// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "sandbox/linux/services/syscall_wrappers.h" #include #include #include #include #include #include #include #include #include #include "base/compiler_specific.h" #include "base/logging.h" #include "base/third_party/valgrind/valgrind.h" #include "build/build_config.h" #include "sandbox/linux/system_headers/capability.h" #include "sandbox/linux/system_headers/linux_signal.h" #include "sandbox/linux/system_headers/linux_syscalls.h" namespace sandbox { pid_t sys_getpid(void) { return syscall(__NR_getpid); } pid_t sys_gettid(void) { return syscall(__NR_gettid); } long sys_clone(unsigned long flags, std::nullptr_t child_stack, pid_t* ptid, pid_t* ctid, std::nullptr_t tls) { const bool clone_tls_used = flags & CLONE_SETTLS; const bool invalid_ctid = (flags & (CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)) && !ctid; const bool invalid_ptid = (flags & CLONE_PARENT_SETTID) && !ptid; // We do not support CLONE_VM. const bool clone_vm_used = flags & CLONE_VM; if (clone_tls_used || invalid_ctid || invalid_ptid || clone_vm_used) { RAW_LOG(FATAL, "Invalid usage of sys_clone"); } if (ptid) MSAN_UNPOISON(ptid, sizeof(*ptid)); if (ctid) MSAN_UNPOISON(ctid, sizeof(*ctid)); // See kernel/fork.c in Linux. There is different ordering of sys_clone // parameters depending on CONFIG_CLONE_BACKWARDS* configuration options. #if defined(ARCH_CPU_X86_64) return syscall(__NR_clone, flags, child_stack, ptid, ctid, tls); #elif defined(ARCH_CPU_X86) || defined(ARCH_CPU_ARM_FAMILY) || \ defined(ARCH_CPU_MIPS_FAMILY) // CONFIG_CLONE_BACKWARDS defined. return syscall(__NR_clone, flags, child_stack, ptid, tls, ctid); #endif } long sys_clone(unsigned long flags) { return sys_clone(flags, nullptr, nullptr, nullptr, nullptr); } void sys_exit_group(int status) { syscall(__NR_exit_group, status); } int sys_seccomp(unsigned int operation, unsigned int flags, const struct sock_fprog* args) { return syscall(__NR_seccomp, operation, flags, args); } int sys_prlimit64(pid_t pid, int resource, const struct rlimit64* new_limit, struct rlimit64* old_limit) { int res = syscall(__NR_prlimit64, pid, resource, new_limit, old_limit); if (res == 0 && old_limit) MSAN_UNPOISON(old_limit, sizeof(*old_limit)); return res; } int sys_capget(cap_hdr* hdrp, cap_data* datap) { int res = syscall(__NR_capget, hdrp, datap); if (res == 0) { if (hdrp) MSAN_UNPOISON(hdrp, sizeof(*hdrp)); if (datap) MSAN_UNPOISON(datap, sizeof(*datap)); } return res; } int sys_capset(cap_hdr* hdrp, const cap_data* datap) { return syscall(__NR_capset, hdrp, datap); } int sys_getresuid(uid_t* ruid, uid_t* euid, uid_t* suid) { int res; #if defined(ARCH_CPU_X86) || defined(ARCH_CPU_ARMEL) // On 32-bit x86 or 32-bit arm, getresuid supports 16bit values only. // Use getresuid32 instead. res = syscall(__NR_getresuid32, ruid, euid, suid); #else res = syscall(__NR_getresuid, ruid, euid, suid); #endif if (res == 0) { if (ruid) MSAN_UNPOISON(ruid, sizeof(*ruid)); if (euid) MSAN_UNPOISON(euid, sizeof(*euid)); if (suid) MSAN_UNPOISON(suid, sizeof(*suid)); } return res; } int sys_getresgid(gid_t* rgid, gid_t* egid, gid_t* sgid) { int res; #if defined(ARCH_CPU_X86) || defined(ARCH_CPU_ARMEL) // On 32-bit x86 or 32-bit arm, getresgid supports 16bit values only. // Use getresgid32 instead. res = syscall(__NR_getresgid32, rgid, egid, sgid); #else res = syscall(__NR_getresgid, rgid, egid, sgid); #endif if (res == 0) { if (rgid) MSAN_UNPOISON(rgid, sizeof(*rgid)); if (egid) MSAN_UNPOISON(egid, sizeof(*egid)); if (sgid) MSAN_UNPOISON(sgid, sizeof(*sgid)); } return res; } int sys_chroot(const char* path) { return syscall(__NR_chroot, path); } int sys_unshare(int flags) { return syscall(__NR_unshare, flags); } int sys_sigprocmask(int how, const sigset_t* set, std::nullptr_t oldset) { // In some toolchain (in particular Android and PNaCl toolchain), // sigset_t is 32 bits, but the Linux ABI uses more. LinuxSigSet linux_value; std::memset(&linux_value, 0, sizeof(LinuxSigSet)); std::memcpy(&linux_value, set, std::min(sizeof(sigset_t), sizeof(LinuxSigSet))); return syscall(__NR_rt_sigprocmask, how, &linux_value, nullptr, sizeof(linux_value)); } // When this is built with PNaCl toolchain, we should always use sys_sigaction // below, because sigaction() provided by the toolchain is incompatible with // Linux's ABI. #if !defined(OS_NACL_NONSFI) int sys_sigaction(int signum, const struct sigaction* act, struct sigaction* oldact) { return sigaction(signum, act, oldact); } #else #if defined(ARCH_CPU_X86_FAMILY) // On x86_64, sa_restorer is required. We specify it on x86 as well in order to // support kernels with VDSO disabled. #if !defined(SA_RESTORER) #define SA_RESTORER 0x04000000 #endif // XSTR(__NR_foo) expands to a string literal containing the value value of // __NR_foo. #define STR(x) #x #define XSTR(x) STR(x) // rt_sigreturn is a special system call that interacts with the user land // stack. Thus, here prologue must not be created, which implies syscall() // does not work properly, too. Note that rt_sigreturn does not return. // TODO(rickyz): These assembly functions may still break stack unwinding on // nonsfi NaCl builds. #if defined(ARCH_CPU_X86_64) extern "C" { void sys_rt_sigreturn(); } asm( ".text\n" "sys_rt_sigreturn:\n" "mov $" XSTR(__NR_rt_sigreturn) ", %eax\n" "syscall\n"); #elif defined(ARCH_CPU_X86) extern "C" { void sys_sigreturn(); void sys_rt_sigreturn(); } asm( ".text\n" "sys_rt_sigreturn:\n" "mov $" XSTR(__NR_rt_sigreturn) ", %eax\n" "int $0x80\n" "sys_sigreturn:\n" "pop %eax\n" "mov $" XSTR(__NR_sigreturn) ", %eax\n" "int $0x80\n"); #else #error "Unsupported architecture." #endif #undef STR #undef XSTR #endif int sys_sigaction(int signum, const struct sigaction* act, struct sigaction* oldact) { LinuxSigAction linux_act = {}; if (act) { linux_act.kernel_handler = act->sa_handler; std::memcpy(&linux_act.sa_mask, &act->sa_mask, std::min(sizeof(linux_act.sa_mask), sizeof(act->sa_mask))); linux_act.sa_flags = act->sa_flags; #if defined(ARCH_CPU_X86_FAMILY) if (!(linux_act.sa_flags & SA_RESTORER)) { linux_act.sa_flags |= SA_RESTORER; #if defined(ARCH_CPU_X86_64) linux_act.sa_restorer = sys_rt_sigreturn; #elif defined(ARCH_CPU_X86) linux_act.sa_restorer = linux_act.sa_flags & SA_SIGINFO ? sys_rt_sigreturn : sys_sigreturn; #else #error "Unsupported architecture." #endif } #endif } LinuxSigAction linux_oldact = {}; int result = syscall(__NR_rt_sigaction, signum, act ? &linux_act : nullptr, oldact ? &linux_oldact : nullptr, sizeof(LinuxSigSet)); if (result == 0 && oldact) { oldact->sa_handler = linux_oldact.kernel_handler; sigemptyset(&oldact->sa_mask); std::memcpy(&oldact->sa_mask, &linux_oldact.sa_mask, std::min(sizeof(linux_act.sa_mask), sizeof(act->sa_mask))); oldact->sa_flags = linux_oldact.sa_flags; } return result; } #endif // defined(MEMORY_SANITIZER) } // namespace sandbox