/** * f2fs_format.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * Dual licensed under the GPL or LGPL version 2 licenses. */ #define _LARGEFILE64_SOURCE #include #include #include #include #include #include #include #include #include #include "f2fs_fs.h" #include "f2fs_format_utils.h" extern struct f2fs_configuration c; struct f2fs_super_block raw_sb; struct f2fs_super_block *sb = &raw_sb; struct f2fs_checkpoint *cp; /* Return first segment number of each area */ #define prev_zone(cur) (c.cur_seg[cur] - c.segs_per_zone) #define next_zone(cur) (c.cur_seg[cur] + c.segs_per_zone) #define last_zone(cur) ((cur - 1) * c.segs_per_zone) #define last_section(cur) (cur + (c.secs_per_zone - 1) * c.segs_per_sec) const char *media_ext_lists[] = { "jpg", "gif", "png", "avi", "divx", "mp4", "mp3", "3gp", "wmv", "wma", "mpeg", "mkv", "mov", "asx", "asf", "wmx", "svi", "wvx", "wm", "mpg", "mpe", "rm", "ogg", "jpeg", "video", "apk", /* for android system */ NULL }; static bool is_extension_exist(const char *name) { int i; for (i = 0; i < F2FS_MAX_EXTENSION; i++) { char *ext = (char *)sb->extension_list[i]; if (!strcmp(ext, name)) return 1; } return 0; } static void cure_extension_list(void) { const char **extlist = media_ext_lists; char *ext_str = c.extension_list; char *ue; int name_len; int i = 0; set_sb(extension_count, 0); memset(sb->extension_list, 0, sizeof(sb->extension_list)); while (*extlist) { name_len = strlen(*extlist); memcpy(sb->extension_list[i++], *extlist, name_len); extlist++; } set_sb(extension_count, i); if (!ext_str) return; /* add user ext list */ ue = strtok(ext_str, ", "); while (ue != NULL) { name_len = strlen(ue); if (name_len >= 8) { MSG(0, "\tWarn: Extension name (%s) is too long\n", ue); goto next; } if (!is_extension_exist(ue)) memcpy(sb->extension_list[i++], ue, name_len); next: ue = strtok(NULL, ", "); if (i >= F2FS_MAX_EXTENSION) break; } set_sb(extension_count, i); free(c.extension_list); } static void verify_cur_segs(void) { int i, j; for (i = 0; i < NR_CURSEG_TYPE; i++) { for (j = 0; j < NR_CURSEG_TYPE; j++) if (c.cur_seg[i] == c.cur_seg[j]) break; } if (i == NR_CURSEG_TYPE && j == NR_CURSEG_TYPE) return; c.cur_seg[0] = 0; for (i = 1; i < NR_CURSEG_TYPE; i++) c.cur_seg[i] = next_zone(i - 1); } static int f2fs_prepare_super_block(void) { u_int32_t blk_size_bytes; u_int32_t log_sectorsize, log_sectors_per_block; u_int32_t log_blocksize, log_blks_per_seg; u_int32_t segment_size_bytes, zone_size_bytes; u_int32_t sit_segments; u_int32_t blocks_for_sit, blocks_for_nat, blocks_for_ssa; u_int32_t total_valid_blks_available; u_int64_t zone_align_start_offset, diff; u_int64_t total_meta_zones, total_meta_segments; u_int32_t sit_bitmap_size, max_sit_bitmap_size; u_int32_t max_nat_bitmap_size, max_nat_segments; u_int32_t total_zones; int i; set_sb(magic, F2FS_SUPER_MAGIC); set_sb(major_ver, F2FS_MAJOR_VERSION); set_sb(minor_ver, F2FS_MINOR_VERSION); log_sectorsize = log_base_2(c.sector_size); log_sectors_per_block = log_base_2(c.sectors_per_blk); log_blocksize = log_sectorsize + log_sectors_per_block; log_blks_per_seg = log_base_2(c.blks_per_seg); set_sb(log_sectorsize, log_sectorsize); set_sb(log_sectors_per_block, log_sectors_per_block); set_sb(log_blocksize, log_blocksize); set_sb(log_blocks_per_seg, log_blks_per_seg); set_sb(segs_per_sec, c.segs_per_sec); set_sb(secs_per_zone, c.secs_per_zone); blk_size_bytes = 1 << log_blocksize; segment_size_bytes = blk_size_bytes * c.blks_per_seg; zone_size_bytes = blk_size_bytes * c.secs_per_zone * c.segs_per_sec * c.blks_per_seg; set_sb(checksum_offset, 0); set_sb(block_count, c.total_sectors >> log_sectors_per_block); zone_align_start_offset = (c.start_sector * c.sector_size + 2 * F2FS_BLKSIZE + zone_size_bytes - 1) / zone_size_bytes * zone_size_bytes - c.start_sector * c.sector_size; if (c.start_sector % c.sectors_per_blk) { MSG(1, "\t%s: Align start sector number to the page unit\n", c.zoned_mode ? "FAIL" : "WARN"); MSG(1, "\ti.e., start sector: %d, ofs:%d (sects/page: %d)\n", c.start_sector, c.start_sector % c.sectors_per_blk, c.sectors_per_blk); if (c.zoned_mode) return -1; } set_sb(segment0_blkaddr, zone_align_start_offset / blk_size_bytes); sb->cp_blkaddr = sb->segment0_blkaddr; MSG(0, "Info: zone aligned segment0 blkaddr: %u\n", get_sb(segment0_blkaddr)); if (c.zoned_mode && (get_sb(segment0_blkaddr) + c.start_sector / c.sectors_per_blk) % c.zone_blocks) { MSG(1, "\tError: Unaligned segment0 block address %u\n", get_sb(segment0_blkaddr)); return -1; } for (i = 0; i < c.ndevs; i++) { if (i == 0) { c.devices[i].total_segments = (c.devices[i].total_sectors * c.sector_size - zone_align_start_offset) / segment_size_bytes; c.devices[i].start_blkaddr = 0; c.devices[i].end_blkaddr = c.devices[i].total_segments * c.blks_per_seg - 1 + sb->segment0_blkaddr; } else { c.devices[i].total_segments = c.devices[i].total_sectors / (c.sectors_per_blk * c.blks_per_seg); c.devices[i].start_blkaddr = c.devices[i - 1].end_blkaddr + 1; c.devices[i].end_blkaddr = c.devices[i].start_blkaddr + c.devices[i].total_segments * c.blks_per_seg - 1; } if (c.ndevs > 1) { memcpy(sb->devs[i].path, c.devices[i].path, MAX_PATH_LEN); sb->devs[i].total_segments = cpu_to_le32(c.devices[i].total_segments); } c.total_segments += c.devices[i].total_segments; } set_sb(segment_count, (c.total_segments / c.segs_per_zone * c.segs_per_zone)); set_sb(segment_count_ckpt, F2FS_NUMBER_OF_CHECKPOINT_PACK); set_sb(sit_blkaddr, get_sb(segment0_blkaddr) + get_sb(segment_count_ckpt) * c.blks_per_seg); blocks_for_sit = ALIGN(get_sb(segment_count), SIT_ENTRY_PER_BLOCK); sit_segments = SEG_ALIGN(blocks_for_sit); set_sb(segment_count_sit, sit_segments * 2); set_sb(nat_blkaddr, get_sb(sit_blkaddr) + get_sb(segment_count_sit) * c.blks_per_seg); total_valid_blks_available = (get_sb(segment_count) - (get_sb(segment_count_ckpt) + get_sb(segment_count_sit))) * c.blks_per_seg; blocks_for_nat = ALIGN(total_valid_blks_available, NAT_ENTRY_PER_BLOCK); set_sb(segment_count_nat, SEG_ALIGN(blocks_for_nat)); /* * The number of node segments should not be exceeded a "Threshold". * This number resizes NAT bitmap area in a CP page. * So the threshold is determined not to overflow one CP page */ sit_bitmap_size = ((get_sb(segment_count_sit) / 2) << log_blks_per_seg) / 8; if (sit_bitmap_size > MAX_SIT_BITMAP_SIZE) max_sit_bitmap_size = MAX_SIT_BITMAP_SIZE; else max_sit_bitmap_size = sit_bitmap_size; /* * It should be reserved minimum 1 segment for nat. * When sit is too large, we should expand cp area. It requires more * pages for cp. */ if (max_sit_bitmap_size > (CHECKSUM_OFFSET - sizeof(struct f2fs_checkpoint) + 1 - 64)) { max_nat_bitmap_size = CHECKSUM_OFFSET - sizeof(struct f2fs_checkpoint) + 1; set_sb(cp_payload, F2FS_BLK_ALIGN(max_sit_bitmap_size)); } else { max_nat_bitmap_size = CHECKSUM_OFFSET - sizeof(struct f2fs_checkpoint) + 1 - max_sit_bitmap_size; set_sb(cp_payload, 0); } max_nat_segments = (max_nat_bitmap_size * 8) >> log_blks_per_seg; if (get_sb(segment_count_nat) > max_nat_segments) set_sb(segment_count_nat, max_nat_segments); set_sb(segment_count_nat, get_sb(segment_count_nat) * 2); set_sb(ssa_blkaddr, get_sb(nat_blkaddr) + get_sb(segment_count_nat) * c.blks_per_seg); total_valid_blks_available = (get_sb(segment_count) - (get_sb(segment_count_ckpt) + get_sb(segment_count_sit) + get_sb(segment_count_nat))) * c.blks_per_seg; blocks_for_ssa = total_valid_blks_available / c.blks_per_seg + 1; set_sb(segment_count_ssa, SEG_ALIGN(blocks_for_ssa)); total_meta_segments = get_sb(segment_count_ckpt) + get_sb(segment_count_sit) + get_sb(segment_count_nat) + get_sb(segment_count_ssa); diff = total_meta_segments % (c.segs_per_zone); if (diff) set_sb(segment_count_ssa, get_sb(segment_count_ssa) + (c.segs_per_zone - diff)); total_meta_zones = ZONE_ALIGN(total_meta_segments * c.blks_per_seg); set_sb(main_blkaddr, get_sb(segment0_blkaddr) + total_meta_zones * c.segs_per_zone * c.blks_per_seg); if (c.zoned_mode) { /* * Make sure there is enough randomly writeable * space at the beginning of the disk. */ unsigned long main_blkzone = get_sb(main_blkaddr) / c.zone_blocks; if (c.devices[0].zoned_model == F2FS_ZONED_HM && c.devices[0].nr_rnd_zones < main_blkzone) { MSG(0, "\tError: Device does not have enough random " "write zones for F2FS volume (%lu needed)\n", main_blkzone); return -1; } } total_zones = get_sb(segment_count) / (c.segs_per_zone) - total_meta_zones; set_sb(section_count, total_zones * c.secs_per_zone); set_sb(segment_count_main, get_sb(section_count) * c.segs_per_sec); /* Let's determine the best reserved and overprovisioned space */ if (c.overprovision == 0) c.overprovision = get_best_overprovision(sb); if (c.overprovision == 0 || c.total_segments < F2FS_MIN_SEGMENTS || (c.devices[0].total_sectors * c.sector_size < zone_align_start_offset) || (get_sb(segment_count_main) - 2) < c.reserved_segments) { MSG(0, "\tError: Device size is not sufficient for F2FS volume\n"); return -1; } c.reserved_segments = (2 * (100 / c.overprovision + 1) + 6) * c.segs_per_sec; uuid_generate(sb->uuid); utf8_to_utf16(sb->volume_name, (const char *)c.vol_label, MAX_VOLUME_NAME, strlen(c.vol_label)); set_sb(node_ino, 1); set_sb(meta_ino, 2); set_sb(root_ino, 3); if (total_zones <= 6) { MSG(1, "\tError: %d zones: Need more zones " "by shrinking zone size\n", total_zones); return -1; } if (c.heap) { c.cur_seg[CURSEG_HOT_NODE] = last_section(last_zone(total_zones)); c.cur_seg[CURSEG_WARM_NODE] = prev_zone(CURSEG_HOT_NODE); c.cur_seg[CURSEG_COLD_NODE] = prev_zone(CURSEG_WARM_NODE); c.cur_seg[CURSEG_HOT_DATA] = prev_zone(CURSEG_COLD_NODE); c.cur_seg[CURSEG_COLD_DATA] = 0; c.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_COLD_DATA); } else { c.cur_seg[CURSEG_HOT_NODE] = 0; c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE); c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE); c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE); c.cur_seg[CURSEG_COLD_DATA] = max(last_zone((total_zones >> 2)), next_zone(CURSEG_COLD_NODE)); c.cur_seg[CURSEG_WARM_DATA] = max(last_zone((total_zones >> 1)), next_zone(CURSEG_COLD_DATA)); } /* if there is redundancy, reassign it */ verify_cur_segs(); cure_extension_list(); /* get kernel version */ if (c.kd >= 0) { dev_read_version(c.version, 0, VERSION_LEN); get_kernel_version(c.version); MSG(0, "Info: format version with\n \"%s\"\n", c.version); } else { memset(c.version, 0, VERSION_LEN); } memcpy(sb->version, c.version, VERSION_LEN); memcpy(sb->init_version, c.version, VERSION_LEN); sb->feature = c.feature; return 0; } static int f2fs_init_sit_area(void) { u_int32_t blk_size, seg_size; u_int32_t index = 0; u_int64_t sit_seg_addr = 0; u_int8_t *zero_buf = NULL; blk_size = 1 << get_sb(log_blocksize); seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size; zero_buf = calloc(sizeof(u_int8_t), seg_size); if(zero_buf == NULL) { MSG(1, "\tError: Calloc Failed for sit_zero_buf!!!\n"); return -1; } sit_seg_addr = get_sb(sit_blkaddr); sit_seg_addr *= blk_size; DBG(1, "\tFilling sit area at offset 0x%08"PRIx64"\n", sit_seg_addr); for (index = 0; index < (get_sb(segment_count_sit) / 2); index++) { if (dev_fill(zero_buf, sit_seg_addr, seg_size)) { MSG(1, "\tError: While zeroing out the sit area " "on disk!!!\n"); free(zero_buf); return -1; } sit_seg_addr += seg_size; } free(zero_buf); return 0 ; } static int f2fs_init_nat_area(void) { u_int32_t blk_size, seg_size; u_int32_t index = 0; u_int64_t nat_seg_addr = 0; u_int8_t *nat_buf = NULL; blk_size = 1 << get_sb(log_blocksize); seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size; nat_buf = calloc(sizeof(u_int8_t), seg_size); if (nat_buf == NULL) { MSG(1, "\tError: Calloc Failed for nat_zero_blk!!!\n"); return -1; } nat_seg_addr = get_sb(nat_blkaddr); nat_seg_addr *= blk_size; DBG(1, "\tFilling nat area at offset 0x%08"PRIx64"\n", nat_seg_addr); for (index = 0; index < get_sb(segment_count_nat) / 2; index++) { if (dev_fill(nat_buf, nat_seg_addr, seg_size)) { MSG(1, "\tError: While zeroing out the nat area " "on disk!!!\n"); free(nat_buf); return -1; } nat_seg_addr = nat_seg_addr + (2 * seg_size); } free(nat_buf); return 0 ; } static int f2fs_write_check_point_pack(void) { struct f2fs_summary_block *sum = NULL; struct f2fs_journal *journal; u_int32_t blk_size_bytes; u_int32_t nat_bits_bytes, nat_bits_blocks; unsigned char *nat_bits = NULL, *empty_nat_bits; u_int64_t cp_seg_blk = 0; u_int32_t crc = 0, flags; unsigned int i; char *cp_payload = NULL; char *sum_compact, *sum_compact_p; struct f2fs_summary *sum_entry; int ret = -1; cp = calloc(F2FS_BLKSIZE, 1); if (cp == NULL) { MSG(1, "\tError: Calloc Failed for f2fs_checkpoint!!!\n"); return ret; } sum = calloc(F2FS_BLKSIZE, 1); if (sum == NULL) { MSG(1, "\tError: Calloc Failed for summay_node!!!\n"); goto free_cp; } sum_compact = calloc(F2FS_BLKSIZE, 1); if (sum_compact == NULL) { MSG(1, "\tError: Calloc Failed for summay buffer!!!\n"); goto free_sum; } sum_compact_p = sum_compact; nat_bits_bytes = get_sb(segment_count_nat) << 5; nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 + F2FS_BLKSIZE - 1); nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks); if (nat_bits == NULL) { MSG(1, "\tError: Calloc Failed for nat bits buffer!!!\n"); goto free_sum_compact; } cp_payload = calloc(F2FS_BLKSIZE, 1); if (cp_payload == NULL) { MSG(1, "\tError: Calloc Failed for cp_payload!!!\n"); goto free_nat_bits; } /* 1. cp page 1 of checkpoint pack 1 */ cp->checkpoint_ver = rand() | 0x1; set_cp(cur_node_segno[0], c.cur_seg[CURSEG_HOT_NODE]); set_cp(cur_node_segno[1], c.cur_seg[CURSEG_WARM_NODE]); set_cp(cur_node_segno[2], c.cur_seg[CURSEG_COLD_NODE]); set_cp(cur_data_segno[0], c.cur_seg[CURSEG_HOT_DATA]); set_cp(cur_data_segno[1], c.cur_seg[CURSEG_WARM_DATA]); set_cp(cur_data_segno[2], c.cur_seg[CURSEG_COLD_DATA]); for (i = 3; i < MAX_ACTIVE_NODE_LOGS; i++) { set_cp(cur_node_segno[i], 0xffffffff); set_cp(cur_data_segno[i], 0xffffffff); } set_cp(cur_node_blkoff[0], 1); set_cp(cur_data_blkoff[0], 1); set_cp(valid_block_count, 2); set_cp(rsvd_segment_count, c.reserved_segments); set_cp(overprov_segment_count, (get_sb(segment_count_main) - get_cp(rsvd_segment_count)) * c.overprovision / 100); set_cp(overprov_segment_count, get_cp(overprov_segment_count) + get_cp(rsvd_segment_count)); MSG(0, "Info: Overprovision ratio = %.3lf%%\n", c.overprovision); MSG(0, "Info: Overprovision segments = %u (GC reserved = %u)\n", get_cp(overprov_segment_count), c.reserved_segments); /* main segments - reserved segments - (node + data segments) */ set_cp(free_segment_count, get_sb(segment_count_main) - 6); set_cp(user_block_count, ((get_cp(free_segment_count) + 6 - get_cp(overprov_segment_count)) * c.blks_per_seg)); /* cp page (2), data summaries (1), node summaries (3) */ set_cp(cp_pack_total_block_count, 6 + get_sb(cp_payload)); flags = CP_UMOUNT_FLAG | CP_COMPACT_SUM_FLAG; if (get_cp(cp_pack_total_block_count) <= (1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks) flags |= CP_NAT_BITS_FLAG; if (c.trimmed) flags |= CP_TRIMMED_FLAG; set_cp(ckpt_flags, flags); set_cp(cp_pack_start_sum, 1 + get_sb(cp_payload)); set_cp(valid_node_count, 1); set_cp(valid_inode_count, 1); set_cp(next_free_nid, get_sb(root_ino) + 1); set_cp(sit_ver_bitmap_bytesize, ((get_sb(segment_count_sit) / 2) << get_sb(log_blocks_per_seg)) / 8); set_cp(nat_ver_bitmap_bytesize, ((get_sb(segment_count_nat) / 2) << get_sb(log_blocks_per_seg)) / 8); set_cp(checksum_offset, CHECKSUM_OFFSET); crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, cp, CHECKSUM_OFFSET); *((__le32 *)((unsigned char *)cp + CHECKSUM_OFFSET)) = cpu_to_le32(crc); blk_size_bytes = 1 << get_sb(log_blocksize); if (blk_size_bytes != F2FS_BLKSIZE) { MSG(1, "\tError: Wrong block size %d / %d!!!\n", blk_size_bytes, F2FS_BLKSIZE); goto free_cp_payload; } cp_seg_blk = get_sb(segment0_blkaddr); DBG(1, "\tWriting main segments, cp at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(cp, cp_seg_blk)) { MSG(1, "\tError: While writing the cp to disk!!!\n"); goto free_cp_payload; } for (i = 0; i < get_sb(cp_payload); i++) { cp_seg_blk++; if (dev_fill_block(cp_payload, cp_seg_blk)) { MSG(1, "\tError: While zeroing out the sit bitmap area " "on disk!!!\n"); goto free_cp_payload; } } /* Prepare and write Segment summary for HOT/WARM/COLD DATA * * The structure of compact summary * +-------------------+ * | nat_journal | * +-------------------+ * | sit_journal | * +-------------------+ * | hot data summary | * +-------------------+ * | warm data summary | * +-------------------+ * | cold data summary | * +-------------------+ */ memset(sum, 0, sizeof(struct f2fs_summary_block)); SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA); journal = &sum->journal; journal->n_nats = cpu_to_le16(1); journal->nat_j.entries[0].nid = sb->root_ino; journal->nat_j.entries[0].ne.version = 0; journal->nat_j.entries[0].ne.ino = sb->root_ino; journal->nat_j.entries[0].ne.block_addr = cpu_to_le32( get_sb(main_blkaddr) + get_cp(cur_node_segno[0]) * c.blks_per_seg); memcpy(sum_compact_p, &journal->n_nats, SUM_JOURNAL_SIZE); sum_compact_p += SUM_JOURNAL_SIZE; memset(sum, 0, sizeof(struct f2fs_summary_block)); /* inode sit for root */ journal->n_sits = cpu_to_le16(6); journal->sit_j.entries[0].segno = cp->cur_node_segno[0]; journal->sit_j.entries[0].se.vblocks = cpu_to_le16((CURSEG_HOT_NODE << 10) | 1); f2fs_set_bit(0, (char *)journal->sit_j.entries[0].se.valid_map); journal->sit_j.entries[1].segno = cp->cur_node_segno[1]; journal->sit_j.entries[1].se.vblocks = cpu_to_le16((CURSEG_WARM_NODE << 10)); journal->sit_j.entries[2].segno = cp->cur_node_segno[2]; journal->sit_j.entries[2].se.vblocks = cpu_to_le16((CURSEG_COLD_NODE << 10)); /* data sit for root */ journal->sit_j.entries[3].segno = cp->cur_data_segno[0]; journal->sit_j.entries[3].se.vblocks = cpu_to_le16((CURSEG_HOT_DATA << 10) | 1); f2fs_set_bit(0, (char *)journal->sit_j.entries[3].se.valid_map); journal->sit_j.entries[4].segno = cp->cur_data_segno[1]; journal->sit_j.entries[4].se.vblocks = cpu_to_le16((CURSEG_WARM_DATA << 10)); journal->sit_j.entries[5].segno = cp->cur_data_segno[2]; journal->sit_j.entries[5].se.vblocks = cpu_to_le16((CURSEG_COLD_DATA << 10)); memcpy(sum_compact_p, &journal->n_sits, SUM_JOURNAL_SIZE); sum_compact_p += SUM_JOURNAL_SIZE; /* hot data summary */ sum_entry = (struct f2fs_summary *)sum_compact_p; sum_entry->nid = sb->root_ino; sum_entry->ofs_in_node = 0; /* warm data summary, nothing to do */ /* cold data summary, nothing to do */ cp_seg_blk++; DBG(1, "\tWriting Segment summary for HOT/WARM/COLD_DATA, at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(sum_compact, cp_seg_blk)) { MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); goto free_cp_payload; } /* Prepare and write Segment summary for HOT_NODE */ memset(sum, 0, sizeof(struct f2fs_summary_block)); SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE); sum->entries[0].nid = sb->root_ino; sum->entries[0].ofs_in_node = 0; cp_seg_blk++; DBG(1, "\tWriting Segment summary for HOT_NODE, at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(sum, cp_seg_blk)) { MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); goto free_cp_payload; } /* Fill segment summary for WARM_NODE to zero. */ memset(sum, 0, sizeof(struct f2fs_summary_block)); SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE); cp_seg_blk++; DBG(1, "\tWriting Segment summary for WARM_NODE, at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(sum, cp_seg_blk)) { MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); goto free_cp_payload; } /* Fill segment summary for COLD_NODE to zero. */ memset(sum, 0, sizeof(struct f2fs_summary_block)); SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE); cp_seg_blk++; DBG(1, "\tWriting Segment summary for COLD_NODE, at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(sum, cp_seg_blk)) { MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); goto free_cp_payload; } /* cp page2 */ cp_seg_blk++; DBG(1, "\tWriting cp page2, at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(cp, cp_seg_blk)) { MSG(1, "\tError: While writing the cp to disk!!!\n"); goto free_cp_payload; } /* write NAT bits, if possible */ if (flags & CP_NAT_BITS_FLAG) { uint32_t i; *(__le64 *)nat_bits = get_cp_crc(cp); empty_nat_bits = nat_bits + 8 + nat_bits_bytes; memset(empty_nat_bits, 0xff, nat_bits_bytes); test_and_clear_bit_le(0, empty_nat_bits); /* write the last blocks in cp pack */ cp_seg_blk = get_sb(segment0_blkaddr) + (1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks; DBG(1, "\tWriting NAT bits pages, at offset 0x%08"PRIx64"\n", cp_seg_blk); for (i = 0; i < nat_bits_blocks; i++) { if (dev_write_block(nat_bits + i * F2FS_BLKSIZE, cp_seg_blk + i)) { MSG(1, "\tError: write NAT bits to disk!!!\n"); goto free_cp_payload; } } } /* cp page 1 of check point pack 2 * Initiatialize other checkpoint pack with version zero */ cp->checkpoint_ver = 0; crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, cp, CHECKSUM_OFFSET); *((__le32 *)((unsigned char *)cp + CHECKSUM_OFFSET)) = cpu_to_le32(crc); cp_seg_blk = get_sb(segment0_blkaddr) + c.blks_per_seg; DBG(1, "\tWriting cp page 1 of checkpoint pack 2, at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(cp, cp_seg_blk)) { MSG(1, "\tError: While writing the cp to disk!!!\n"); goto free_cp_payload; } for (i = 0; i < get_sb(cp_payload); i++) { cp_seg_blk++; if (dev_fill_block(cp_payload, cp_seg_blk)) { MSG(1, "\tError: While zeroing out the sit bitmap area " "on disk!!!\n"); goto free_cp_payload; } } /* cp page 2 of check point pack 2 */ cp_seg_blk += (le32_to_cpu(cp->cp_pack_total_block_count) - get_sb(cp_payload) - 1); DBG(1, "\tWriting cp page 2 of checkpoint pack 2, at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(cp, cp_seg_blk)) { MSG(1, "\tError: While writing the cp to disk!!!\n"); goto free_cp_payload; } ret = 0; free_cp_payload: free(cp_payload); free_nat_bits: free(nat_bits); free_sum_compact: free(sum_compact); free_sum: free(sum); free_cp: free(cp); return ret; } static int f2fs_write_super_block(void) { int index; u_int8_t *zero_buff; zero_buff = calloc(F2FS_BLKSIZE, 1); memcpy(zero_buff + F2FS_SUPER_OFFSET, sb, sizeof(*sb)); DBG(1, "\tWriting super block, at offset 0x%08x\n", 0); for (index = 0; index < 2; index++) { if (dev_write_block(zero_buff, index)) { MSG(1, "\tError: While while writing supe_blk " "on disk!!! index : %d\n", index); free(zero_buff); return -1; } } free(zero_buff); return 0; } #ifndef WITH_ANDROID static int discard_obsolete_dnode(struct f2fs_node *raw_node, u_int64_t offset) { u_int64_t next_blkaddr = 0; u_int64_t root_inode_pos = get_sb(main_blkaddr); /* only root inode was written before truncating dnodes */ root_inode_pos += c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg; if (c.zoned_mode) return 0; do { if (offset < get_sb(main_blkaddr) || offset >= get_sb(main_blkaddr) + get_sb(block_count)) break; if (dev_read_block(raw_node, offset)) { MSG(1, "\tError: While traversing direct node!!!\n"); return -1; } next_blkaddr = le32_to_cpu(raw_node->footer.next_blkaddr); memset(raw_node, 0, F2FS_BLKSIZE); DBG(1, "\tDiscard dnode, at offset 0x%08"PRIx64"\n", offset); if (dev_write_block(raw_node, offset)) { MSG(1, "\tError: While discarding direct node!!!\n"); return -1; } offset = next_blkaddr; /* should avoid recursive chain due to stale data */ if (offset == root_inode_pos) break; } while (1); return 0; } #endif static int f2fs_write_root_inode(void) { struct f2fs_node *raw_node = NULL; u_int64_t blk_size_bytes, data_blk_nor; u_int64_t main_area_node_seg_blk_offset = 0; raw_node = calloc(F2FS_BLKSIZE, 1); if (raw_node == NULL) { MSG(1, "\tError: Calloc Failed for raw_node!!!\n"); return -1; } raw_node->footer.nid = sb->root_ino; raw_node->footer.ino = sb->root_ino; raw_node->footer.cp_ver = cpu_to_le64(1); raw_node->footer.next_blkaddr = cpu_to_le32( get_sb(main_blkaddr) + c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg + 1); raw_node->i.i_mode = cpu_to_le16(0x41ed); raw_node->i.i_links = cpu_to_le32(2); raw_node->i.i_uid = cpu_to_le32(getuid()); raw_node->i.i_gid = cpu_to_le32(getgid()); blk_size_bytes = 1 << get_sb(log_blocksize); raw_node->i.i_size = cpu_to_le64(1 * blk_size_bytes); /* dentry */ raw_node->i.i_blocks = cpu_to_le64(2); raw_node->i.i_atime = cpu_to_le32(time(NULL)); raw_node->i.i_atime_nsec = 0; raw_node->i.i_ctime = cpu_to_le32(time(NULL)); raw_node->i.i_ctime_nsec = 0; raw_node->i.i_mtime = cpu_to_le32(time(NULL)); raw_node->i.i_mtime_nsec = 0; raw_node->i.i_generation = 0; raw_node->i.i_xattr_nid = 0; raw_node->i.i_flags = 0; raw_node->i.i_current_depth = cpu_to_le32(1); raw_node->i.i_dir_level = DEF_DIR_LEVEL; data_blk_nor = get_sb(main_blkaddr) + c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg; raw_node->i.i_addr[0] = cpu_to_le32(data_blk_nor); raw_node->i.i_ext.fofs = 0; raw_node->i.i_ext.blk_addr = 0; raw_node->i.i_ext.len = 0; main_area_node_seg_blk_offset = get_sb(main_blkaddr); main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg; DBG(1, "\tWriting root inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n", get_sb(main_blkaddr), c.cur_seg[CURSEG_HOT_NODE], c.blks_per_seg, main_area_node_seg_blk_offset); if (dev_write_block(raw_node, main_area_node_seg_blk_offset)) { MSG(1, "\tError: While writing the raw_node to disk!!!\n"); free(raw_node); return -1; } /* avoid power-off-recovery based on roll-forward policy */ main_area_node_seg_blk_offset = get_sb(main_blkaddr); main_area_node_seg_blk_offset += c.cur_seg[CURSEG_WARM_NODE] * c.blks_per_seg; #ifndef WITH_ANDROID if (discard_obsolete_dnode(raw_node, main_area_node_seg_blk_offset)) { free(raw_node); return -1; } #endif free(raw_node); return 0; } static int f2fs_update_nat_root(void) { struct f2fs_nat_block *nat_blk = NULL; u_int64_t nat_seg_blk_offset = 0; nat_blk = calloc(F2FS_BLKSIZE, 1); if(nat_blk == NULL) { MSG(1, "\tError: Calloc Failed for nat_blk!!!\n"); return -1; } /* update root */ nat_blk->entries[get_sb(root_ino)].block_addr = cpu_to_le32( get_sb(main_blkaddr) + c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg); nat_blk->entries[get_sb(root_ino)].ino = sb->root_ino; /* update node nat */ nat_blk->entries[get_sb(node_ino)].block_addr = cpu_to_le32(1); nat_blk->entries[get_sb(node_ino)].ino = sb->node_ino; /* update meta nat */ nat_blk->entries[get_sb(meta_ino)].block_addr = cpu_to_le32(1); nat_blk->entries[get_sb(meta_ino)].ino = sb->meta_ino; nat_seg_blk_offset = get_sb(nat_blkaddr); DBG(1, "\tWriting nat root, at offset 0x%08"PRIx64"\n", nat_seg_blk_offset); if (dev_write_block(nat_blk, nat_seg_blk_offset)) { MSG(1, "\tError: While writing the nat_blk set0 to disk!\n"); free(nat_blk); return -1; } free(nat_blk); return 0; } static int f2fs_add_default_dentry_root(void) { struct f2fs_dentry_block *dent_blk = NULL; u_int64_t data_blk_offset = 0; dent_blk = calloc(F2FS_BLKSIZE, 1); if(dent_blk == NULL) { MSG(1, "\tError: Calloc Failed for dent_blk!!!\n"); return -1; } dent_blk->dentry[0].hash_code = 0; dent_blk->dentry[0].ino = sb->root_ino; dent_blk->dentry[0].name_len = cpu_to_le16(1); dent_blk->dentry[0].file_type = F2FS_FT_DIR; memcpy(dent_blk->filename[0], ".", 1); dent_blk->dentry[1].hash_code = 0; dent_blk->dentry[1].ino = sb->root_ino; dent_blk->dentry[1].name_len = cpu_to_le16(2); dent_blk->dentry[1].file_type = F2FS_FT_DIR; memcpy(dent_blk->filename[1], "..", 2); /* bitmap for . and .. */ test_and_set_bit_le(0, dent_blk->dentry_bitmap); test_and_set_bit_le(1, dent_blk->dentry_bitmap); data_blk_offset = get_sb(main_blkaddr); data_blk_offset += c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg; DBG(1, "\tWriting default dentry root, at offset 0x%08"PRIx64"\n", data_blk_offset); if (dev_write_block(dent_blk, data_blk_offset)) { MSG(1, "\tError: While writing the dentry_blk to disk!!!\n"); free(dent_blk); return -1; } free(dent_blk); return 0; } static int f2fs_create_root_dir(void) { int err = 0; err = f2fs_write_root_inode(); if (err < 0) { MSG(1, "\tError: Failed to write root inode!!!\n"); goto exit; } err = f2fs_update_nat_root(); if (err < 0) { MSG(1, "\tError: Failed to update NAT for root!!!\n"); goto exit; } err = f2fs_add_default_dentry_root(); if (err < 0) { MSG(1, "\tError: Failed to add default dentries for root!!!\n"); goto exit; } exit: if (err) MSG(1, "\tError: Could not create the root directory!!!\n"); return err; } int f2fs_format_device(void) { int err = 0; err= f2fs_prepare_super_block(); if (err < 0) { MSG(0, "\tError: Failed to prepare a super block!!!\n"); goto exit; } if (c.trim) { err = f2fs_trim_devices(); if (err < 0) { MSG(0, "\tError: Failed to trim whole device!!!\n"); goto exit; } } err = f2fs_init_sit_area(); if (err < 0) { MSG(0, "\tError: Failed to Initialise the SIT AREA!!!\n"); goto exit; } err = f2fs_init_nat_area(); if (err < 0) { MSG(0, "\tError: Failed to Initialise the NAT AREA!!!\n"); goto exit; } err = f2fs_create_root_dir(); if (err < 0) { MSG(0, "\tError: Failed to create the root directory!!!\n"); goto exit; } err = f2fs_write_check_point_pack(); if (err < 0) { MSG(0, "\tError: Failed to write the check point pack!!!\n"); goto exit; } err = f2fs_write_super_block(); if (err < 0) { MSG(0, "\tError: Failed to write the Super Block!!!\n"); goto exit; } exit: if (err) MSG(0, "\tError: Could not format the device!!!\n"); return err; }