"""fontTools.misc.bezierTools.py -- tools for working with bezier path segments. """ from __future__ import print_function, division, absolute_import from fontTools.misc.py23 import * __all__ = [ "calcQuadraticBounds", "calcCubicBounds", "splitLine", "splitQuadratic", "splitCubic", "splitQuadraticAtT", "splitCubicAtT", "solveQuadratic", "solveCubic", ] from fontTools.misc.arrayTools import calcBounds epsilon = 1e-12 def calcQuadraticBounds(pt1, pt2, pt3): """Return the bounding rectangle for a qudratic bezier segment. pt1 and pt3 are the "anchor" points, pt2 is the "handle". >>> calcQuadraticBounds((0, 0), (50, 100), (100, 0)) (0, 0, 100, 50.0) >>> calcQuadraticBounds((0, 0), (100, 0), (100, 100)) (0.0, 0.0, 100, 100) """ (ax, ay), (bx, by), (cx, cy) = calcQuadraticParameters(pt1, pt2, pt3) ax2 = ax*2.0 ay2 = ay*2.0 roots = [] if ax2 != 0: roots.append(-bx/ax2) if ay2 != 0: roots.append(-by/ay2) points = [(ax*t*t + bx*t + cx, ay*t*t + by*t + cy) for t in roots if 0 <= t < 1] + [pt1, pt3] return calcBounds(points) def calcCubicBounds(pt1, pt2, pt3, pt4): """Return the bounding rectangle for a cubic bezier segment. pt1 and pt4 are the "anchor" points, pt2 and pt3 are the "handles". >>> calcCubicBounds((0, 0), (25, 100), (75, 100), (100, 0)) (0, 0, 100, 75.0) >>> calcCubicBounds((0, 0), (50, 0), (100, 50), (100, 100)) (0.0, 0.0, 100, 100) >>> print "%f %f %f %f" % calcCubicBounds((50, 0), (0, 100), (100, 100), (50, 0)) 35.566243 0.000000 64.433757 75.000000 """ (ax, ay), (bx, by), (cx, cy), (dx, dy) = calcCubicParameters(pt1, pt2, pt3, pt4) # calc first derivative ax3 = ax * 3.0 ay3 = ay * 3.0 bx2 = bx * 2.0 by2 = by * 2.0 xRoots = [t for t in solveQuadratic(ax3, bx2, cx) if 0 <= t < 1] yRoots = [t for t in solveQuadratic(ay3, by2, cy) if 0 <= t < 1] roots = xRoots + yRoots points = [(ax*t*t*t + bx*t*t + cx * t + dx, ay*t*t*t + by*t*t + cy * t + dy) for t in roots] + [pt1, pt4] return calcBounds(points) def splitLine(pt1, pt2, where, isHorizontal): """Split the line between pt1 and pt2 at position 'where', which is an x coordinate if isHorizontal is False, a y coordinate if isHorizontal is True. Return a list of two line segments if the line was successfully split, or a list containing the original line. >>> printSegments(splitLine((0, 0), (100, 100), 50, True)) ((0, 0), (50.0, 50.0)) ((50.0, 50.0), (100, 100)) >>> printSegments(splitLine((0, 0), (100, 100), 100, True)) ((0, 0), (100, 100)) >>> printSegments(splitLine((0, 0), (100, 100), 0, True)) ((0, 0), (0.0, 0.0)) ((0.0, 0.0), (100, 100)) >>> printSegments(splitLine((0, 0), (100, 100), 0, False)) ((0, 0), (0.0, 0.0)) ((0.0, 0.0), (100, 100)) """ pt1x, pt1y = pt1 pt2x, pt2y = pt2 ax = (pt2x - pt1x) ay = (pt2y - pt1y) bx = pt1x by = pt1y if ax == 0: return [(pt1, pt2)] t = (where - (bx, by)[isHorizontal]) / ax if 0 <= t < 1: midPt = ax * t + bx, ay * t + by return [(pt1, midPt), (midPt, pt2)] else: return [(pt1, pt2)] def splitQuadratic(pt1, pt2, pt3, where, isHorizontal): """Split the quadratic curve between pt1, pt2 and pt3 at position 'where', which is an x coordinate if isHorizontal is False, a y coordinate if isHorizontal is True. Return a list of curve segments. >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 150, False)) ((0, 0), (50, 100), (100, 0)) >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 50, False)) ((0.0, 0.0), (25.0, 50.0), (50.0, 50.0)) ((50.0, 50.0), (75.0, 50.0), (100.0, 0.0)) >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 25, False)) ((0.0, 0.0), (12.5, 25.0), (25.0, 37.5)) ((25.0, 37.5), (62.5, 75.0), (100.0, 0.0)) >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 25, True)) ((0.0, 0.0), (7.32233047034, 14.6446609407), (14.6446609407, 25.0)) ((14.6446609407, 25.0), (50.0, 75.0), (85.3553390593, 25.0)) ((85.3553390593, 25.0), (92.6776695297, 14.6446609407), (100.0, -7.1054273576e-15)) >>> # XXX I'm not at all sure if the following behavior is desirable: >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 50, True)) ((0.0, 0.0), (25.0, 50.0), (50.0, 50.0)) ((50.0, 50.0), (50.0, 50.0), (50.0, 50.0)) ((50.0, 50.0), (75.0, 50.0), (100.0, 0.0)) """ a, b, c = calcQuadraticParameters(pt1, pt2, pt3) solutions = solveQuadratic(a[isHorizontal], b[isHorizontal], c[isHorizontal] - where) solutions = sorted([t for t in solutions if 0 <= t < 1]) if not solutions: return [(pt1, pt2, pt3)] return _splitQuadraticAtT(a, b, c, *solutions) def splitCubic(pt1, pt2, pt3, pt4, where, isHorizontal): """Split the cubic curve between pt1, pt2, pt3 and pt4 at position 'where', which is an x coordinate if isHorizontal is False, a y coordinate if isHorizontal is True. Return a list of curve segments. >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 150, False)) ((0, 0), (25, 100), (75, 100), (100, 0)) >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 50, False)) ((0.0, 0.0), (12.5, 50.0), (31.25, 75.0), (50.0, 75.0)) ((50.0, 75.0), (68.75, 75.0), (87.5, 50.0), (100.0, 0.0)) >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 25, True)) ((0.0, 0.0), (2.2937927384, 9.17517095361), (4.79804488188, 17.5085042869), (7.47413641001, 25.0)) ((7.47413641001, 25.0), (31.2886200204, 91.6666666667), (68.7113799796, 91.6666666667), (92.52586359, 25.0)) ((92.52586359, 25.0), (95.2019551181, 17.5085042869), (97.7062072616, 9.17517095361), (100.0, 1.7763568394e-15)) """ a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4) solutions = solveCubic(a[isHorizontal], b[isHorizontal], c[isHorizontal], d[isHorizontal] - where) solutions = sorted([t for t in solutions if 0 <= t < 1]) if not solutions: return [(pt1, pt2, pt3, pt4)] return _splitCubicAtT(a, b, c, d, *solutions) def splitQuadraticAtT(pt1, pt2, pt3, *ts): """Split the quadratic curve between pt1, pt2 and pt3 at one or more values of t. Return a list of curve segments. >>> printSegments(splitQuadraticAtT((0, 0), (50, 100), (100, 0), 0.5)) ((0.0, 0.0), (25.0, 50.0), (50.0, 50.0)) ((50.0, 50.0), (75.0, 50.0), (100.0, 0.0)) >>> printSegments(splitQuadraticAtT((0, 0), (50, 100), (100, 0), 0.5, 0.75)) ((0.0, 0.0), (25.0, 50.0), (50.0, 50.0)) ((50.0, 50.0), (62.5, 50.0), (75.0, 37.5)) ((75.0, 37.5), (87.5, 25.0), (100.0, 0.0)) """ a, b, c = calcQuadraticParameters(pt1, pt2, pt3) return _splitQuadraticAtT(a, b, c, *ts) def splitCubicAtT(pt1, pt2, pt3, pt4, *ts): """Split the cubic curve between pt1, pt2, pt3 and pt4 at one or more values of t. Return a list of curve segments. >>> printSegments(splitCubicAtT((0, 0), (25, 100), (75, 100), (100, 0), 0.5)) ((0.0, 0.0), (12.5, 50.0), (31.25, 75.0), (50.0, 75.0)) ((50.0, 75.0), (68.75, 75.0), (87.5, 50.0), (100.0, 0.0)) >>> printSegments(splitCubicAtT((0, 0), (25, 100), (75, 100), (100, 0), 0.5, 0.75)) ((0.0, 0.0), (12.5, 50.0), (31.25, 75.0), (50.0, 75.0)) ((50.0, 75.0), (59.375, 75.0), (68.75, 68.75), (77.34375, 56.25)) ((77.34375, 56.25), (85.9375, 43.75), (93.75, 25.0), (100.0, 0.0)) """ a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4) return _splitCubicAtT(a, b, c, d, *ts) def _splitQuadraticAtT(a, b, c, *ts): ts = list(ts) segments = [] ts.insert(0, 0.0) ts.append(1.0) ax, ay = a bx, by = b cx, cy = c for i in range(len(ts) - 1): t1 = ts[i] t2 = ts[i+1] delta = (t2 - t1) # calc new a, b and c a1x = ax * delta**2 a1y = ay * delta**2 b1x = (2*ax*t1 + bx) * delta b1y = (2*ay*t1 + by) * delta c1x = ax*t1**2 + bx*t1 + cx c1y = ay*t1**2 + by*t1 + cy pt1, pt2, pt3 = calcQuadraticPoints((a1x, a1y), (b1x, b1y), (c1x, c1y)) segments.append((pt1, pt2, pt3)) return segments def _splitCubicAtT(a, b, c, d, *ts): ts = list(ts) ts.insert(0, 0.0) ts.append(1.0) segments = [] ax, ay = a bx, by = b cx, cy = c dx, dy = d for i in range(len(ts) - 1): t1 = ts[i] t2 = ts[i+1] delta = (t2 - t1) # calc new a, b, c and d a1x = ax * delta**3 a1y = ay * delta**3 b1x = (3*ax*t1 + bx) * delta**2 b1y = (3*ay*t1 + by) * delta**2 c1x = (2*bx*t1 + cx + 3*ax*t1**2) * delta c1y = (2*by*t1 + cy + 3*ay*t1**2) * delta d1x = ax*t1**3 + bx*t1**2 + cx*t1 + dx d1y = ay*t1**3 + by*t1**2 + cy*t1 + dy pt1, pt2, pt3, pt4 = calcCubicPoints((a1x, a1y), (b1x, b1y), (c1x, c1y), (d1x, d1y)) segments.append((pt1, pt2, pt3, pt4)) return segments # # Equation solvers. # from math import sqrt, acos, cos, pi def solveQuadratic(a, b, c, sqrt=sqrt): """Solve a quadratic equation where a, b and c are real. a*x*x + b*x + c = 0 This function returns a list of roots. Note that the returned list is neither guaranteed to be sorted nor to contain unique values! """ if abs(a) < epsilon: if abs(b) < epsilon: # We have a non-equation; therefore, we have no valid solution roots = [] else: # We have a linear equation with 1 root. roots = [-c/b] else: # We have a true quadratic equation. Apply the quadratic formula to find two roots. DD = b*b - 4.0*a*c if DD >= 0.0: rDD = sqrt(DD) roots = [(-b+rDD)/2.0/a, (-b-rDD)/2.0/a] else: # complex roots, ignore roots = [] return roots def solveCubic(a, b, c, d): """Solve a cubic equation where a, b, c and d are real. a*x*x*x + b*x*x + c*x + d = 0 This function returns a list of roots. Note that the returned list is neither guaranteed to be sorted nor to contain unique values! """ # # adapted from: # CUBIC.C - Solve a cubic polynomial # public domain by Ross Cottrell # found at: http://www.strangecreations.com/library/snippets/Cubic.C # if abs(a) < epsilon: # don't just test for zero; for very small values of 'a' solveCubic() # returns unreliable results, so we fall back to quad. return solveQuadratic(b, c, d) a = float(a) a1 = b/a a2 = c/a a3 = d/a Q = (a1*a1 - 3.0*a2)/9.0 R = (2.0*a1*a1*a1 - 9.0*a1*a2 + 27.0*a3)/54.0 R2_Q3 = R*R - Q*Q*Q if R2_Q3 < 0: theta = acos(R/sqrt(Q*Q*Q)) rQ2 = -2.0*sqrt(Q) x0 = rQ2*cos(theta/3.0) - a1/3.0 x1 = rQ2*cos((theta+2.0*pi)/3.0) - a1/3.0 x2 = rQ2*cos((theta+4.0*pi)/3.0) - a1/3.0 return [x0, x1, x2] else: if Q == 0 and R == 0: x = 0 else: x = pow(sqrt(R2_Q3)+abs(R), 1/3.0) x = x + Q/x if R >= 0.0: x = -x x = x - a1/3.0 return [x] # # Conversion routines for points to parameters and vice versa # def calcQuadraticParameters(pt1, pt2, pt3): x2, y2 = pt2 x3, y3 = pt3 cx, cy = pt1 bx = (x2 - cx) * 2.0 by = (y2 - cy) * 2.0 ax = x3 - cx - bx ay = y3 - cy - by return (ax, ay), (bx, by), (cx, cy) def calcCubicParameters(pt1, pt2, pt3, pt4): x2, y2 = pt2 x3, y3 = pt3 x4, y4 = pt4 dx, dy = pt1 cx = (x2 -dx) * 3.0 cy = (y2 -dy) * 3.0 bx = (x3 - x2) * 3.0 - cx by = (y3 - y2) * 3.0 - cy ax = x4 - dx - cx - bx ay = y4 - dy - cy - by return (ax, ay), (bx, by), (cx, cy), (dx, dy) def calcQuadraticPoints(a, b, c): ax, ay = a bx, by = b cx, cy = c x1 = cx y1 = cy x2 = (bx * 0.5) + cx y2 = (by * 0.5) + cy x3 = ax + bx + cx y3 = ay + by + cy return (x1, y1), (x2, y2), (x3, y3) def calcCubicPoints(a, b, c, d): ax, ay = a bx, by = b cx, cy = c dx, dy = d x1 = dx y1 = dy x2 = (cx / 3.0) + dx y2 = (cy / 3.0) + dy x3 = (bx + cx) / 3.0 + x2 y3 = (by + cy) / 3.0 + y2 x4 = ax + dx + cx + bx y4 = ay + dy + cy + by return (x1, y1), (x2, y2), (x3, y3), (x4, y4) def _segmentrepr(obj): """ >>> _segmentrepr([1, [2, 3], [], [[2, [3, 4], [0.1, 2.2]]]]) '(1, (2, 3), (), ((2, (3, 4), (0.1, 2.2))))' """ try: it = iter(obj) except TypeError: return str(obj) else: return "(%s)" % ", ".join([_segmentrepr(x) for x in it]) def printSegments(segments): """Helper for the doctests, displaying each segment in a list of segments on a single line as a tuple. """ for segment in segments: print(_segmentrepr(segment)) if __name__ == "__main__": import doctest doctest.testmod()