (!m_program->isOk()) throw tcu::TestError("failed to build program"); } } void PointSizeCase::deinit (void) { delete m_program; m_program = DE_NULL; } PointSizeCase::IterateResult PointSizeCase::iterate (void) { tcu::Surface resultImage(RENDER_SIZE, RENDER_SIZE); renderTo(resultImage); if (verifyImage(resultImage)) m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); else m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image verification failed"); return STOP; } void PointSizeCase::checkExtensions (void) const { std::vector requiredExtensions; const bool supportsES32 = glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)); bool allOk = true; if ((m_flags & (FLAG_TESSELLATION_CONTROL_SET | FLAG_TESSELLATION_EVALUATION_SET | FLAG_TESSELLATION_ADD | FLAG_TESSELLATION_DONT_SET)) && !supportsES32) requiredExtensions.push_back("GL_EXT_tessellation_shader"); if (m_flags & (FLAG_TESSELLATION_CONTROL_SET | FLAG_TESSELLATION_EVALUATION_SET | FLAG_TESSELLATION_ADD)) requiredExtensions.push_back("GL_EXT_tessellation_point_size"); if ((m_flags & (m_flags & (FLAG_GEOMETRY_SET | FLAG_GEOMETRY_ADD | FLAG_GEOMETRY_DONT_SET))) && !supportsES32) requiredExtensions.push_back("GL_EXT_geometry_shader"); if (m_flags & (m_flags & (FLAG_GEOMETRY_SET | FLAG_GEOMETRY_ADD))) requiredExtensions.push_back("GL_EXT_geometry_point_size"); for (int ndx = 0; ndx < (int)requiredExtensions.size(); ++ndx) if (!m_context.getContextInfo().isExtensionSupported(requiredExtensions[ndx].c_str())) allOk = false; if (!allOk) { std::ostringstream extensionList; for (int ndx = 0; ndx < (int)requiredExtensions.size(); ++ndx) { if (ndx != 0) extensionList << ", "; extensionList << requiredExtensions[ndx]; } throw tcu::NotSupportedError("Test requires {" + extensionList.str() + "} extension(s)"); } } void PointSizeCase::checkPointSizeRequirements (void) const { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); float aliasedSizeRange[2] = { 0.0f, 0.0f }; const int requiredSize = getExpectedPointSize(); gl.getFloatv(GL_ALIASED_POINT_SIZE_RANGE, aliasedSizeRange); if (float(requiredSize) > aliasedSizeRange[1]) throw tcu::NotSupportedError("Test requires point size " + de::toString(requiredSize)); } void PointSizeCase::renderTo (tcu::Surface& dst) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const bool tessellationActive = (m_flags & (FLAG_TESSELLATION_CONTROL_SET | FLAG_TESSELLATION_EVALUATION_SET | FLAG_TESSELLATION_ADD | FLAG_TESSELLATION_DONT_SET)) != 0; const int positionLocation = gl.getAttribLocation(m_program->getProgram(), "a_position"); const glu::VertexArray vao (m_context.getRenderContext()); m_testCtx.getLog() << tcu::TestLog::Message << "Rendering single point." << tcu::TestLog::EndMessage; if (positionLocation == -1) throw tcu::TestError("Attribute a_position location was -1"); gl.viewport(0, 0, RENDER_SIZE, RENDER_SIZE); gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f); gl.clear(GL_COLOR_BUFFER_BIT); GLU_EXPECT_NO_ERROR(gl.getError(), "clear"); gl.bindVertexArray(*vao); GLU_EXPECT_NO_ERROR(gl.getError(), "bind vao"); gl.useProgram(m_program->getProgram()); GLU_EXPECT_NO_ERROR(gl.getError(), "use program"); gl.vertexAttrib4f(positionLocation, 0.0f, 0.0f, 0.0f, 1.0f); if (tessellationActive) { gl.patchParameteri(GL_PATCH_VERTICES, 1); GLU_EXPECT_NO_ERROR(gl.getError(), "set patch param"); gl.drawArrays(GL_PATCHES, 0, 1); GLU_EXPECT_NO_ERROR(gl.getError(), "draw patches"); } else { gl.drawArrays(GL_POINTS, 0, 1); GLU_EXPECT_NO_ERROR(gl.getError(), "draw points"); } glu::readPixels(m_context.getRenderContext(), 0, 0, dst.getAccess()); } bool PointSizeCase::verifyImage (const tcu::Surface& src) { const bool MSAATarget = (m_context.getRenderTarget().getNumSamples() > 1); const int expectedSize = getExpectedPointSize(); m_testCtx.getLog() << tcu::TestLog::Message << "Verifying rendered point size. Expecting " << expectedSize << " pixels." << tcu::TestLog::EndMessage; m_testCtx.getLog() << tcu::TestLog::Image("RenderImage", "Rendered image", src.getAccess()); { bool resultAreaFound = false; tcu::IVec4 resultArea; // Find rasterization output area for (int y = 0; y < src.getHeight(); ++y) for (int x = 0; x < src.getWidth(); ++x) { if (!isBlack(src.getPixel(x, y))) { if (!resultAreaFound) { // first fragment resultArea = tcu::IVec4(x, y, x + 1, y + 1); resultAreaFound = true; } else { // union area resultArea.x() = de::min(resultArea.x(), x); resultArea.y() = de::min(resultArea.y(), y); resultArea.z() = de::max(resultArea.z(), x+1); resultArea.w() = de::max(resultArea.w(), y+1); } } } if (!resultAreaFound) { m_testCtx.getLog() << tcu::TestLog::Message << "Verification failed, could not find any point fragments." << tcu::TestLog::EndMessage; return false; } // verify area size if (MSAATarget) { const tcu::IVec2 pointSize = resultArea.swizzle(2,3) - resultArea.swizzle(0, 1); // MSAA: edges may be a little fuzzy if (de::abs(pointSize.x() - pointSize.y()) > 1) { m_testCtx.getLog() << tcu::TestLog::Message << "ERROR! Rasterized point is not a square. Detected point size was " << pointSize << tcu::TestLog::EndMessage; return false; } // MSAA may produce larger areas, allow one pixel larger if (expectedSize != de::max(pointSize.x(), pointSize.y()) && (expectedSize+1) != de::max(pointSize.x(), pointSize.y())) { m_testCtx.getLog() << tcu::TestLog::Message << "ERROR! Point size invalid, expected " << expectedSize << ", got " << de::max(pointSize.x(), pointSize.y()) << tcu::TestLog::EndMessage; return false; } } else { const tcu::IVec2 pointSize = resultArea.swizzle(2,3) - resultArea.swizzle(0, 1); if (pointSize.x() != pointSize.y()) { m_testCtx.getLog() << tcu::TestLog::Message << "ERROR! Rasterized point is not a square. Point size was " << pointSize << tcu::TestLog::EndMessage; return false; } if (pointSize.x() != expectedSize) { m_testCtx.getLog() << tcu::TestLog::Message << "ERROR! Point size invalid, expected " << expectedSize << ", got " << pointSize.x() << tcu::TestLog::EndMessage; return false; } } } return true; } int PointSizeCase::getExpectedPointSize (void) const { int addition = 0; // geometry if (m_flags & FLAG_GEOMETRY_DONT_SET) return 1; else if (m_flags & FLAG_GEOMETRY_SET) return 6; else if (m_flags & FLAG_GEOMETRY_ADD) addition += 2; // tessellation if (m_flags & FLAG_TESSELLATION_EVALUATION_SET) return 4 + addition; else if (m_flags & FLAG_TESSELLATION_ADD) addition += 2; else if (m_flags & (FLAG_TESSELLATION_CONTROL_SET | FLAG_TESSELLATION_DONT_SET)) { DE_ASSERT((m_flags & FLAG_GEOMETRY_ADD) == 0); // reading pointSize undefined return 1; } // vertex if (m_flags & FLAG_VERTEX_SET) return 2 + addition; // undefined DE_ASSERT(false); return -1; } std::string PointSizeCase::genVertexSource (void) const { std::ostringstream buf; buf << "${VERSION_DECL}\n" << "in highp vec4 a_position;\n" << "void main ()\n" << "{\n" << " gl_Position = a_position;\n"; if (m_flags & FLAG_VERTEX_SET) buf << " gl_PointSize = 2.0;\n"; buf << "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } std::string PointSizeCase::genFragmentSource (void) const { return specializeShader(s_whiteOutputFragmentShader, m_context.getRenderContext().getType()); } std::string PointSizeCase::genTessellationControlSource (void) const { std::ostringstream buf; buf << "${VERSION_DECL}\n" << "${EXTENSION_TESSELATION_SHADER}" << ((m_flags & FLAG_TESSELLATION_DONT_SET) ? ("") : ("#extension GL_EXT_tessellation_point_size : require\n")) << "layout(vertices = 1) out;\n" << "void main ()\n" << "{\n" << " gl_TessLevelOuter[0] = 3.0;\n" << " gl_TessLevelOuter[1] = 3.0;\n" << " gl_TessLevelOuter[2] = 3.0;\n" << " gl_TessLevelInner[0] = 3.0;\n" << " gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n"; if (m_flags & FLAG_TESSELLATION_ADD) buf << " // pass as is to eval\n" << " gl_out[gl_InvocationID].gl_PointSize = gl_in[gl_InvocationID].gl_PointSize;\n"; else if (m_flags & FLAG_TESSELLATION_CONTROL_SET) buf << " // thrown away\n" << " gl_out[gl_InvocationID].gl_PointSize = 4.0;\n"; buf << "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } std::string PointSizeCase::genTessellationEvaluationSource (void) const { std::ostringstream buf; buf << "${VERSION_DECL}\n" << "${EXTENSION_TESSELATION_SHADER}" << ((m_flags & FLAG_TESSELLATION_DONT_SET) ? ("") : ("#extension GL_EXT_tessellation_point_size : require\n")) << "layout(triangles, point_mode) in;\n" << "void main ()\n" << "{\n" << " // hide all but one vertex\n" << " if (gl_TessCoord.x < 0.99)\n" << " gl_Position = vec4(-2.0, 0.0, 0.0, 1.0);\n" << " else\n" << " gl_Position = gl_in[0].gl_Position;\n"; if (m_flags & FLAG_TESSELLATION_ADD) buf << "\n" << " // add to point size\n" << " gl_PointSize = gl_in[0].gl_PointSize + 2.0;\n"; else if (m_flags & FLAG_TESSELLATION_EVALUATION_SET) buf << "\n" << " // set point size\n" << " gl_PointSize = 4.0;\n"; buf << "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } std::string PointSizeCase::genGeometrySource (void) const { std::ostringstream buf; buf << "${VERSION_DECL}\n" << "${EXTENSION_GEOMETRY_SHADER}" << ((m_flags & FLAG_GEOMETRY_DONT_SET) ? ("") : ("#extension GL_EXT_geometry_point_size : require\n")) << "layout (points) in;\n" << "layout (points, max_vertices=1) out;\n" << "\n" << "void main ()\n" << "{\n"; if (m_flags & FLAG_GEOMETRY_SET) buf << " gl_Position = gl_in[0].gl_Position;\n" << " gl_PointSize = 6.0;\n"; else if (m_flags & FLAG_GEOMETRY_ADD) buf << " gl_Position = gl_in[0].gl_Position;\n" << " gl_PointSize = gl_in[0].gl_PointSize + 2.0;\n"; else if (m_flags & FLAG_GEOMETRY_DONT_SET) buf << " gl_Position = gl_in[0].gl_Position;\n"; buf << " EmitVertex();\n" << "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } class AllowedRenderFailureException : public std::runtime_error { public: AllowedRenderFailureException (const char* message) : std::runtime_error(message) { } }; class GridRenderCase : public TestCase { public: enum Flags { FLAG_TESSELLATION_MAX_SPEC = 0x0001, FLAG_TESSELLATION_MAX_IMPLEMENTATION = 0x0002, FLAG_GEOMETRY_MAX_SPEC = 0x0004, FLAG_GEOMETRY_MAX_IMPLEMENTATION = 0x0008, FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC = 0x0010, FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION = 0x0020, FLAG_GEOMETRY_SCATTER_INSTANCES = 0x0040, FLAG_GEOMETRY_SCATTER_PRIMITIVES = 0x0080, FLAG_GEOMETRY_SEPARATE_PRIMITIVES = 0x0100, //!< if set, geometry shader outputs separate grid cells and not continuous slices FLAG_GEOMETRY_SCATTER_LAYERS = 0x0200, FLAG_ALLOW_OUT_OF_MEMORY = 0x0400, //!< allow draw command to set GL_OUT_OF_MEMORY }; GridRenderCase (Context& context, const char* name, const char* description, int flags); ~GridRenderCase (void); private: void init (void); void deinit (void); IterateResult iterate (void); void renderTo (std::vector& dst); bool verifyResultLayer (int layerNdx, const tcu::Surface& dst); std::string getVertexSource (void); std::string getFragmentSource (void); std::string getTessellationControlSource (int tessLevel); std::string getTessellationEvaluationSource (int tessLevel); std::string getGeometryShaderSource (int numPrimitives, int numInstances, int tessLevel); enum { RENDER_SIZE = 256 }; const int m_flags; glu::ShaderProgram* m_program; deUint32 m_texture; int m_numLayers; }; GridRenderCase::GridRenderCase (Context& context, const char* name, const char* description, int flags) : TestCase (context, name, description) , m_flags (flags) , m_program (DE_NULL) , m_texture (0) , m_numLayers (1) { DE_ASSERT(((m_flags & FLAG_TESSELLATION_MAX_SPEC) == 0) || ((m_flags & FLAG_TESSELLATION_MAX_IMPLEMENTATION) == 0)); DE_ASSERT(((m_flags & FLAG_GEOMETRY_MAX_SPEC) == 0) || ((m_flags & FLAG_GEOMETRY_MAX_IMPLEMENTATION) == 0)); DE_ASSERT(((m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC) == 0) || ((m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION) == 0)); DE_ASSERT(((m_flags & (FLAG_GEOMETRY_SCATTER_PRIMITIVES | FLAG_GEOMETRY_SCATTER_LAYERS)) != 0) == ((m_flags & FLAG_GEOMETRY_SEPARATE_PRIMITIVES) != 0)); } GridRenderCase::~GridRenderCase (void) { deinit(); } void GridRenderCase::init (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const bool supportsES32 = glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)); // Requirements if (!supportsES32 && (!m_context.getContextInfo().isExtensionSupported("GL_EXT_tessellation_shader") || !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))) throw tcu::NotSupportedError("Test requires GL_EXT_tessellation_shader and GL_EXT_geometry_shader extensions"); if ((m_flags & FLAG_GEOMETRY_SCATTER_LAYERS) == 0) { if (m_context.getRenderTarget().getWidth() < RENDER_SIZE || m_context.getRenderTarget().getHeight() < RENDER_SIZE) throw tcu::NotSupportedError("Test requires " + de::toString(RENDER_SIZE) + "x" + de::toString(RENDER_SIZE) + " or larger render target."); } // Log m_testCtx.getLog() << tcu::TestLog::Message << "Testing tessellation and geometry shaders that output a large number of primitives.\n" << getDescription() << tcu::TestLog::EndMessage; // Render target if (m_flags & FLAG_GEOMETRY_SCATTER_LAYERS) { // set limits m_numLayers = 8; m_testCtx.getLog() << tcu::TestLog::Message << "Rendering to 2d texture array, numLayers = " << m_numLayers << tcu::TestLog::EndMessage; gl.genTextures(1, &m_texture); gl.bindTexture(GL_TEXTURE_2D_ARRAY, m_texture); gl.texStorage3D(GL_TEXTURE_2D_ARRAY, 1, GL_RGBA8, RENDER_SIZE, RENDER_SIZE, m_numLayers); gl.texParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl.texParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST); gl.texParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl.texParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); GLU_EXPECT_NO_ERROR(gl.getError(), "gen texture"); } // Gen program { glu::ProgramSources sources; int tessGenLevel = -1; sources << glu::VertexSource(getVertexSource()) << glu::FragmentSource(getFragmentSource()); // Tessellation limits { if (m_flags & FLAG_TESSELLATION_MAX_IMPLEMENTATION) { gl.getIntegerv(GL_MAX_TESS_GEN_LEVEL, &tessGenLevel); GLU_EXPECT_NO_ERROR(gl.getError(), "query tessellation limits"); } else if (m_flags & FLAG_TESSELLATION_MAX_SPEC) { tessGenLevel = 64; } else { tessGenLevel = 5; } m_testCtx.getLog() << tcu::TestLog::Message << "Tessellation level: " << tessGenLevel << ", mode = quad.\n" << "\tEach input patch produces " << (tessGenLevel*tessGenLevel) << " (" << (tessGenLevel*tessGenLevel*2) << " triangles)\n" << tcu::TestLog::EndMessage; sources << glu::TessellationControlSource(getTessellationControlSource(tessGenLevel)) << glu::TessellationEvaluationSource(getTessellationEvaluationSource(tessGenLevel)); } // Geometry limits { int geometryOutputComponents = -1; int geometryOutputVertices = -1; int geometryTotalOutputComponents = -1; int geometryShaderInvocations = -1; bool logGeometryLimits = false; bool logInvocationLimits = false; if (m_flags & FLAG_GEOMETRY_MAX_IMPLEMENTATION) { m_testCtx.getLog() << tcu::TestLog::Message << "Using implementation maximum geometry shader output limits." << tcu::TestLog::EndMessage; gl.getIntegerv(GL_MAX_GEOMETRY_OUTPUT_COMPONENTS, &geometryOutputComponents); gl.getIntegerv(GL_MAX_GEOMETRY_OUTPUT_VERTICES, &geometryOutputVertices); gl.getIntegerv(GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS, &geometryTotalOutputComponents); GLU_EXPECT_NO_ERROR(gl.getError(), "query geometry limits"); logGeometryLimits = true; } else if (m_flags & FLAG_GEOMETRY_MAX_SPEC) { m_testCtx.getLog() << tcu::TestLog::Message << "Using geometry shader extension minimum maximum output limits." << tcu::TestLog::EndMessage; geometryOutputComponents = 128; geometryOutputVertices = 256; geometryTotalOutputComponents = 1024; logGeometryLimits = true; } else { geometryOutputComponents = 128; geometryOutputVertices = 16; geometryTotalOutputComponents = 1024; } if (m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION) { gl.getIntegerv(GL_MAX_GEOMETRY_SHADER_INVOCATIONS, &geometryShaderInvocations); GLU_EXPECT_NO_ERROR(gl.getError(), "query geometry invocation limits"); logInvocationLimits = true; } else if (m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC) { geometryShaderInvocations = 32; logInvocationLimits = true; } else { geometryShaderInvocations = 4; } if (logGeometryLimits || logInvocationLimits) { tcu::MessageBuilder msg(&m_testCtx.getLog()); msg << "Geometry shader, targeting following limits:\n"; if (logGeometryLimits) msg << "\tGL_MAX_GEOMETRY_OUTPUT_COMPONENTS = " << geometryOutputComponents << "\n" << "\tGL_MAX_GEOMETRY_OUTPUT_VERTICES = " << geometryOutputVertices << "\n" << "\tGL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS = " << geometryTotalOutputComponents << "\n"; if (logInvocationLimits) msg << "\tGL_MAX_GEOMETRY_SHADER_INVOCATIONS = " << geometryShaderInvocations; msg << tcu::TestLog::EndMessage; } { const bool separatePrimitives = (m_flags & FLAG_GEOMETRY_SEPARATE_PRIMITIVES) != 0; const int numComponentsPerVertex = 8; // vec4 pos, vec4 color int numVerticesPerInvocation; int numPrimitivesPerInvocation; int geometryVerticesPerPrimitive; int geometryPrimitivesOutPerPrimitive; if (separatePrimitives) { const int numComponentLimit = geometryTotalOutputComponents / (4 * numComponentsPerVertex); const int numOutputLimit = geometryOutputVertices / 4; numPrimitivesPerInvocation = de::min(numComponentLimit, numOutputLimit); numVerticesPerInvocation = numPrimitivesPerInvocation * 4; } else { // If FLAG_GEOMETRY_SEPARATE_PRIMITIVES is not set, geometry shader fills a rectangle area in slices. // Each slice is a triangle strip and is generated by a single shader invocation. // One slice with 4 segment ends (nodes) and 3 segments: // .__.__.__. // |\ |\ |\ | // |_\|_\|_\| const int numSliceNodesComponentLimit = geometryTotalOutputComponents / (2 * numComponentsPerVertex); // each node 2 vertices const int numSliceNodesOutputLimit = geometryOutputVertices / 2; // each node 2 vertices const int numSliceNodes = de::min(numSliceNodesComponentLimit, numSliceNodesOutputLimit); numVerticesPerInvocation = numSliceNodes * 2; numPrimitivesPerInvocation = (numSliceNodes - 1) * 2; } geometryVerticesPerPrimitive = numVerticesPerInvocation * geometryShaderInvocations; geometryPrimitivesOutPerPrimitive = numPrimitivesPerInvocation * geometryShaderInvocations; m_testCtx.getLog() << tcu::TestLog::Message << "Geometry shader:\n" << "\tTotal output vertex count per invocation: " << (numVerticesPerInvocation) << "\n" << "\tTotal output primitive count per invocation: " << (numPrimitivesPerInvocation) << "\n" << "\tNumber of invocations per primitive: " << geometryShaderInvocations << "\n" << "\tTotal output vertex count per input primitive: " << (geometryVerticesPerPrimitive) << "\n" << "\tTotal output primitive count per input primitive: " << (geometryPrimitivesOutPerPrimitive) << "\n" << tcu::TestLog::EndMessage; sources << glu::GeometrySource(getGeometryShaderSource(numPrimitivesPerInvocation, geometryShaderInvocations, tessGenLevel)); m_testCtx.getLog() << tcu::TestLog::Message << "Program:\n" << "\tTotal program output vertices count per input patch: " << (tessGenLevel*tessGenLevel*2 * geometryVerticesPerPrimitive) << "\n" << "\tTotal program output primitive count per input patch: " << (tessGenLevel*tessGenLevel*2 * geometryPrimitivesOutPerPrimitive) << "\n" << tcu::TestLog::EndMessage; } } m_program = new glu::ShaderProgram(m_context.getRenderContext(), sources); m_testCtx.getLog() << *m_program; if (!m_program->isOk()) throw tcu::TestError("failed to build program"); } } void GridRenderCase::deinit (void) { delete m_program; m_program = DE_NULL; if (m_texture) { m_context.getRenderContext().getFunctions().deleteTextures(1, &m_texture); m_texture = 0; } } GridRenderCase::IterateResult GridRenderCase::iterate (void) { std::vector renderedLayers (m_numLayers); bool allLayersOk = true; for (int ndx = 0; ndx < m_numLayers; ++ndx) renderedLayers[ndx].setSize(RENDER_SIZE, RENDER_SIZE); m_testCtx.getLog() << tcu::TestLog::Message << "Rendering single point at the origin. Expecting yellow and green colored grid-like image. (High-frequency grid may appear unicolored)." << tcu::TestLog::EndMessage; try { renderTo(renderedLayers); } catch (const AllowedRenderFailureException& ex) { // Got accepted failure m_testCtx.getLog() << tcu::TestLog::Message << "Could not render, reason: " << ex.what() << "\n" << "Failure is allowed." << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); return STOP; } for (int ndx = 0; ndx < m_numLayers; ++ndx) allLayersOk &= verifyResultLayer(ndx, renderedLayers[ndx]); if (allLayersOk) m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); else m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image verification failed"); return STOP; } void GridRenderCase::renderTo (std::vector& dst) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const int positionLocation = gl.getAttribLocation(m_program->getProgram(), "a_position"); const glu::VertexArray vao (m_context.getRenderContext()); de::MovePtr fbo; if (positionLocation == -1) throw tcu::TestError("Attribute a_position location was -1"); gl.viewport(0, 0, dst.front().getWidth(), dst.front().getHeight()); gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f); GLU_EXPECT_NO_ERROR(gl.getError(), "viewport"); gl.bindVertexArray(*vao); GLU_EXPECT_NO_ERROR(gl.getError(), "bind vao"); gl.useProgram(m_program->getProgram()); GLU_EXPECT_NO_ERROR(gl.getError(), "use program"); gl.patchParameteri(GL_PATCH_VERTICES, 1); GLU_EXPECT_NO_ERROR(gl.getError(), "set patch param"); gl.vertexAttrib4f(positionLocation, 0.0f, 0.0f, 0.0f, 1.0f); if (m_flags & FLAG_GEOMETRY_SCATTER_LAYERS) { // clear texture contents { glu::Framebuffer clearFbo(m_context.getRenderContext()); gl.bindFramebuffer(GL_FRAMEBUFFER, *clearFbo); for (int layerNdx = 0; layerNdx < m_numLayers; ++layerNdx) { gl.framebufferTextureLayer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, m_texture, 0, layerNdx); gl.clear(GL_COLOR_BUFFER_BIT); } GLU_EXPECT_NO_ERROR(gl.getError(), "clear tex contents"); } // create and bind layered fbo fbo = de::MovePtr(new glu::Framebuffer(m_context.getRenderContext())); gl.bindFramebuffer(GL_FRAMEBUFFER, **fbo); gl.framebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, m_texture, 0); GLU_EXPECT_NO_ERROR(gl.getError(), "gen fbo"); } else { // clear viewport gl.clear(GL_COLOR_BUFFER_BIT); } // draw { glw::GLenum glerror; gl.drawArrays(GL_PATCHES, 0, 1); glerror = gl.getError(); if (glerror == GL_OUT_OF_MEMORY && (m_flags & FLAG_ALLOW_OUT_OF_MEMORY)) throw AllowedRenderFailureException("got GL_OUT_OF_MEMORY while drawing"); GLU_EXPECT_NO_ERROR(glerror, "draw patches"); } // Read layers if (m_flags & FLAG_GEOMETRY_SCATTER_LAYERS) { glu::Framebuffer readFbo(m_context.getRenderContext()); gl.bindFramebuffer(GL_FRAMEBUFFER, *readFbo); for (int layerNdx = 0; layerNdx < m_numLayers; ++layerNdx) { gl.framebufferTextureLayer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, m_texture, 0, layerNdx); glu::readPixels(m_context.getRenderContext(), 0, 0, dst[layerNdx].getAccess()); GLU_EXPECT_NO_ERROR(gl.getError(), "read pixels"); } } else { glu::readPixels(m_context.getRenderContext(), 0, 0, dst.front().getAccess()); GLU_EXPECT_NO_ERROR(gl.getError(), "read pixels"); } } bool GridRenderCase::verifyResultLayer (int layerNdx, const tcu::Surface& image) { tcu::Surface errorMask (image.getWidth(), image.getHeight()); bool foundError = false; tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f)); m_testCtx.getLog() << tcu::TestLog::Message << "Verifying output layer " << layerNdx << tcu::TestLog::EndMessage; for (int y = 0; y < image.getHeight(); ++y) for (int x = 0; x < image.getWidth(); ++x) { const int threshold = 8; const tcu::RGBA color = image.getPixel(x, y); // Color must be a linear combination of green and yellow if (color.getGreen() < 255 - threshold || color.getBlue() > threshold) { errorMask.setPixel(x, y, tcu::RGBA::red()); foundError = true; } } if (!foundError) { m_testCtx.getLog() << tcu::TestLog::Message << "Image valid." << tcu::TestLog::EndMessage << tcu::TestLog::ImageSet("ImageVerification", "Image verification") << tcu::TestLog::Image("Result", "Rendered result", image.getAccess()) << tcu::TestLog::EndImageSet; return true; } else { m_testCtx.getLog() << tcu::TestLog::Message << "Image verification failed, found invalid pixels." << tcu::TestLog::EndMessage << tcu::TestLog::ImageSet("ImageVerification", "Image verification") << tcu::TestLog::Image("Result", "Rendered result", image.getAccess()) << tcu::TestLog::Image("ErrorMask", "Error mask", errorMask.getAccess()) << tcu::TestLog::EndImageSet; return false; } } std::string GridRenderCase::getVertexSource (void) { return specializeShader(s_positionVertexShader, m_context.getRenderContext().getType()); } std::string GridRenderCase::getFragmentSource (void) { const char* source = "${VERSION_DECL}\n" "flat in mediump vec4 v_color;\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " fragColor = v_color;\n" "}\n"; return specializeShader(source, m_context.getRenderContext().getType()); } std::string GridRenderCase::getTessellationControlSource (int tessLevel) { std::ostringstream buf; buf << "${VERSION_DECL}\n" "${EXTENSION_TESSELATION_SHADER}" "layout(vertices=1) out;\n" "\n" "void main()\n" "{\n" " gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n" " gl_TessLevelOuter[0] = " << tessLevel << ".0;\n" " gl_TessLevelOuter[1] = " << tessLevel << ".0;\n" " gl_TessLevelOuter[2] = " << tessLevel << ".0;\n" " gl_TessLevelOuter[3] = " << tessLevel << ".0;\n" " gl_TessLevelInner[0] = " << tessLevel << ".0;\n" " gl_TessLevelInner[1] = " << tessLevel << ".0;\n" "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } std::string GridRenderCase::getTessellationEvaluationSource (int tessLevel) { std::ostringstream buf; buf << "${VERSION_DECL}\n" "${EXTENSION_TESSELATION_SHADER}" "layout(quads) in;\n" "\n" "out mediump ivec2 v_tessellationGridPosition;\n" "\n" "// note: No need to use precise gl_Position since position does not depend on order\n" "void main (void)\n" "{\n"; if (m_flags & (FLAG_GEOMETRY_SCATTER_INSTANCES | FLAG_GEOMETRY_SCATTER_PRIMITIVES | FLAG_GEOMETRY_SCATTER_LAYERS)) buf << " // Cover only a small area in a corner. The area will be expanded in geometry shader to cover whole viewport\n" " gl_Position = vec4(gl_TessCoord.x * 0.3 - 1.0, gl_TessCoord.y * 0.3 - 1.0, 0.0, 1.0);\n"; else buf << " // Fill the whole viewport\n" " gl_Position = vec4(gl_TessCoord.x * 2.0 - 1.0, gl_TessCoord.y * 2.0 - 1.0, 0.0, 1.0);\n"; buf << " // Calculate position in tessellation grid\n" " v_tessellationGridPosition = ivec2(round(gl_TessCoord.xy * float(" << tessLevel << ")));\n" "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } std::string GridRenderCase::getGeometryShaderSource (int numPrimitives, int numInstances, int tessLevel) { std::ostringstream buf; buf << "${VERSION_DECL}\n" "${EXTENSION_GEOMETRY_SHADER}" "layout(triangles, invocations=" << numInstances << ") in;\n" "layout(triangle_strip, max_vertices=" << ((m_flags & FLAG_GEOMETRY_SEPARATE_PRIMITIVES) ? (4 * numPrimitives) : (numPrimitives + 2)) << ") out;\n" "\n" "in mediump ivec2 v_tessellationGridPosition[];\n" "flat out highp vec4 v_color;\n" "\n" "void main ()\n" "{\n" " const float equalThreshold = 0.001;\n" " const float gapOffset = 0.0001; // subdivision performed by the geometry shader might produce gaps. Fill potential gaps by enlarging the output slice a little.\n" "\n" " // Input triangle is generated from an axis-aligned rectangle by splitting it in half\n" " // Original rectangle can be found by finding the bounding AABB of the triangle\n" " vec4 aabb = vec4(min(gl_in[0].gl_Position.x, min(gl_in[1].gl_Position.x, gl_in[2].gl_Position.x)),\n" " min(gl_in[0].gl_Position.y, min(gl_in[1].gl_Position.y, gl_in[2].gl_Position.y)),\n" " max(gl_in[0].gl_Position.x, max(gl_in[1].gl_Position.x, gl_in[2].gl_Position.x)),\n" " max(gl_in[0].gl_Position.y, max(gl_in[1].gl_Position.y, gl_in[2].gl_Position.y)));\n" "\n" " // Location in tessellation grid\n" " ivec2 gridPosition = ivec2(min(v_tessellationGridPosition[0], min(v_tessellationGridPosition[1], v_tessellationGridPosition[2])));\n" "\n" " // Which triangle of the two that split the grid cell\n" " int numVerticesOnBottomEdge = 0;\n" " for (int ndx = 0; ndx < 3; ++ndx)\n" " if (abs(gl_in[ndx].gl_Position.y - aabb.w) < equalThreshold)\n" " ++numVerticesOnBottomEdge;\n" " bool isBottomTriangle = numVerticesOnBottomEdge == 2;\n" "\n"; if (m_flags & FLAG_GEOMETRY_SCATTER_PRIMITIVES) { // scatter primitives buf << " // Draw grid cells\n" " int inputTriangleNdx = gl_InvocationID * 2 + ((isBottomTriangle) ? (1) : (0));\n" " for (int ndx = 0; ndx < " << numPrimitives << "; ++ndx)\n" " {\n" " ivec2 dstGridSize = ivec2(" << tessLevel << " * " << numPrimitives << ", 2 * " << tessLevel << " * " << numInstances << ");\n" " ivec2 dstGridNdx = ivec2(" << tessLevel << " * ndx + gridPosition.x, " << tessLevel << " * inputTriangleNdx + 2 * gridPosition.y + ndx * 127) % dstGridSize;\n" " vec4 dstArea;\n" " dstArea.x = float(dstGridNdx.x) / float(dstGridSize.x) * 2.0 - 1.0 - gapOffset;\n" " dstArea.y = float(dstGridNdx.y) / float(dstGridSize.y) * 2.0 - 1.0 - gapOffset;\n" " dstArea.z = float(dstGridNdx.x+1) / float(dstGridSize.x) * 2.0 - 1.0 + gapOffset;\n" " dstArea.w = float(dstGridNdx.y+1) / float(dstGridSize.y) * 2.0 - 1.0 + gapOffset;\n" "\n" " vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n" " vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n" " vec4 outputColor = (((dstGridNdx.y + dstGridNdx.x) % 2) == 0) ? (green) : (yellow);\n" "\n" " gl_Position = vec4(dstArea.x, dstArea.y, 0.0, 1.0);\n" " v_color = outputColor;\n" " EmitVertex();\n" "\n" " gl_Position = vec4(dstArea.x, dstArea.w, 0.0, 1.0);\n" " v_color = outputColor;\n" " EmitVertex();\n" "\n" " gl_Position = vec4(dstArea.z, dstArea.y, 0.0, 1.0);\n" " v_color = outputColor;\n" " EmitVertex();\n" "\n" " gl_Position = vec4(dstArea.z, dstArea.w, 0.0, 1.0);\n" " v_color = outputColor;\n" " EmitVertex();\n" " EndPrimitive();\n" " }\n"; } else if (m_flags & FLAG_GEOMETRY_SCATTER_LAYERS) { // Number of subrectangle instances = num layers DE_ASSERT(m_numLayers == numInstances * 2); buf << " // Draw grid cells, send each primitive to a separate layer\n" " int baseLayer = gl_InvocationID * 2 + ((isBottomTriangle) ? (1) : (0));\n" " for (int ndx = 0; ndx < " << numPrimitives << "; ++ndx)\n" " {\n" " ivec2 dstGridSize = ivec2(" << tessLevel << " * " << numPrimitives << ", " << tessLevel << ");\n" " ivec2 dstGridNdx = ivec2((gridPosition.x * " << numPrimitives << " * 7 + ndx)*13, (gridPosition.y * 127 + ndx) * 19) % dstGridSize;\n" " vec4 dstArea;\n" " dstArea.x = float(dstGridNdx.x) / float(dstGridSize.x) * 2.0 - 1.0 - gapOffset;\n" " dstArea.y = float(dstGridNdx.y) / float(dstGridSize.y) * 2.0 - 1.0 - gapOffset;\n" " dstArea.z = float(dstGridNdx.x+1) / float(dstGridSize.x) * 2.0 - 1.0 + gapOffset;\n" " dstArea.w = float(dstGridNdx.y+1) / float(dstGridSize.y) * 2.0 - 1.0 + gapOffset;\n" "\n" " vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n" " vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n" " vec4 outputColor = (((dstGridNdx.y + dstGridNdx.x) % 2) == 0) ? (green) : (yellow);\n" "\n" " gl_Position = vec4(dstArea.x, dstArea.y, 0.0, 1.0);\n" " v_color = outputColor;\n" " gl_Layer = ((baseLayer + ndx) * 11) % " << m_numLayers << ";\n" " EmitVertex();\n" "\n" " gl_Position = vec4(dstArea.x, dstArea.w, 0.0, 1.0);\n" " v_color = outputColor;\n" " gl_Layer = ((baseLayer + ndx) * 11) % " << m_numLayers << ";\n" " EmitVertex();\n" "\n" " gl_Position = vec4(dstArea.z, dstArea.y, 0.0, 1.0);\n" " v_color = outputColor;\n" " gl_Layer = ((baseLayer + ndx) * 11) % " << m_numLayers << ";\n" " EmitVertex();\n" "\n" " gl_Position = vec4(dstArea.z, dstArea.w, 0.0, 1.0);\n" " v_color = outputColor;\n" " gl_Layer = ((baseLayer + ndx) * 11) % " << m_numLayers << ";\n" " EmitVertex();\n" " EndPrimitive();\n" " }\n"; } else { if (m_flags & FLAG_GEOMETRY_SCATTER_INSTANCES) { buf << " // Scatter slices\n" " int inputTriangleNdx = gl_InvocationID * 2 + ((isBottomTriangle) ? (1) : (0));\n" " ivec2 srcSliceNdx = ivec2(gridPosition.x, gridPosition.y * " << (numInstances*2) << " + inputTriangleNdx);\n" " ivec2 dstSliceNdx = ivec2(7 * srcSliceNdx.x, 127 * srcSliceNdx.y) % ivec2(" << tessLevel << ", " << tessLevel << " * " << (numInstances*2) << ");\n" "\n" " // Draw slice to the dstSlice slot\n" " vec4 outputSliceArea;\n" " outputSliceArea.x = float(dstSliceNdx.x) / float(" << tessLevel << ") * 2.0 - 1.0 - gapOffset;\n" " outputSliceArea.y = float(dstSliceNdx.y) / float(" << (tessLevel * numInstances * 2) << ") * 2.0 - 1.0 - gapOffset;\n" " outputSliceArea.z = float(dstSliceNdx.x+1) / float(" << tessLevel << ") * 2.0 - 1.0 + gapOffset;\n" " outputSliceArea.w = float(dstSliceNdx.y+1) / float(" << (tessLevel * numInstances * 2) << ") * 2.0 - 1.0 + gapOffset;\n"; } else { buf << " // Fill the input area with slices\n" " // Upper triangle produces slices only to the upper half of the quad and vice-versa\n" " float triangleOffset = (isBottomTriangle) ? ((aabb.w + aabb.y) / 2.0) : (aabb.y);\n" " // Each slice is a invocation\n" " float sliceHeight = (aabb.w - aabb.y) / float(2 * " << numInstances << ");\n" " float invocationOffset = float(gl_InvocationID) * sliceHeight;\n" "\n" " vec4 outputSliceArea;\n" " outputSliceArea.x = aabb.x - gapOffset;\n" " outputSliceArea.y = triangleOffset + invocationOffset - gapOffset;\n" " outputSliceArea.z = aabb.z + gapOffset;\n" " outputSliceArea.w = triangleOffset + invocationOffset + sliceHeight + gapOffset;\n"; } buf << "\n" " // Draw slice\n" " for (int ndx = 0; ndx < " << ((numPrimitives+2)/2) << "; ++ndx)\n" " {\n" " vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n" " vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n" " vec4 outputColor = (((gl_InvocationID + ndx) % 2) == 0) ? (green) : (yellow);\n" " float xpos = mix(outputSliceArea.x, outputSliceArea.z, float(ndx) / float(" << (numPrimitives/2) << "));\n" "\n" " gl_Position = vec4(xpos, outputSliceArea.y, 0.0, 1.0);\n" " v_color = outputColor;\n" " EmitVertex();\n" "\n" " gl_Position = vec4(xpos, outputSliceArea.w, 0.0, 1.0);\n" " v_color = outputColor;\n" " EmitVertex();\n" " }\n"; } buf << "}\n"; return specializeShader(buf.str(), m_context.getRenderContext().getType()); } class FeedbackRecordVariableSelectionCase : public TestCase { public: FeedbackRecordVariableSelectionCase (Context& context, const char* name, const char* description); ~FeedbackRecordVariableSelectionCase (void); private: void init (void); void deinit (void); IterateResult iterate (void); std::string getVertexSource (void); std::string getFragmentSource (void); std::string getTessellationControlSource (void); std::string getTessellationEvaluationSource (void); std::string getGeometrySource (void); glu::ShaderProgram* m_program; deUint32 m_xfbBuf; }; FeedbackRecordVariableSelectionCase::FeedbackRecordVariableSelectionCase (Context& context, const char* name, const char* description) : TestCase (context, name, description) , m_program (DE_NULL) , m_xfbBuf (0) { } FeedbackRecordVariableSelectionCase::~FeedbackRecordVariableSelectionCase (void) { deinit(); } void FeedbackRecordVariableSelectionCase::init (void) { const bool supportsES32 = glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)); if (!supportsES32 && (!m_context.getContextInfo().isExtensionSupported("GL_EXT_tessellation_shader") || !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))) throw tcu::NotSupportedError("Test requires GL_EXT_tessellation_shader and GL_EXT_geometry_shader extensions"); m_testCtx.getLog() << tcu::TestLog::Message << "Declaring multiple output variables with the same name in multiple shader stages. Capturing the value of the varying using transform feedback." << tcu::TestLog::EndMessage; // gen feedback buffer fit for 1 triangle (4 components) { static const tcu::Vec4 initialData[3] = { tcu::Vec4(-1.0f, -1.0f, -1.0f, -1.0f), tcu::Vec4(-1.0f, -1.0f, -1.0f, -1.0f), tcu::Vec4(-1.0f, -1.0f, -1.0f, -1.0f), }; const glw::Functions& gl = m_context.getRenderContext().getFunctions(); m_testCtx.getLog() << tcu::TestLog::Message << "Creating buffer for transform feedback. Allocating storage for one triangle. Filling with -1.0" << tcu::TestLog::EndMessage; gl.genBuffers(1, &m_xfbBuf); gl.bindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, m_xfbBuf); gl.bufferData(GL_TRANSFORM_FEEDBACK_BUFFER, (int)(sizeof(tcu::Vec4[3])), initialData, GL_DYNAMIC_READ); GLU_EXPECT_NO_ERROR(gl.getError(), "gen xfb buf"); } // gen shader m_program = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(getVertexSource()) << glu::FragmentSource(getFragmentSource()) << glu::TessellationControlSource(getTessellationControlSource()) << glu::TessellationEvaluationSource(getTessellationEvaluationSource()) << glu::GeometrySource(getGeometrySource()) << glu::TransformFeedbackMode(GL_INTERLEAVED_ATTRIBS) << glu::TransformFeedbackVarying("tf_feedback")); m_testCtx.getLog() << *m_program; if (!m_program->isOk()) throw tcu::TestError("could not build program"); } void FeedbackRecordVariableSelectionCase::deinit (void) { delete m_program; m_program = DE_NULL; if (m_xfbBuf) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_xfbBuf); m_xfbBuf = 0; } } FeedbackRecordVariableSelectionCase::IterateResult FeedbackRecordVariableSelectionCase::iterate (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const int posLoc = gl.getAttribLocation(m_program->getProgram(), "a_position"); const glu::VertexArray vao (m_context.getRenderContext()); if (posLoc == -1) throw tcu::TestError("a_position attribute location was -1"); m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); m_testCtx.getLog() << tcu::TestLog::Message << "Rendering a patch of size 3." << tcu::TestLog::EndMessage; // Render and feed back gl.viewport(0, 0, 1, 1); gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f); gl.clear(GL_COLOR_BUFFER_BIT); GLU_EXPECT_NO_ERROR(gl.getError(), "clear"); gl.bindVertexArray(*vao); GLU_EXPECT_NO_ERROR(gl.getError(), "bindVertexArray"); gl.vertexAttrib4f(posLoc, 0.0f, 0.0f, 0.0f, 1.0f); GLU_EXPECT_NO_ERROR(gl.getError(), "vertexAttrib4f"); gl.useProgram(m_program->getProgram()); GLU_EXPECT_NO_ERROR(gl.getError(), "use program"); gl.patchParameteri(GL_PATCH_VERTICES, 3); GLU_EXPECT_NO_ERROR(gl.getError(), "set patch param"); gl.bindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, m_xfbBuf); GLU_EXPECT_NO_ERROR(gl.getError(), "bind xfb buf"); gl.beginTransformFeedback(GL_TRIANGLES); GLU_EXPECT_NO_ERROR(gl.getError(), "beginTransformFeedback"); gl.drawArrays(GL_PATCHES, 0, 3); GLU_EXPECT_NO_ERROR(gl.getError(), "drawArrays"); gl.endTransformFeedback(); GLU_EXPECT_NO_ERROR(gl.getError(), "beginTransformFeedback"); m_testCtx.getLog() << tcu::TestLog::Message << "Verifying the value of tf_feedback using transform feedback, expecting (3.0, 3.0, 3.0, 3.0)." << tcu::TestLog::EndMessage; // Read back result (one triangle) { tcu::Vec4 feedbackValues[3]; const void* mapPtr = gl.mapBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, 0, (int)sizeof(feedbackValues), GL_MAP_READ_BIT); GLU_EXPECT_NO_ERROR(gl.getError(), "mapBufferRange"); if (mapPtr == DE_NULL) throw tcu::TestError("mapBufferRange returned null"); deMemcpy(feedbackValues, mapPtr, sizeof(feedbackValues)); if (gl.unmapBuffer(GL_TRANSFORM_FEEDBACK_BUFFER) != GL_TRUE) throw tcu::TestError("unmapBuffer did not return TRUE"); for (int ndx = 0; ndx < 3; ++ndx) { if (!tcu::boolAll(tcu::lessThan(tcu::abs(feedbackValues[ndx] - tcu::Vec4(3.0f)), tcu::Vec4(0.001f)))) { m_testCtx.getLog() << tcu::TestLog::Message << "Feedback vertex " << ndx << ": expected (3.0, 3.0, 3.0, 3.0), got " << feedbackValues[ndx] << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "got unexpected feedback results"); } } } return STOP; } std::string FeedbackRecordVariableSelectionCase::getVertexSource (void) { std::string source = "${VERSION_DECL}\n" "in highp vec4 a_position;\n" "out highp vec4 tf_feedback;\n" "void main()\n" "{\n" " gl_Position = a_position;\n" " tf_feedback = vec4(1.0, 1.0, 1.0, 1.0);\n" "}\n"; return specializeShader(source, m_context.getRenderContext().getType()); } std::string FeedbackRecordVariableSelectionCase::getFragmentSource (void) { return specializeShader(s_whiteOutputFragmentShader, m_context.getRenderContext().getType()); } std::string FeedbackRecordVariableSelectionCase::getTessellationControlSource (void) { std::string source = "${VERSION_DECL}\n" "${EXTENSION_TESSELATION_SHADER}" "layout(vertices=3) out;\n" "void main()\n" "{\n" " gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n" " gl_TessLevelOuter[0] = 1.0;\n" " gl_TessLevelOuter[1] = 1.0;\n" " gl_TessLevelOuter[2] = 1.0;\n" " gl_TessLevelInner[0] = 1.0;\n" "}\n"; return specializeShader(source, m_context.getRenderContext().getType()); } std::string FeedbackRecordVariableSelectionCase::getTessellationEvaluationSource (void) { std::string source = "${VERSION_DECL}\n" "${EXTENSION_TESSELATION_SHADER}" "layout(triangles) in;\n" "out highp vec4 tf_feedback;\n" "void main()\n" "{\n" " gl_Position = gl_in[0].gl_Position * gl_TessCoord.x + gl_in[1].gl_Position * gl_TessCoord.y + gl_in[2].gl_Position * gl_TessCoord.z;\n" " tf_feedback = vec4(2.0, 2.0, 2.0, 2.0);\n" "}\n"; return specializeShader(source, m_context.getRenderContext().getType()); } std::string FeedbackRecordVariableSelectionCase::getGeometrySource(void) { std::string source = "${VERSION_DECL}\n" "${EXTENSION_GEOMETRY_SHADER}" "layout (triangles) in;\n" "layout (triangle_strip, max_vertices=3) out;\n" "out highp vec4 tf_feedback;\n" "void main()\n" "{\n" " for (int ndx = 0; ndx < 3; ++ndx)\n" " {\n" " gl_Position = gl_in[ndx].gl_Position + vec4(float(ndx), float(ndx)*float(ndx), 0.0, 0.0);\n" " tf_feedback = vec4(3.0, 3.0, 3.0, 3.0);\n" " EmitVertex();\n" " }\n" " EndPrimitive();\n" "}\n"; return specializeShader(source, m_context.getRenderContext().getType()); } } // anonymous TessellationGeometryInteractionTests::TessellationGeometryInteractionTests (Context& context) : TestCaseGroup(context, "tessellation_geometry_interaction", "Tessellation and geometry shader interaction tests") { } TessellationGeometryInteractionTests::~TessellationGeometryInteractionTests (void) { } void TessellationGeometryInteractionTests::init (void) { tcu::TestCaseGroup* const renderGroup = new tcu::TestCaseGroup(m_testCtx, "render", "Various render tests"); tcu::TestCaseGroup* const feedbackGroup = new tcu::TestCaseGroup(m_testCtx, "feedback", "Test transform feedback"); tcu::TestCaseGroup* const pointSizeGroup = new tcu::TestCaseGroup(m_testCtx, "point_size", "Test point size"); addChild(renderGroup); addChild(feedbackGroup); addChild(pointSizeGroup); // .render { tcu::TestCaseGroup* const passthroughGroup = new tcu::TestCaseGroup(m_testCtx, "passthrough", "Render various types with either passthrough geometry or tessellation shader"); tcu::TestCaseGroup* const limitGroup = new tcu::TestCaseGroup(m_testCtx, "limits", "Render with properties near their limits"); tcu::TestCaseGroup* const scatterGroup = new tcu::TestCaseGroup(m_testCtx, "scatter", "Scatter output primitives"); renderGroup->addChild(passthroughGroup); renderGroup->addChild(limitGroup); renderGroup->addChild(scatterGroup); // .passthrough { // tessellate_tris_passthrough_geometry_no_change // tessellate_quads_passthrough_geometry_no_change // tessellate_isolines_passthrough_geometry_no_change passthroughGroup->addChild(new IdentityGeometryShaderCase(m_context, "tessellate_tris_passthrough_geometry_no_change", "Passthrough geometry shader has no effect", IdentityGeometryShaderCase::CASE_TRIANGLES)); passthroughGroup->addChild(new IdentityGeometryShaderCase(m_context, "tessellate_quads_passthrough_geometry_no_change", "Passthrough geometry shader has no effect", IdentityGeometryShaderCase::CASE_QUADS)); passthroughGroup->addChild(new IdentityGeometryShaderCase(m_context, "tessellate_isolines_passthrough_geometry_no_change", "Passthrough geometry shader has no effect", IdentityGeometryShaderCase::CASE_ISOLINES)); // passthrough_tessellation_geometry_shade_triangles_no_change // passthrough_tessellation_geometry_shade_lines_no_change passthroughGroup->addChild(new IdentityTessellationShaderCase(m_context, "passthrough_tessellation_geometry_shade_triangles_no_change", "Passthrough tessellation shader has no effect", IdentityTessellationShaderCase::CASE_TRIANGLES)); passthroughGroup->addChild(new IdentityTessellationShaderCase(m_context, "passthrough_tessellation_geometry_shade_lines_no_change", "Passthrough tessellation shader has no effect", IdentityTessellationShaderCase::CASE_ISOLINES)); } // .limits { static const struct LimitCaseDef { const char* name; const char* desc; int flags; } cases[] = { // Test single limit { "output_required_max_tessellation", "Minimum maximum tessellation level", GridRenderCase::FLAG_TESSELLATION_MAX_SPEC }, { "output_implementation_max_tessellation", "Maximum tessellation level supported by the implementation", GridRenderCase::FLAG_TESSELLATION_MAX_IMPLEMENTATION }, { "output_required_max_geometry", "Output minimum maximum number of vertices the geometry shader", GridRenderCase::FLAG_GEOMETRY_MAX_SPEC }, { "output_implementation_max_geometry", "Output maximum number of vertices in the geometry shader supported by the implementation", GridRenderCase::FLAG_GEOMETRY_MAX_IMPLEMENTATION }, { "output_required_max_invocations", "Minimum maximum number of geometry shader invocations", GridRenderCase::FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC }, { "output_implementation_max_invocations", "Maximum number of geometry shader invocations supported by the implementation", GridRenderCase::FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION }, }; for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(cases); ++ndx) limitGroup->addChild(new GridRenderCase(m_context, cases[ndx].name, cases[ndx].desc, cases[ndx].flags)); } // .scatter { scatterGroup->addChild(new GridRenderCase(m_context, "geometry_scatter_instances", "Each geometry shader instance outputs its primitives far from other instances of the same execution", GridRenderCase::FLAG_GEOMETRY_SCATTER_INSTANCES)); scatterGroup->addChild(new GridRenderCase(m_context, "geometry_scatter_primitives", "Each geometry shader instance outputs its primitives far from other primitives of the same instance", GridRenderCase::FLAG_GEOMETRY_SCATTER_PRIMITIVES | GridRenderCase::FLAG_GEOMETRY_SEPARATE_PRIMITIVES)); scatterGroup->addChild(new GridRenderCase(m_context, "geometry_scatter_layers", "Each geometry shader instance outputs its primitives to multiple layers and far from other primitives of the same instance", GridRenderCase::FLAG_GEOMETRY_SCATTER_LAYERS | GridRenderCase::FLAG_GEOMETRY_SEPARATE_PRIMITIVES)); } } // .feedback { static const struct PrimitiveCaseConfig { const char* name; const char* description; FeedbackPrimitiveTypeCase::TessellationOutputType tessellationOutput; FeedbackPrimitiveTypeCase::TessellationPointMode tessellationPointMode; FeedbackPrimitiveTypeCase::GeometryOutputType geometryOutputType; } caseConfigs[] = { // tess output triangles -> geo input triangles, output points { "tessellation_output_triangles_geometry_output_points", "Tessellation outputs triangles, geometry outputs points", FeedbackPrimitiveTypeCase::TESSELLATION_OUT_TRIANGLES, FeedbackPrimitiveTypeCase::TESSELLATION_POINTMODE_OFF, FeedbackPrimitiveTypeCase::GEOMETRY_OUTPUT_POINTS }, // tess output quads <-> geo input triangles, output points { "tessellation_output_quads_geometry_output_points", "Tessellation outputs quads, geometry outputs points", FeedbackPrimitiveTypeCase::TESSELLATION_OUT_QUADS, FeedbackPrimitiveTypeCase::TESSELLATION_POINTMODE_OFF, FeedbackPrimitiveTypeCase::GEOMETRY_OUTPUT_POINTS }, // tess output isolines <-> geo input lines, output points { "tessellation_output_isolines_geometry_output_points", "Tessellation outputs isolines, geometry outputs points", FeedbackPrimitiveTypeCase::TESSELLATION_OUT_ISOLINES, FeedbackPrimitiveTypeCase::TESSELLATION_POINTMODE_OFF, FeedbackPrimitiveTypeCase::GEOMETRY_OUTPUT_POINTS }, // tess output triangles, point_mode <-> geo input points, output lines { "tessellation_output_triangles_point_mode_geometry_output_lines", "Tessellation outputs triangles in point mode, geometry outputs lines", FeedbackPrimitiveTypeCase::TESSELLATION_OUT_TRIANGLES, FeedbackPrimitiveTypeCase::TESSELLATION_POINTMODE_ON, FeedbackPrimitiveTypeCase::GEOMETRY_OUTPUT_LINES }, // tess output quads, point_mode <-> geo input points, output lines { "tessellation_output_quads_point_mode_geometry_output_lines", "Tessellation outputs quads in point mode, geometry outputs lines", FeedbackPrimitiveTypeCase::TESSELLATION_OUT_QUADS, FeedbackPrimitiveTypeCase::TESSELLATION_POINTMODE_ON, FeedbackPrimitiveTypeCase::GEOMETRY_OUTPUT_LINES }, // tess output isolines, point_mode <-> geo input points, output triangles { "tessellation_output_isolines_point_mode_geometry_output_triangles", "Tessellation outputs isolines in point mode, geometry outputs triangles", FeedbackPrimitiveTypeCase::TESSELLATION_OUT_ISOLINES, FeedbackPrimitiveTypeCase::TESSELLATION_POINTMODE_ON, FeedbackPrimitiveTypeCase::GEOMETRY_OUTPUT_TRIANGLES }, }; for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(caseConfigs); ++ndx) { feedbackGroup->addChild(new FeedbackPrimitiveTypeCase(m_context, caseConfigs[ndx].name, caseConfigs[ndx].description, caseConfigs[ndx].tessellationOutput, caseConfigs[ndx].tessellationPointMode, caseConfigs[ndx].geometryOutputType)); } feedbackGroup->addChild(new FeedbackRecordVariableSelectionCase(m_context, "record_variable_selection", "Record a variable that has been declared as an output variable in multiple shader stages")); } // .point_size { static const int caseFlags[] = { PointSizeCase::FLAG_VERTEX_SET, PointSizeCase::FLAG_TESSELLATION_EVALUATION_SET, PointSizeCase::FLAG_GEOMETRY_SET, PointSizeCase::FLAG_VERTEX_SET | PointSizeCase::FLAG_TESSELLATION_CONTROL_SET, PointSizeCase::FLAG_VERTEX_SET | PointSizeCase::FLAG_TESSELLATION_EVALUATION_SET, PointSizeCase::FLAG_VERTEX_SET | PointSizeCase::FLAG_TESSELLATION_DONT_SET, PointSizeCase::FLAG_VERTEX_SET | PointSizeCase::FLAG_GEOMETRY_SET, PointSizeCase::FLAG_VERTEX_SET | PointSizeCase::FLAG_TESSELLATION_EVALUATION_SET | PointSizeCase::FLAG_GEOMETRY_SET, PointSizeCase::FLAG_VERTEX_SET | PointSizeCase::FLAG_TESSELLATION_ADD | PointSizeCase::FLAG_GEOMETRY_ADD, PointSizeCase::FLAG_VERTEX_SET | PointSizeCase::FLAG_TESSELLATION_EVALUATION_SET | PointSizeCase::FLAG_GEOMETRY_DONT_SET, }; for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(caseFlags); ++ndx) { const std::string name = PointSizeCase::genTestCaseName(caseFlags[ndx]); const std::string desc = PointSizeCase::genTestCaseDescription(caseFlags[ndx]); pointSizeGroup->addChild(new PointSizeCase(m_context, name.c_str(), desc.c_str(), caseFlags[ndx])); } } } } // Functional } // gles31 } // deqp