/* * Copyright 2014 Google Inc. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // independent from idl_parser, since this code is not needed for most clients #include "flatbuffers/flatbuffers.h" #include "flatbuffers/idl.h" #include "flatbuffers/util.h" #include "flatbuffers/code_generators.h" namespace flatbuffers { static std::string GeneratedFileName(const std::string &path, const std::string &file_name) { return path + file_name + "_generated.h"; } namespace cpp { class CppGenerator : public BaseGenerator { public: CppGenerator(const Parser &parser, const std::string &path, const std::string &file_name) : BaseGenerator(parser, path, file_name, "", "::"), cur_name_space_(nullptr) {} std::string GenIncludeGuard() const { // Generate include guard. std::string guard = file_name_; // Remove any non-alpha-numeric characters that may appear in a filename. struct IsAlnum { bool operator()(char c) { return !isalnum(c); } }; guard.erase(std::remove_if(guard.begin(), guard.end(), IsAlnum()), guard.end()); guard = "FLATBUFFERS_GENERATED_" + guard; guard += "_"; // For further uniqueness, also add the namespace. auto name_space = parser_.namespaces_.back(); for (auto it = name_space->components.begin(); it != name_space->components.end(); ++it) { guard += *it + "_"; } guard += "H_"; std::transform(guard.begin(), guard.end(), guard.begin(), ::toupper); return guard; } void GenIncludeDependencies() { int num_includes = 0; for (auto it = parser_.native_included_files_.begin(); it != parser_.native_included_files_.end(); ++it) { code_ += "#include \"" + *it + "\""; num_includes++; } for (auto it = parser_.included_files_.begin(); it != parser_.included_files_.end(); ++it) { const auto basename = flatbuffers::StripPath(flatbuffers::StripExtension(it->first)); if (basename != file_name_) { code_ += "#include \"" + parser_.opts.include_prefix + basename + "_generated.h\""; num_includes++; } } if (num_includes) code_ += ""; } // Iterate through all definitions we haven't generate code for (enums, // structs, and tables) and output them to a single file. bool generate() { if (IsEverythingGenerated()) return true; code_.Clear(); code_ += "// " + std::string(FlatBuffersGeneratedWarning()); const auto include_guard = GenIncludeGuard(); code_ += "#ifndef " + include_guard; code_ += "#define " + include_guard; code_ += ""; code_ += "#include \"flatbuffers/flatbuffers.h\""; code_ += ""; if (parser_.opts.include_dependence_headers) { GenIncludeDependencies(); } assert(!cur_name_space_); // Generate forward declarations for all structs/tables, since they may // have circular references. for (auto it = parser_.structs_.vec.begin(); it != parser_.structs_.vec.end(); ++it) { const auto &struct_def = **it; if (!struct_def.generated) { SetNameSpace(struct_def.defined_namespace); code_ += "struct " + struct_def.name + ";"; if (parser_.opts.generate_object_based_api && !struct_def.fixed) { code_ += "struct " + NativeName(struct_def.name) + ";"; } code_ += ""; } } // Generate code for all the enum declarations. for (auto it = parser_.enums_.vec.begin(); it != parser_.enums_.vec.end(); ++it) { const auto &enum_def = **it; if (!enum_def.generated) { SetNameSpace(enum_def.defined_namespace); GenEnum(enum_def); } } // Generate code for all structs, then all tables. for (auto it = parser_.structs_.vec.begin(); it != parser_.structs_.vec.end(); ++it) { const auto &struct_def = **it; if (struct_def.fixed && !struct_def.generated) { SetNameSpace(struct_def.defined_namespace); GenStruct(struct_def); } } for (auto it = parser_.structs_.vec.begin(); it != parser_.structs_.vec.end(); ++it) { const auto &struct_def = **it; if (!struct_def.fixed && !struct_def.generated) { SetNameSpace(struct_def.defined_namespace); GenTable(struct_def); } } for (auto it = parser_.structs_.vec.begin(); it != parser_.structs_.vec.end(); ++it) { const auto &struct_def = **it; if (!struct_def.fixed && !struct_def.generated) { SetNameSpace(struct_def.defined_namespace); GenTablePost(struct_def); } } // Generate code for union verifiers. for (auto it = parser_.enums_.vec.begin(); it != parser_.enums_.vec.end(); ++it) { const auto &enum_def = **it; if (enum_def.is_union && !enum_def.generated) { SetNameSpace(enum_def.defined_namespace); GenUnionPost(enum_def); } } // Generate convenient global helper functions: if (parser_.root_struct_def_) { auto &struct_def = *parser_.root_struct_def_; SetNameSpace(struct_def.defined_namespace); const auto &name = struct_def.name; const auto qualified_name = parser_.namespaces_.back()->GetFullyQualifiedName(name); const auto cpp_name = TranslateNameSpace(qualified_name); code_.SetValue("STRUCT_NAME", name); code_.SetValue("CPP_NAME", cpp_name); // The root datatype accessor: code_ += "inline \\"; code_ += "const {{CPP_NAME}} *Get{{STRUCT_NAME}}(const void *buf) {"; code_ += " return flatbuffers::GetRoot<{{CPP_NAME}}>(buf);"; code_ += "}"; code_ += ""; if (parser_.opts.mutable_buffer) { code_ += "inline \\"; code_ += "{{STRUCT_NAME}} *GetMutable{{STRUCT_NAME}}(void *buf) {"; code_ += " return flatbuffers::GetMutableRoot<{{STRUCT_NAME}}>(buf);"; code_ += "}"; code_ += ""; } if (parser_.file_identifier_.length()) { // Return the identifier code_ += "inline const char *{{STRUCT_NAME}}Identifier() {"; code_ += " return \"" + parser_.file_identifier_ + "\";"; code_ += "}"; code_ += ""; // Check if a buffer has the identifier. code_ += "inline \\"; code_ += "bool {{STRUCT_NAME}}BufferHasIdentifier(const void *buf) {"; code_ += " return flatbuffers::BufferHasIdentifier("; code_ += " buf, {{STRUCT_NAME}}Identifier());"; code_ += "}"; code_ += ""; } // The root verifier. if (parser_.file_identifier_.length()) { code_.SetValue("ID", name + "Identifier()"); } else { code_.SetValue("ID", "nullptr"); } code_ += "inline bool Verify{{STRUCT_NAME}}Buffer("; code_ += " flatbuffers::Verifier &verifier) {"; code_ += " return verifier.VerifyBuffer<{{CPP_NAME}}>({{ID}});"; code_ += "}"; code_ += ""; if (parser_.file_extension_.length()) { // Return the extension code_ += "inline const char *{{STRUCT_NAME}}Extension() {"; code_ += " return \"" + parser_.file_extension_ + "\";"; code_ += "}"; code_ += ""; } // Finish a buffer with a given root object: code_ += "inline void Finish{{STRUCT_NAME}}Buffer("; code_ += " flatbuffers::FlatBufferBuilder &fbb,"; code_ += " flatbuffers::Offset<{{CPP_NAME}}> root) {"; if (parser_.file_identifier_.length()) code_ += " fbb.Finish(root, {{STRUCT_NAME}}Identifier());"; else code_ += " fbb.Finish(root);"; code_ += "}"; code_ += ""; if (parser_.opts.generate_object_based_api) { // A convenient root unpack function. auto native_name = NativeName(WrapInNameSpace(struct_def)); code_.SetValue("UNPACK_RETURN", GenTypeNativePtr(native_name, nullptr, false)); code_.SetValue("UNPACK_TYPE", GenTypeNativePtr(native_name, nullptr, true)); code_ += "inline {{UNPACK_RETURN}} UnPack{{STRUCT_NAME}}("; code_ += " const void *buf,"; code_ += " const flatbuffers::resolver_function_t *res = nullptr) {"; code_ += " return {{UNPACK_TYPE}}\\"; code_ += "(Get{{STRUCT_NAME}}(buf)->UnPack(res));"; code_ += "}"; code_ += ""; } } assert(cur_name_space_); SetNameSpace(nullptr); // Close the include guard. code_ += "#endif // " + include_guard; const auto file_path = GeneratedFileName(path_, file_name_); const auto final_code = code_.ToString(); return SaveFile(file_path.c_str(), final_code, false); } private: CodeWriter code_; // This tracks the current namespace so we can insert namespace declarations. const Namespace *cur_name_space_; const Namespace *CurrentNameSpace() const { return cur_name_space_; } // Translates a qualified name in flatbuffer text format to the same name in // the equivalent C++ namespace. static std::string TranslateNameSpace(const std::string &qualified_name) { std::string cpp_qualified_name = qualified_name; size_t start_pos = 0; while ((start_pos = cpp_qualified_name.find(".", start_pos)) != std::string::npos) { cpp_qualified_name.replace(start_pos, 1, "::"); } return cpp_qualified_name; } void GenComment(const std::vector &dc, const char *prefix = "") { std::string text; ::flatbuffers::GenComment(dc, &text, nullptr, prefix); code_ += text + "\\"; } // Return a C++ type from the table in idl.h std::string GenTypeBasic(const Type &type, bool user_facing_type) const { static const char *ctypename[] = { #define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, PTYPE) \ #CTYPE, FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD) #undef FLATBUFFERS_TD }; if (user_facing_type) { if (type.enum_def) return WrapInNameSpace(*type.enum_def); if (type.base_type == BASE_TYPE_BOOL) return "bool"; } return ctypename[type.base_type]; } // Return a C++ pointer type, specialized to the actual struct/table types, // and vector element types. std::string GenTypePointer(const Type &type) const { switch (type.base_type) { case BASE_TYPE_STRING: { return "flatbuffers::String"; } case BASE_TYPE_VECTOR: { const auto type_name = GenTypeWire(type.VectorType(), "", false); return "flatbuffers::Vector<" + type_name + ">"; } case BASE_TYPE_STRUCT: { return WrapInNameSpace(*type.struct_def); } case BASE_TYPE_UNION: // fall through default: { return "void"; } } } // Return a C++ type for any type (scalar/pointer) specifically for // building a flatbuffer. std::string GenTypeWire(const Type &type, const char *postfix, bool user_facing_type) const { if (IsScalar(type.base_type)) { return GenTypeBasic(type, user_facing_type) + postfix; } else if (IsStruct(type)) { return "const " + GenTypePointer(type) + " *"; } else { return "flatbuffers::Offset<" + GenTypePointer(type) + ">" + postfix; } } // Return a C++ type for any type (scalar/pointer) that reflects its // serialized size. std::string GenTypeSize(const Type &type) const { if (IsScalar(type.base_type)) { return GenTypeBasic(type, false); } else if (IsStruct(type)) { return GenTypePointer(type); } else { return "flatbuffers::uoffset_t"; } } // TODO(wvo): make this configurable. static std::string NativeName(const std::string &name) { return name + "T"; } const std::string &PtrType(const FieldDef *field) { auto attr = field ? field->attributes.Lookup("cpp_ptr_type") : nullptr; return attr ? attr->constant : parser_.opts.cpp_object_api_pointer_type; } std::string GenTypeNativePtr(const std::string &type, const FieldDef *field, bool is_constructor) { auto &ptr_type = PtrType(field); if (ptr_type != "naked") { return ptr_type + "<" + type + ">"; } else if (is_constructor) { return ""; } else { return type + " *"; } } std::string GenPtrGet(const FieldDef &field) { auto &ptr_type = PtrType(&field); return ptr_type == "naked" ? "" : ".get()"; } std::string GenTypeNative(const Type &type, bool invector, const FieldDef &field) { switch (type.base_type) { case BASE_TYPE_STRING: { return "std::string"; } case BASE_TYPE_VECTOR: { const auto type_name = GenTypeNative(type.VectorType(), true, field); return "std::vector<" + type_name + ">"; } case BASE_TYPE_STRUCT: { auto type_name = WrapInNameSpace(*type.struct_def); if (IsStruct(type)) { auto native_type = type.struct_def->attributes.Lookup("native_type"); if (native_type) { type_name = native_type->constant; } if (invector || field.native_inline) { return type_name; } else { return GenTypeNativePtr(type_name, &field, false); } } else { return GenTypeNativePtr(NativeName(type_name), &field, false); } } case BASE_TYPE_UNION: { return type.enum_def->name + "Union"; } default: { return GenTypeBasic(type, true); } } } // Return a C++ type for any type (scalar/pointer) specifically for // using a flatbuffer. std::string GenTypeGet(const Type &type, const char *afterbasic, const char *beforeptr, const char *afterptr, bool user_facing_type) { if (IsScalar(type.base_type)) { return GenTypeBasic(type, user_facing_type) + afterbasic; } else { return beforeptr + GenTypePointer(type) + afterptr; } } std::string GenEnumDecl(const EnumDef &enum_def) const { const IDLOptions &opts = parser_.opts; return (opts.scoped_enums ? "enum class " : "enum ") + enum_def.name; } std::string GenEnumValDecl(const EnumDef &enum_def, const std::string &enum_val) const { const IDLOptions &opts = parser_.opts; return opts.prefixed_enums ? enum_def.name + "_" + enum_val : enum_val; } std::string GetEnumValUse(const EnumDef &enum_def, const EnumVal &enum_val) const { const IDLOptions &opts = parser_.opts; if (opts.scoped_enums) { return enum_def.name + "::" + enum_val.name; } else if (opts.prefixed_enums) { return enum_def.name + "_" + enum_val.name; } else { return enum_val.name; } } static std::string UnionVerifySignature(const EnumDef &enum_def) { return "bool Verify" + enum_def.name + "(flatbuffers::Verifier &verifier, const void *obj, " + enum_def.name + " type)"; } static std::string UnionVectorVerifySignature(const EnumDef &enum_def) { return "bool Verify" + enum_def.name + "Vector" + "(flatbuffers::Verifier &verifier, " + "const flatbuffers::Vector> *values, " + "const flatbuffers::Vector *types)"; } static std::string UnionUnPackSignature(const EnumDef &enum_def, bool inclass) { return (inclass ? "static " : "") + std::string("flatbuffers::NativeTable *") + (inclass ? "" : enum_def.name + "Union::") + "UnPack(const void *obj, " + enum_def.name + " type, const flatbuffers::resolver_function_t *resolver)"; } static std::string UnionPackSignature(const EnumDef &enum_def, bool inclass) { return "flatbuffers::Offset " + (inclass ? "" : enum_def.name + "Union::") + "Pack(flatbuffers::FlatBufferBuilder &_fbb, " + "const flatbuffers::rehasher_function_t *_rehasher" + (inclass ? " = nullptr" : "") + ") const"; } static std::string TableCreateSignature(const StructDef &struct_def, bool predecl) { return "flatbuffers::Offset<" + struct_def.name + "> Create" + struct_def.name + "(flatbuffers::FlatBufferBuilder &_fbb, const " + NativeName(struct_def.name) + " *_o, const flatbuffers::rehasher_function_t *_rehasher" + (predecl ? " = nullptr" : "") + ")"; } static std::string TablePackSignature(const StructDef &struct_def, bool inclass) { return std::string(inclass ? "static " : "") + "flatbuffers::Offset<" + struct_def.name + "> " + (inclass ? "" : struct_def.name + "::") + "Pack(flatbuffers::FlatBufferBuilder &_fbb, " + "const " + NativeName(struct_def.name) + "* _o, " + "const flatbuffers::rehasher_function_t *_rehasher" + (inclass ? " = nullptr" : "") + ")"; } static std::string TableUnPackSignature(const StructDef &struct_def, bool inclass) { return NativeName(struct_def.name) + " *" + (inclass ? "" : struct_def.name + "::") + "UnPack(const flatbuffers::resolver_function_t *_resolver" + (inclass ? " = nullptr" : "") + ") const"; } static std::string TableUnPackToSignature(const StructDef &struct_def, bool inclass) { return "void " + (inclass ? "" : struct_def.name + "::") + "UnPackTo(" + NativeName(struct_def.name) + " *" + "_o, " + "const flatbuffers::resolver_function_t *_resolver" + (inclass ? " = nullptr" : "") + ") const"; } // Generate an enum declaration and an enum string lookup table. void GenEnum(const EnumDef &enum_def) { code_.SetValue("ENUM_NAME", enum_def.name); code_.SetValue("BASE_TYPE", GenTypeBasic(enum_def.underlying_type, false)); code_.SetValue("SEP", ""); GenComment(enum_def.doc_comment); code_ += GenEnumDecl(enum_def) + "\\"; if (parser_.opts.scoped_enums) code_ += " : {{BASE_TYPE}}\\"; code_ += " {"; int64_t anyv = 0; const EnumVal *minv = nullptr, *maxv = nullptr; for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end(); ++it) { const auto &ev = **it; GenComment(ev.doc_comment, " "); code_.SetValue("KEY", GenEnumValDecl(enum_def, ev.name)); code_.SetValue("VALUE", NumToString(ev.value)); code_ += "{{SEP}} {{KEY}} = {{VALUE}}\\"; code_.SetValue("SEP", ",\n"); minv = !minv || minv->value > ev.value ? &ev : minv; maxv = !maxv || maxv->value < ev.value ? &ev : maxv; anyv |= ev.value; } if (parser_.opts.scoped_enums || parser_.opts.prefixed_enums) { assert(minv && maxv); code_.SetValue("SEP", ",\n"); if (enum_def.attributes.Lookup("bit_flags")) { code_.SetValue("KEY", GenEnumValDecl(enum_def, "NONE")); code_.SetValue("VALUE", "0"); code_ += "{{SEP}} {{KEY}} = {{VALUE}}\\"; code_.SetValue("KEY", GenEnumValDecl(enum_def, "ANY")); code_.SetValue("VALUE", NumToString(anyv)); code_ += "{{SEP}} {{KEY}} = {{VALUE}}\\"; } else { // MIN & MAX are useless for bit_flags code_.SetValue("KEY",GenEnumValDecl(enum_def, "MIN")); code_.SetValue("VALUE", GenEnumValDecl(enum_def, minv->name)); code_ += "{{SEP}} {{KEY}} = {{VALUE}}\\"; code_.SetValue("KEY",GenEnumValDecl(enum_def, "MAX")); code_.SetValue("VALUE", GenEnumValDecl(enum_def, maxv->name)); code_ += "{{SEP}} {{KEY}} = {{VALUE}}\\"; } } code_ += ""; code_ += "};"; if (parser_.opts.scoped_enums && enum_def.attributes.Lookup("bit_flags")) { code_ += "DEFINE_BITMASK_OPERATORS({{ENUM_NAME}}, {{BASE_TYPE}})"; } code_ += ""; // Generate a generate string table for enum values. // Problem is, if values are very sparse that could generate really big // tables. Ideally in that case we generate a map lookup instead, but for // the moment we simply don't output a table at all. auto range = enum_def.vals.vec.back()->value - enum_def.vals.vec.front()->value + 1; // Average distance between values above which we consider a table // "too sparse". Change at will. static const int kMaxSparseness = 5; if (range / static_cast(enum_def.vals.vec.size()) < kMaxSparseness) { code_ += "inline const char **EnumNames{{ENUM_NAME}}() {"; code_ += " static const char *names[] = {"; auto val = enum_def.vals.vec.front()->value; for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end(); ++it) { const auto &ev = **it; while (val++ != ev.value) { code_ += " \"\","; } code_ += " \"" + ev.name + "\","; } code_ += " nullptr"; code_ += " };"; code_ += " return names;"; code_ += "}"; code_ += ""; code_ += "inline const char *EnumName{{ENUM_NAME}}({{ENUM_NAME}} e) {"; code_ += " const size_t index = static_cast(e)\\"; if (enum_def.vals.vec.front()->value) { auto vals = GetEnumValUse(enum_def, *enum_def.vals.vec.front()); code_ += " - static_cast(" + vals + ")\\"; } code_ += ";"; code_ += " return EnumNames{{ENUM_NAME}}()[index];"; code_ += "}"; code_ += ""; } // Generate type traits for unions to map from a type to union enum value. if (enum_def.is_union) { for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end(); ++it) { const auto &ev = **it; if (it == enum_def.vals.vec.begin()) { code_ += "template struct {{ENUM_NAME}}Traits {"; } else { auto name = WrapInNameSpace(*ev.struct_def); code_ += "template<> struct {{ENUM_NAME}}Traits<" + name + "> {"; } auto value = GetEnumValUse(enum_def, ev); code_ += " static const {{ENUM_NAME}} enum_value = " + value + ";"; code_ += "};"; code_ += ""; } } if (parser_.opts.generate_object_based_api && enum_def.is_union) { // Generate a union type code_.SetValue("NAME", enum_def.name); code_.SetValue("NONE", GetEnumValUse(enum_def, *enum_def.vals.Lookup("NONE"))); code_ += "struct {{NAME}}Union {"; code_ += " {{NAME}} type;"; code_ += " flatbuffers::NativeTable *table;"; code_ += ""; code_ += " {{NAME}}Union() : type({{NONE}}), table(nullptr) {}"; code_ += " {{NAME}}Union({{NAME}}Union&& u):"; code_ += " type(std::move(u.type)), table(std::move(u.table)) {}"; code_ += " {{NAME}}Union(const {{NAME}}Union &);"; code_ += " {{NAME}}Union &operator=(const {{NAME}}Union &);"; code_ += " ~{{NAME}}Union() { Reset(); }"; code_ += ""; code_ += " void Reset();"; code_ += ""; code_ += " template "; code_ += " void Set(T&& value) {"; code_ += " Reset();"; code_ += " type = {{NAME}}Traits::enum_value;"; code_ += " if (type != {{NONE}}) {"; code_ += " table = new T(std::forward(value));"; code_ += " }"; code_ += " }"; code_ += ""; code_ += " " + UnionUnPackSignature(enum_def, true) + ";"; code_ += " " + UnionPackSignature(enum_def, true) + ";"; code_ += ""; for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end(); ++it) { const auto &ev = **it; if (!ev.value) { continue; } const auto native_type = NativeName(WrapInNameSpace(*ev.struct_def)); code_.SetValue("NATIVE_TYPE", native_type); code_.SetValue("NATIVE_NAME", ev.name); code_.SetValue("NATIVE_ID", GetEnumValUse(enum_def, ev)); code_ += " {{NATIVE_TYPE}} *As{{NATIVE_NAME}}() {"; code_ += " return type == {{NATIVE_ID}} ?"; code_ += " reinterpret_cast<{{NATIVE_TYPE}} *>(table) : nullptr;"; code_ += " }"; } code_ += "};"; code_ += ""; } if (enum_def.is_union) { code_ += UnionVerifySignature(enum_def) + ";"; code_ += UnionVectorVerifySignature(enum_def) + ";"; code_ += ""; } } void GenUnionPost(const EnumDef &enum_def) { // Generate a verifier function for this union that can be called by the // table verifier functions. It uses a switch case to select a specific // verifier function to call, this should be safe even if the union type // has been corrupted, since the verifiers will simply fail when called // on the wrong type. code_.SetValue("ENUM_NAME", enum_def.name); code_ += "inline " + UnionVerifySignature(enum_def) + " {"; code_ += " switch (type) {"; for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end(); ++it) { const auto &ev = **it; code_.SetValue("LABEL", GetEnumValUse(enum_def, ev)); if (ev.value) { code_.SetValue("TYPE", WrapInNameSpace(*ev.struct_def)); code_ += " case {{LABEL}}: {"; code_ += " auto ptr = reinterpret_cast(obj);"; code_ += " return verifier.VerifyTable(ptr);"; code_ += " }"; } else { code_ += " case {{LABEL}}: {"; code_ += " return true;"; // "NONE" enum value. code_ += " }"; } } code_ += " default: return false;"; code_ += " }"; code_ += "}"; code_ += ""; code_ += "inline " + UnionVectorVerifySignature(enum_def) + " {"; code_ += " if (values->size() != types->size()) return false;"; code_ += " for (flatbuffers::uoffset_t i = 0; i < values->size(); ++i) {"; code_ += " if (!Verify" + enum_def.name + "("; code_ += " verifier, values->Get(i), types->GetEnum<" + enum_def.name + ">(i))) {"; code_ += " return false;"; code_ += " }"; code_ += " }"; code_ += " return true;"; code_ += "}"; code_ += ""; if (parser_.opts.generate_object_based_api) { // Generate union Unpack() and Pack() functions. code_ += "inline " + UnionUnPackSignature(enum_def, false) + " {"; code_ += " switch (type) {"; for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end(); ++it) { const auto &ev = **it; if (!ev.value) { continue; } code_.SetValue("LABEL", GetEnumValUse(enum_def, ev)); code_.SetValue("TYPE", WrapInNameSpace(*ev.struct_def)); code_ += " case {{LABEL}}: {"; code_ += " auto ptr = reinterpret_cast(obj);"; code_ += " return ptr->UnPack(resolver);"; code_ += " }"; } code_ += " default: return nullptr;"; code_ += " }"; code_ += "}"; code_ += ""; code_ += "inline " + UnionPackSignature(enum_def, false) + " {"; code_ += " switch (type) {"; for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end(); ++it) { auto &ev = **it; if (!ev.value) { continue; } code_.SetValue("LABEL", GetEnumValUse(enum_def, ev)); code_.SetValue("TYPE", NativeName(WrapInNameSpace(*ev.struct_def))); code_.SetValue("NAME", ev.struct_def->name); code_ += " case {{LABEL}}: {"; code_ += " auto ptr = reinterpret_cast(table);"; code_ += " return Create{{NAME}}(_fbb, ptr, _rehasher).Union();"; code_ += " }"; } code_ += " default: return 0;"; code_ += " }"; code_ += "}"; code_ += ""; // Union Reset() function. code_.SetValue("NONE", GetEnumValUse(enum_def, *enum_def.vals.Lookup("NONE"))); code_ += "inline void {{ENUM_NAME}}Union::Reset() {"; code_ += " switch (type) {"; for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end(); ++it) { const auto &ev = **it; if (!ev.value) { continue; } code_.SetValue("LABEL", GetEnumValUse(enum_def, ev)); code_.SetValue("TYPE", NativeName(WrapInNameSpace(*ev.struct_def))); code_ += " case {{LABEL}}: {"; code_ += " auto ptr = reinterpret_cast<{{TYPE}} *>(table);"; code_ += " delete ptr;"; code_ += " break;"; code_ += " }"; } code_ += " default: break;"; code_ += " }"; code_ += " table = nullptr;"; code_ += " type = {{NONE}};"; code_ += "}"; code_ += ""; } } // Generates a value with optionally a cast applied if the field has a // different underlying type from its interface type (currently only the // case for enums. "from" specify the direction, true meaning from the // underlying type to the interface type. std::string GenUnderlyingCast(const FieldDef &field, bool from, const std::string &val) { if (from && field.value.type.base_type == BASE_TYPE_BOOL) { return val + " != 0"; } else if ((field.value.type.enum_def && IsScalar(field.value.type.base_type)) || field.value.type.base_type == BASE_TYPE_BOOL) { return "static_cast<" + GenTypeBasic(field.value.type, from) + ">(" + val + ")"; } else { return val; } } std::string GenFieldOffsetName(const FieldDef &field) { std::string uname = field.name; std::transform(uname.begin(), uname.end(), uname.begin(), ::toupper); return "VT_" + uname; } void GenFullyQualifiedNameGetter(const std::string &name) { if (!parser_.opts.generate_name_strings) { return; } auto fullname = parser_.namespaces_.back()->GetFullyQualifiedName(name); code_.SetValue("NAME", fullname); code_.SetValue("CONSTEXPR", "FLATBUFFERS_CONSTEXPR"); code_ += " static {{CONSTEXPR}} const char *GetFullyQualifiedName() {"; code_ += " return \"{{NAME}}\";"; code_ += " }"; } std::string GenDefaultConstant(const FieldDef &field) { return field.value.type.base_type == BASE_TYPE_FLOAT ? field.value.constant + "f" : field.value.constant; } std::string GetDefaultScalarValue(const FieldDef &field) { if (field.value.type.enum_def && IsScalar(field.value.type.base_type)) { auto ev = field.value.type.enum_def->ReverseLookup( static_cast(StringToInt(field.value.constant.c_str())), false); if (ev) { return WrapInNameSpace( field.value.type.enum_def->defined_namespace, GetEnumValUse(*field.value.type.enum_def, *ev)); } else { return GenUnderlyingCast(field, true, field.value.constant); } } else if (field.value.type.base_type == BASE_TYPE_BOOL) { return field.value.constant == "0" ? "false" : "true"; } else { return GenDefaultConstant(field); } } void GenParam(const FieldDef &field, bool direct, const char *prefix) { code_.SetValue("PRE", prefix); code_.SetValue("PARAM_NAME", field.name); if (direct && field.value.type.base_type == BASE_TYPE_STRING) { code_.SetValue("PARAM_TYPE", "const char *"); code_.SetValue("PARAM_VALUE", "nullptr"); } else if (direct && field.value.type.base_type == BASE_TYPE_VECTOR) { auto type = GenTypeWire(field.value.type.VectorType(), "", false); code_.SetValue("PARAM_TYPE", "const std::vector<" + type + "> *"); code_.SetValue("PARAM_VALUE", "nullptr"); } else { code_.SetValue("PARAM_TYPE", GenTypeWire(field.value.type, " ", true)); code_.SetValue("PARAM_VALUE", GetDefaultScalarValue(field)); } code_ += "{{PRE}}{{PARAM_TYPE}}{{PARAM_NAME}} = {{PARAM_VALUE}}\\"; } // Generate a member, including a default value for scalars and raw pointers. void GenMember(const FieldDef &field) { if (!field.deprecated && // Deprecated fields won't be accessible. field.value.type.base_type != BASE_TYPE_UTYPE) { auto type = GenTypeNative(field.value.type, false, field); auto cpp_type = field.attributes.Lookup("cpp_type"); auto full_type = (cpp_type ? cpp_type->constant + " *" : type + " "); code_.SetValue("FIELD_TYPE", full_type); code_.SetValue("FIELD_NAME", field.name); code_ += " {{FIELD_TYPE}}{{FIELD_NAME}};"; } } // Generate the default constructor for this struct. Properly initialize all // scalar members with default values. void GenDefaultConstructor(const StructDef& struct_def) { std::string initializer_list; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (!field.deprecated && // Deprecated fields won't be accessible. field.value.type.base_type != BASE_TYPE_UTYPE) { auto cpp_type = field.attributes.Lookup("cpp_type"); // Scalar types get parsed defaults, raw pointers get nullptrs. if (IsScalar(field.value.type.base_type)) { if (!initializer_list.empty()) { initializer_list += ",\n "; } initializer_list += field.name; initializer_list += "(" + GetDefaultScalarValue(field) + ")"; } else if (field.value.type.base_type == BASE_TYPE_STRUCT) { if (IsStruct(field.value.type)) { auto native_default = field.attributes.Lookup("native_default"); if (native_default) { if (!initializer_list.empty()) { initializer_list += ",\n "; } initializer_list += field.name + "(" + native_default->constant + ")"; } } } else if (cpp_type) { if (!initializer_list.empty()) { initializer_list += ",\n "; } initializer_list += field.name + "(0)"; } } } if (!initializer_list.empty()) { initializer_list = "\n : " + initializer_list; } code_.SetValue("NATIVE_NAME", NativeName(struct_def.name)); code_.SetValue("INIT_LIST", initializer_list); code_ += " {{NATIVE_NAME}}(){{INIT_LIST}} {"; code_ += " }"; } void GenNativeTable(const StructDef &struct_def) { const auto native_name = NativeName(struct_def.name); code_.SetValue("STRUCT_NAME", struct_def.name); code_.SetValue("NATIVE_NAME", native_name); // Generate a C++ object that can hold an unpacked version of this table. code_ += "struct {{NATIVE_NAME}} : public flatbuffers::NativeTable {"; code_ += " typedef {{STRUCT_NAME}} TableType;"; GenFullyQualifiedNameGetter(native_name); for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { GenMember(**it); } GenDefaultConstructor(struct_def); code_ += "};"; code_ += ""; } // Generate the code to call the appropriate Verify function(s) for a field. void GenVerifyCall(const FieldDef &field, const char* prefix) { code_.SetValue("PRE", prefix); code_.SetValue("NAME", field.name); code_.SetValue("REQUIRED", field.required ? "Required" : ""); code_.SetValue("SIZE", GenTypeSize(field.value.type)); code_.SetValue("OFFSET", GenFieldOffsetName(field)); code_ += "{{PRE}}VerifyField{{REQUIRED}}<{{SIZE}}>(verifier, {{OFFSET}})\\"; switch (field.value.type.base_type) { case BASE_TYPE_UNION: { code_.SetValue("ENUM_NAME", field.value.type.enum_def->name); code_.SetValue("SUFFIX", UnionTypeFieldSuffix()); code_ += "{{PRE}}Verify{{ENUM_NAME}}(verifier, {{NAME}}(), " "{{NAME}}{{SUFFIX}}())\\"; break; } case BASE_TYPE_STRUCT: { if (!field.value.type.struct_def->fixed) { code_ += "{{PRE}}verifier.VerifyTable({{NAME}}())\\"; } break; } case BASE_TYPE_STRING: { code_ += "{{PRE}}verifier.Verify({{NAME}}())\\"; break; } case BASE_TYPE_VECTOR: { code_ += "{{PRE}}verifier.Verify({{NAME}}())\\"; switch (field.value.type.element) { case BASE_TYPE_STRING: { code_ += "{{PRE}}verifier.VerifyVectorOfStrings({{NAME}}())\\"; break; } case BASE_TYPE_STRUCT: { if (!field.value.type.struct_def->fixed) { code_ += "{{PRE}}verifier.VerifyVectorOfTables({{NAME}}())\\"; } break; } case BASE_TYPE_UNION: { code_.SetValue("ENUM_NAME", field.value.type.enum_def->name); code_ += "{{PRE}}Verify{{ENUM_NAME}}Vector(verifier, {{NAME}}(), {{NAME}}_type())\\"; break; } default: break; } break; } default: { break; } } } // Generate an accessor struct, builder structs & function for a table. void GenTable(const StructDef &struct_def) { if (parser_.opts.generate_object_based_api) { GenNativeTable(struct_def); } // Generate an accessor struct, with methods of the form: // type name() const { return GetField(offset, defaultval); } GenComment(struct_def.doc_comment); code_.SetValue("STRUCT_NAME", struct_def.name); code_ += "struct {{STRUCT_NAME}} FLATBUFFERS_FINAL_CLASS" " : private flatbuffers::Table {"; if (parser_.opts.generate_object_based_api) { code_ += " typedef {{NATIVE_NAME}} NativeTableType;"; } GenFullyQualifiedNameGetter(struct_def.name); // Generate field id constants. if (struct_def.fields.vec.size() > 0) { // We need to add a trailing comma to all elements except the last one as // older versions of gcc complain about this. code_.SetValue("SEP", ""); code_ += " enum {"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (field.deprecated) { // Deprecated fields won't be accessible. continue; } code_.SetValue("OFFSET_NAME", GenFieldOffsetName(field)); code_.SetValue("OFFSET_VALUE", NumToString(field.value.offset)); code_ += "{{SEP}} {{OFFSET_NAME}} = {{OFFSET_VALUE}}\\"; code_.SetValue("SEP", ",\n"); } code_ += ""; code_ += " };"; } // Generate the accessors. for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (field.deprecated) { // Deprecated fields won't be accessible. continue; } const bool is_struct = IsStruct(field.value.type); const bool is_scalar = IsScalar(field.value.type.base_type); code_.SetValue("FIELD_NAME", field.name); // Call a different accessor for pointers, that indirects. std::string accessor = ""; if (is_scalar) { accessor = "GetField<"; } else if (is_struct) { accessor = "GetStruct<"; } else { accessor = "GetPointer<"; } auto offset_str = GenFieldOffsetName(field); auto offset_type = GenTypeGet(field.value.type, "", "const ", " *", false); auto call = accessor + offset_type + ">(" + offset_str; // Default value as second arg for non-pointer types. if (is_scalar) { call += ", " + GenDefaultConstant(field); } call += ")"; GenComment(field.doc_comment, " "); code_.SetValue("FIELD_TYPE", GenTypeGet(field.value.type, " ", "const ", " *", true)); code_.SetValue("FIELD_VALUE", GenUnderlyingCast(field, true, call)); code_ += " {{FIELD_TYPE}}{{FIELD_NAME}}() const {"; code_ += " return {{FIELD_VALUE}};"; code_ += " }"; if (parser_.opts.mutable_buffer) { if (is_scalar) { code_.SetValue("OFFSET_NAME", offset_str); code_.SetValue("FIELD_TYPE", GenTypeBasic(field.value.type, true)); code_.SetValue("FIELD_VALUE", GenUnderlyingCast(field, false, "_" + field.name)); code_ += " bool mutate_{{FIELD_NAME}}({{FIELD_TYPE}} " "_{{FIELD_NAME}}) {"; code_ += " return SetField({{OFFSET_NAME}}, {{FIELD_VALUE}});"; code_ += " }"; } else { auto type = GenTypeGet(field.value.type, " ", "", " *", true); auto underlying = accessor + type + ">(" + offset_str + ")"; code_.SetValue("FIELD_TYPE", type); code_.SetValue("FIELD_VALUE", GenUnderlyingCast(field, true, underlying)); code_ += " {{FIELD_TYPE}}mutable_{{FIELD_NAME}}() {"; code_ += " return {{FIELD_VALUE}};"; code_ += " }"; } } auto nested = field.attributes.Lookup("nested_flatbuffer"); if (nested) { std::string qualified_name = parser_.namespaces_.back()->GetFullyQualifiedName( nested->constant); auto nested_root = parser_.structs_.Lookup(qualified_name); assert(nested_root); // Guaranteed to exist by parser. (void)nested_root; code_.SetValue("CPP_NAME", TranslateNameSpace(qualified_name)); code_ += " const {{CPP_NAME}} *{{FIELD_NAME}}_nested_root() const {"; code_ += " const uint8_t* data = {{FIELD_NAME}}()->Data();"; code_ += " return flatbuffers::GetRoot<{{CPP_NAME}}>(data);"; code_ += " }"; } // Generate a comparison function for this field if it is a key. if (field.key) { const bool is_string = (field.value.type.base_type == BASE_TYPE_STRING); code_ += " bool KeyCompareLessThan(const {{STRUCT_NAME}} *o) const {"; if (is_string) { code_ += " return *{{FIELD_NAME}}() < *o->{{FIELD_NAME}}();"; } else { code_ += " return {{FIELD_NAME}}() < o->{{FIELD_NAME}}();"; } code_ += " }"; if (is_string) { code_ += " int KeyCompareWithValue(const char *val) const {"; code_ += " return strcmp({{FIELD_NAME}}()->c_str(), val);"; code_ += " }"; } else { auto type = GenTypeBasic(field.value.type, false); if (parser_.opts.scoped_enums && field.value.type.enum_def && IsScalar(field.value.type.base_type)) { type = GenTypeGet(field.value.type, " ", "const ", " *", true); } code_.SetValue("KEY_TYPE", type); code_ += " int KeyCompareWithValue({{KEY_TYPE}} val) const {"; code_ += " const auto key = {{FIELD_NAME}}();"; code_ += " if (key < val) {"; code_ += " return -1;"; code_ += " } else if (key > val) {"; code_ += " return 1;"; code_ += " } else {"; code_ += " return 0;"; code_ += " }"; code_ += " }"; } } } // Generate a verifier function that can check a buffer from an untrusted // source will never cause reads outside the buffer. code_ += " bool Verify(flatbuffers::Verifier &verifier) const {"; code_ += " return VerifyTableStart(verifier)\\"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (field.deprecated) { continue; } GenVerifyCall(field, " &&\n "); } code_ += " &&\n verifier.EndTable();"; code_ += " }"; if (parser_.opts.generate_object_based_api) { // Generate the UnPack() pre declaration. code_ += " " + TableUnPackSignature(struct_def, true) + ";"; code_ += " " + TableUnPackToSignature(struct_def, true) + ";"; code_ += " " + TablePackSignature(struct_def, true) + ";"; } code_ += "};"; // End of table. code_ += ""; GenBuilders(struct_def); if (parser_.opts.generate_object_based_api) { // Generate a pre-declaration for a CreateX method that works with an // unpacked C++ object. code_ += TableCreateSignature(struct_def, true) + ";"; code_ += ""; } } void GenBuilders(const StructDef &struct_def) { code_.SetValue("STRUCT_NAME", struct_def.name); // Generate a builder struct: code_ += "struct {{STRUCT_NAME}}Builder {"; code_ += " flatbuffers::FlatBufferBuilder &fbb_;"; code_ += " flatbuffers::uoffset_t start_;"; bool has_string_or_vector_fields = false; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (!field.deprecated) { const bool is_scalar = IsScalar(field.value.type.base_type); const bool is_string = field.value.type.base_type == BASE_TYPE_STRING; const bool is_vector = field.value.type.base_type == BASE_TYPE_VECTOR; if (is_string || is_vector) { has_string_or_vector_fields = true; } std::string offset = GenFieldOffsetName(field); std::string name = GenUnderlyingCast(field, false, field.name); std::string value = is_scalar ? GenDefaultConstant(field) : ""; // Generate accessor functions of the form: // void add_name(type name) { // fbb_.AddElement(offset, name, default); // } code_.SetValue("FIELD_NAME", field.name); code_.SetValue("FIELD_TYPE", GenTypeWire(field.value.type, " ", true)); code_.SetValue("ADD_OFFSET", struct_def.name + "::" + offset); code_.SetValue("ADD_NAME", name); code_.SetValue("ADD_VALUE", value); if (is_scalar) { const auto type = GenTypeWire(field.value.type, "", false); code_.SetValue("ADD_FN", "AddElement<" + type + ">"); } else if (IsStruct(field.value.type)) { code_.SetValue("ADD_FN", "AddStruct"); } else { code_.SetValue("ADD_FN", "AddOffset"); } code_ += " void add_{{FIELD_NAME}}({{FIELD_TYPE}}{{FIELD_NAME}}) {"; code_ += " fbb_.{{ADD_FN}}(\\"; if (is_scalar) { code_ += "{{ADD_OFFSET}}, {{ADD_NAME}}, {{ADD_VALUE}});"; } else { code_ += "{{ADD_OFFSET}}, {{ADD_NAME}});"; } code_ += " }"; } } // Builder constructor code_ += " {{STRUCT_NAME}}Builder(flatbuffers::FlatBufferBuilder &_fbb)"; code_ += " : fbb_(_fbb) {"; code_ += " start_ = fbb_.StartTable();"; code_ += " }"; // Assignment operator; code_ += " {{STRUCT_NAME}}Builder &operator=" "(const {{STRUCT_NAME}}Builder &);"; // Finish() function. auto num_fields = NumToString(struct_def.fields.vec.size()); code_ += " flatbuffers::Offset<{{STRUCT_NAME}}> Finish() {"; code_ += " const auto end = fbb_.EndTable(start_, " + num_fields + ");"; code_ += " auto o = flatbuffers::Offset<{{STRUCT_NAME}}>(end);"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (!field.deprecated && field.required) { code_.SetValue("FIELD_NAME", field.name); code_.SetValue("OFFSET_NAME", GenFieldOffsetName(field)); code_ += " fbb_.Required(o, {{STRUCT_NAME}}::{{OFFSET_NAME}});"; } } code_ += " return o;"; code_ += " }"; code_ += "};"; code_ += ""; // Generate a convenient CreateX function that uses the above builder // to create a table in one go. code_ += "inline flatbuffers::Offset<{{STRUCT_NAME}}> " "Create{{STRUCT_NAME}}("; code_ += " flatbuffers::FlatBufferBuilder &_fbb\\"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (!field.deprecated) { GenParam(field, false, ",\n "); } } code_ += ") {"; code_ += " {{STRUCT_NAME}}Builder builder_(_fbb);"; for (size_t size = struct_def.sortbysize ? sizeof(largest_scalar_t) : 1; size; size /= 2) { for (auto it = struct_def.fields.vec.rbegin(); it != struct_def.fields.vec.rend(); ++it) { const auto &field = **it; if (!field.deprecated && (!struct_def.sortbysize || size == SizeOf(field.value.type.base_type))) { code_.SetValue("FIELD_NAME", field.name); code_ += " builder_.add_{{FIELD_NAME}}({{FIELD_NAME}});"; } } } code_ += " return builder_.Finish();"; code_ += "}"; code_ += ""; // Generate a CreateXDirect function with vector types as parameters if (has_string_or_vector_fields) { code_ += "inline flatbuffers::Offset<{{STRUCT_NAME}}> " "Create{{STRUCT_NAME}}Direct("; code_ += " flatbuffers::FlatBufferBuilder &_fbb\\"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (!field.deprecated) { GenParam(field, true, ",\n "); } } // Need to call "Create" with the struct namespace. const auto qualified_create_name = struct_def.defined_namespace->GetFullyQualifiedName("Create"); code_.SetValue("CREATE_NAME", TranslateNameSpace(qualified_create_name)); code_ += ") {"; code_ += " return {{CREATE_NAME}}{{STRUCT_NAME}}("; code_ += " _fbb\\"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (!field.deprecated) { code_.SetValue("FIELD_NAME", field.name); if (field.value.type.base_type == BASE_TYPE_STRING) { code_ += ",\n {{FIELD_NAME}} ? " "_fbb.CreateString({{FIELD_NAME}}) : 0\\"; } else if (field.value.type.base_type == BASE_TYPE_VECTOR) { auto type = GenTypeWire(field.value.type.VectorType(), "", false); code_ += ",\n {{FIELD_NAME}} ? " "_fbb.CreateVector<" + type + ">(*{{FIELD_NAME}}) : 0\\"; } else { code_ += ",\n {{FIELD_NAME}}\\"; } } } code_ += ");"; code_ += "}"; code_ += ""; } } std::string GenUnpackVal(const Type &type, const std::string &val, bool invector, const FieldDef &afield) { switch (type.base_type) { case BASE_TYPE_STRING: { return val + "->str()"; } case BASE_TYPE_STRUCT: { const auto name = WrapInNameSpace(*type.struct_def); if (IsStruct(type)) { auto native_type = type.struct_def->attributes.Lookup("native_type"); if (native_type) { return "flatbuffers::UnPack(*" + val + ")"; } else if (invector || afield.native_inline) { return "*" + val; } else { const auto ptype = GenTypeNativePtr(name, &afield, true); return ptype + "(new " + name + "(*" + val + "))"; } } else { const auto ptype = GenTypeNativePtr(NativeName(name), &afield, true); return ptype + "(" + val + "->UnPack(_resolver))"; } } default: { return val; break; } } }; std::string GenUnpackFieldStatement(const FieldDef &field, const FieldDef *union_field) { std::string code; switch (field.value.type.base_type) { case BASE_TYPE_VECTOR: { std::string indexing; if (field.value.type.enum_def) { indexing += "(" + field.value.type.enum_def->name + ")"; } indexing += "_e->Get(_i)"; if (field.value.type.element == BASE_TYPE_BOOL) { indexing += " != 0"; } // Generate code that pushes data from _e to _o in the form: // for (uoffset_t i = 0; i < _e->size(); ++i) { // _o->field.push_back(_e->Get(_i)); // } code += "for (flatbuffers::uoffset_t _i = 0;"; code += " _i < _e->size(); _i++) { "; code += "_o->" + field.name + ".push_back("; code += GenUnpackVal(field.value.type.VectorType(), indexing, true, field); code += "); }"; break; } case BASE_TYPE_UTYPE: { assert(union_field->value.type.base_type == BASE_TYPE_UNION); // Generate code that sets the union type, of the form: // _o->field.type = _e; code += "_o->" + union_field->name + ".type = _e;"; break; } case BASE_TYPE_UNION: { // Generate code that sets the union table, of the form: // _o->field.table = Union::Unpack(_e, field_type(), resolver); code += "_o->" + field.name + ".table = "; code += field.value.type.enum_def->name + "Union::UnPack("; code += "_e, " + field.name + UnionTypeFieldSuffix() + "(),"; code += "_resolver);"; break; } default: { auto cpp_type = field.attributes.Lookup("cpp_type"); if (cpp_type) { // Generate code that resolves the cpp pointer type, of the form: // if (resolver) // (*resolver)(&_o->field, (hash_value_t)(_e)); // else // _o->field = nullptr; code += "if (_resolver) "; code += "(*_resolver)"; code += "(reinterpret_cast(&_o->" + field.name + "), "; code += "static_cast(_e));"; code += " else "; code += "_o->" + field.name + " = nullptr;"; } else { // Generate code for assigning the value, of the form: // _o->field = value; code += "_o->" + field.name + " = "; code += GenUnpackVal(field.value.type, "_e", false, field) + ";"; } break; } } return code; } std::string GenCreateParam(const FieldDef &field) { std::string value = "_o->"; if (field.value.type.base_type == BASE_TYPE_UTYPE) { value += field.name.substr(0, field.name.size() - strlen(UnionTypeFieldSuffix())); value += ".type"; } else { value += field.name; } if (field.attributes.Lookup("cpp_type")) { auto type = GenTypeBasic(field.value.type, false); value = "_rehasher ? " "static_cast<" + type + ">((*_rehasher)(" + value + ")) : 0"; } std::string code; switch (field.value.type.base_type) { // String fields are of the form: // _fbb.CreateString(_o->field) case BASE_TYPE_STRING: { code += "_fbb.CreateString(" + value + ")"; // For optional fields, check to see if there actually is any data // in _o->field before attempting to access it. if (!field.required) { code = value + ".size() ? " + code + " : 0"; } break; } // Vector fields come in several flavours, of the forms: // _fbb.CreateVector(_o->field); // _fbb.CreateVector((const utype*)_o->field.data(), _o->field.size()); // _fbb.CreateVectorOfStrings(_o->field) // _fbb.CreateVectorOfStructs(_o->field) // _fbb.CreateVector>(_o->field.size() [&](size_t i) { // return CreateT(_fbb, _o->Get(i), rehasher); // }); case BASE_TYPE_VECTOR: { auto vector_type = field.value.type.VectorType(); switch (vector_type.base_type) { case BASE_TYPE_STRING: { code += "_fbb.CreateVectorOfStrings(" + value + ")"; break; } case BASE_TYPE_STRUCT: { if (IsStruct(vector_type)) { code += "_fbb.CreateVectorOfStructs(" + value + ")"; } else { code += "_fbb.CreateVector>"; code += "(" + value + ".size(), [&](size_t i) {"; code += " return Create" + vector_type.struct_def->name; code += "(_fbb, " + value + "[i]" + GenPtrGet(field) + ", "; code += "_rehasher); })"; } break; } case BASE_TYPE_BOOL: { code += "_fbb.CreateVector(" + value + ")"; break; } default: { if (field.value.type.enum_def) { // For enumerations, we need to get access to the array data for // the underlying storage type (eg. uint8_t). const auto basetype = GenTypeBasic( field.value.type.enum_def->underlying_type, false); code += "_fbb.CreateVector((const " + basetype + "*)" + value + ".data(), " + value + ".size())"; } else { code += "_fbb.CreateVector(" + value + ")"; } break; } } // For optional fields, check to see if there actually is any data // in _o->field before attempting to access it. if (!field.required) { code = value + ".size() ? " + code + " : 0"; } break; } case BASE_TYPE_UNION: { // _o->field.Pack(_fbb); code += value + ".Pack(_fbb)"; break; } case BASE_TYPE_STRUCT: { if (IsStruct(field.value.type)) { auto native_type = field.value.type.struct_def->attributes.Lookup("native_type"); if (native_type) { code += "flatbuffers::Pack(" + value + ")"; } else if (field.native_inline) { code += "&" + value; } else { code += value + " ? " + value + GenPtrGet(field) + " : 0"; } } else { // _o->field ? CreateT(_fbb, _o->field.get(), _rehasher); const auto type = field.value.type.struct_def->name; code += value + " ? Create" + type; code += "(_fbb, " + value + GenPtrGet(field) + ", _rehasher)"; code += " : 0"; } break; } default: { code += value; break; } } return code; } // Generate code for tables that needs to come after the regular definition. void GenTablePost(const StructDef &struct_def) { code_.SetValue("STRUCT_NAME", struct_def.name); code_.SetValue("NATIVE_NAME", NativeName(struct_def.name)); if (parser_.opts.generate_object_based_api) { // Generate the X::UnPack() method. code_ += "inline " + TableUnPackSignature(struct_def, false) + " {"; code_ += " auto _o = new {{NATIVE_NAME}}();"; code_ += " UnPackTo(_o, _resolver);"; code_ += " return _o;"; code_ += "}"; code_ += ""; code_ += "inline " + TableUnPackToSignature(struct_def, false) + " {"; code_ += " (void)_o;"; code_ += " (void)_resolver;"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (field.deprecated) { continue; } // Assign a value from |this| to |_o|. Values from |this| are stored // in a variable |_e| by calling this->field_type(). The value is then // assigned to |_o| using the GenUnpackFieldStatement. const bool is_union = field.value.type.base_type == BASE_TYPE_UTYPE; const auto statement = GenUnpackFieldStatement(field, is_union ? *(it + 1) : nullptr); code_.SetValue("FIELD_NAME", field.name); auto prefix = " { auto _e = {{FIELD_NAME}}(); "; auto check = IsScalar(field.value.type.base_type) ? "" : "if (_e) "; auto postfix = " };"; code_ += std::string(prefix) + check + statement + postfix; } code_ += "}"; code_ += ""; // Generate the X::Pack member function that simply calls the global // CreateX function. code_ += "inline " + TablePackSignature(struct_def, false) + " {"; code_ += " return Create{{STRUCT_NAME}}(_fbb, _o, _rehasher);"; code_ += "}"; code_ += ""; // Generate a CreateX method that works with an unpacked C++ object. code_ += "inline " + TableCreateSignature(struct_def, false) + " {"; code_ += " (void)_rehasher;"; code_ += " (void)_o;"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (field.deprecated) { continue; } code_ += " auto _" + field.name + " = " + GenCreateParam(field) + ";"; } // Need to call "Create" with the struct namespace. const auto qualified_create_name = struct_def.defined_namespace->GetFullyQualifiedName("Create"); code_.SetValue("CREATE_NAME", TranslateNameSpace(qualified_create_name)); code_ += " return {{CREATE_NAME}}{{STRUCT_NAME}}("; code_ += " _fbb\\"; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { auto &field = **it; if (field.deprecated) { continue; } bool pass_by_address = false; if (field.value.type.base_type == BASE_TYPE_STRUCT) { if (IsStruct(field.value.type)) { auto native_type = field.value.type.struct_def->attributes.Lookup("native_type"); if (native_type) { pass_by_address = true; } } } // Call the CreateX function using values from |_o|. if (pass_by_address) { code_ += ",\n &_" + field.name + "\\"; } else { code_ += ",\n _" + field.name + "\\"; } } code_ += ");"; code_ += "}"; code_ += ""; } } static void GenPadding( const FieldDef &field, std::string *code_ptr, int *id, const std::function &f) { if (field.padding) { for (int i = 0; i < 4; i++) { if (static_cast(field.padding) & (1 << i)) { f((1 << i) * 8, code_ptr, id); } } assert(!(field.padding & ~0xF)); } } static void PaddingDefinition(int bits, std::string *code_ptr, int *id) { *code_ptr += " int" + NumToString(bits) + "_t padding" + NumToString((*id)++) + "__;"; } static void PaddingInitializer(int bits, std::string *code_ptr, int *id) { (void)bits; *code_ptr += ",\n padding" + NumToString((*id)++) + "__(0)"; } static void PaddingNoop(int bits, std::string *code_ptr, int *id) { (void)bits; *code_ptr += " (void)padding" + NumToString((*id)++) + "__;"; } // Generate an accessor struct with constructor for a flatbuffers struct. void GenStruct(const StructDef &struct_def) { // Generate an accessor struct, with private variables of the form: // type name_; // Generates manual padding and alignment. // Variables are private because they contain little endian data on all // platforms. GenComment(struct_def.doc_comment); code_.SetValue("ALIGN", NumToString(struct_def.minalign)); code_.SetValue("STRUCT_NAME", struct_def.name); code_ += "MANUALLY_ALIGNED_STRUCT({{ALIGN}}) " "{{STRUCT_NAME}} FLATBUFFERS_FINAL_CLASS {"; code_ += " private:"; int padding_id = 0; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; code_.SetValue("FIELD_TYPE", GenTypeGet(field.value.type, " ", "", " ", false)); code_.SetValue("FIELD_NAME", field.name); code_ += " {{FIELD_TYPE}}{{FIELD_NAME}}_;"; if (field.padding) { std::string padding; GenPadding(field, &padding, &padding_id, PaddingDefinition); code_ += padding; } } // Generate GetFullyQualifiedName code_ += ""; code_ += " public:"; GenFullyQualifiedNameGetter(struct_def.name); // Generate a default constructor. code_ += " {{STRUCT_NAME}}() {"; code_ += " memset(this, 0, sizeof({{STRUCT_NAME}}));"; code_ += " }"; // Generate a copy constructor. code_ += " {{STRUCT_NAME}}(const {{STRUCT_NAME}} &_o) {"; code_ += " memcpy(this, &_o, sizeof({{STRUCT_NAME}}));"; code_ += " }"; // Generate a constructor that takes all fields as arguments. std::string arg_list; std::string init_list; padding_id = 0; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; const auto member_name = field.name + "_"; const auto arg_name = "_" + field.name; const auto arg_type = GenTypeGet(field.value.type, " ", "const ", " &", true); if (it != struct_def.fields.vec.begin()) { arg_list += ", "; init_list += ",\n "; } arg_list += arg_type; arg_list += arg_name; init_list += member_name; if (IsScalar(field.value.type.base_type)) { auto type = GenUnderlyingCast(field, false, arg_name); init_list += "(flatbuffers::EndianScalar(" + type + "))"; } else { init_list += "(" + arg_name + ")"; } if (field.padding) { GenPadding(field, &init_list, &padding_id, PaddingInitializer); } } code_.SetValue("ARG_LIST", arg_list); code_.SetValue("INIT_LIST", init_list); code_ += " {{STRUCT_NAME}}({{ARG_LIST}})"; code_ += " : {{INIT_LIST}} {"; padding_id = 0; for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; if (field.padding) { std::string padding; GenPadding(field, &padding, &padding_id, PaddingNoop); code_ += padding; } } code_ += " }"; // Generate accessor methods of the form: // type name() const { return flatbuffers::EndianScalar(name_); } for (auto it = struct_def.fields.vec.begin(); it != struct_def.fields.vec.end(); ++it) { const auto &field = **it; auto field_type = GenTypeGet(field.value.type, " ", "const ", " &", true); auto is_scalar = IsScalar(field.value.type.base_type); auto member = field.name + "_"; auto value = is_scalar ? "flatbuffers::EndianScalar(" + member + ")" : member; code_.SetValue("FIELD_NAME", field.name); code_.SetValue("FIELD_TYPE", field_type); code_.SetValue("FIELD_VALUE", GenUnderlyingCast(field, true, value)); GenComment(field.doc_comment, " "); code_ += " {{FIELD_TYPE}}{{FIELD_NAME}}() const {"; code_ += " return {{FIELD_VALUE}};"; code_ += " }"; if (parser_.opts.mutable_buffer) { if (is_scalar) { code_.SetValue("ARG", GenTypeBasic(field.value.type, true)); code_.SetValue("FIELD_VALUE", GenUnderlyingCast(field, false, "_" + field.name)); code_ += " void mutate_{{FIELD_NAME}}({{ARG}} _{{FIELD_NAME}}) {"; code_ += " flatbuffers::WriteScalar(&{{FIELD_NAME}}_, " "{{FIELD_VALUE}});"; code_ += " }"; } else { code_ += " {{FIELD_TYPE}}mutable_{{FIELD_NAME}}() {"; code_ += " return {{FIELD_NAME}}_;"; code_ += " }"; } } } code_ += "};"; code_.SetValue("STRUCT_BYTE_SIZE", NumToString(struct_def.bytesize)); code_ += "STRUCT_END({{STRUCT_NAME}}, {{STRUCT_BYTE_SIZE}});"; code_ += ""; } // Set up the correct namespace. Only open a namespace if the existing one is // different (closing/opening only what is necessary). // // The file must start and end with an empty (or null) namespace so that // namespaces are properly opened and closed. void SetNameSpace(const Namespace *ns) { if (cur_name_space_ == ns) { return; } // Compute the size of the longest common namespace prefix. // If cur_name_space is A::B::C::D and ns is A::B::E::F::G, // the common prefix is A::B:: and we have old_size = 4, new_size = 5 // and common_prefix_size = 2 size_t old_size = cur_name_space_ ? cur_name_space_->components.size() : 0; size_t new_size = ns ? ns->components.size() : 0; size_t common_prefix_size = 0; while (common_prefix_size < old_size && common_prefix_size < new_size && ns->components[common_prefix_size] == cur_name_space_->components[common_prefix_size]) { common_prefix_size++; } // Close cur_name_space in reverse order to reach the common prefix. // In the previous example, D then C are closed. for (size_t j = old_size; j > common_prefix_size; --j) { code_ += "} // namespace " + cur_name_space_->components[j - 1]; } if (old_size != common_prefix_size) { code_ += ""; } // open namespace parts to reach the ns namespace // in the previous example, E, then F, then G are opened for (auto j = common_prefix_size; j != new_size; ++j) { code_ += "namespace " + ns->components[j] + " {"; } if (new_size != common_prefix_size) { code_ += ""; } cur_name_space_ = ns; } }; } // namespace cpp bool GenerateCPP(const Parser &parser, const std::string &path, const std::string &file_name) { cpp::CppGenerator generator(parser, path, file_name); return generator.generate(); } std::string CPPMakeRule(const Parser &parser, const std::string &path, const std::string &file_name) { const auto filebase = flatbuffers::StripPath(flatbuffers::StripExtension(file_name)); const auto included_files = parser.GetIncludedFilesRecursive(file_name); std::string make_rule = GeneratedFileName(path, filebase) + ": "; for (auto it = included_files.begin(); it != included_files.end(); ++it) { make_rule += " " + *it; } return make_rule; } } // namespace flatbuffers