//===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // class multimap // iterator upper_bound(const key_type& k); // const_iterator upper_bound(const key_type& k) const; #include #include #include "test_macros.h" #include "min_allocator.h" #include "private_constructor.hpp" #include "is_transparent.h" int main() { typedef std::pair V; { typedef std::multimap M; { typedef M::iterator R; V ar[] = { V(5, 1), V(5, 2), V(5, 3), V(7, 1), V(7, 2), V(7, 3), V(9, 1), V(9, 2), V(9, 3) }; M m(ar, ar+sizeof(ar)/sizeof(ar[0])); R r = m.upper_bound(4); assert(r == m.begin()); r = m.upper_bound(5); assert(r == next(m.begin(), 3)); r = m.upper_bound(6); assert(r == next(m.begin(), 3)); r = m.upper_bound(7); assert(r == next(m.begin(), 6)); r = m.upper_bound(8); assert(r == next(m.begin(), 6)); r = m.upper_bound(9); assert(r == next(m.begin(), 9)); r = m.upper_bound(10); assert(r == m.end()); } { typedef M::const_iterator R; V ar[] = { V(5, 1), V(5, 2), V(5, 3), V(7, 1), V(7, 2), V(7, 3), V(9, 1), V(9, 2), V(9, 3) }; const M m(ar, ar+sizeof(ar)/sizeof(ar[0])); R r = m.upper_bound(4); assert(r == m.begin()); r = m.upper_bound(5); assert(r == next(m.begin(), 3)); r = m.upper_bound(6); assert(r == next(m.begin(), 3)); r = m.upper_bound(7); assert(r == next(m.begin(), 6)); r = m.upper_bound(8); assert(r == next(m.begin(), 6)); r = m.upper_bound(9); assert(r == next(m.begin(), 9)); r = m.upper_bound(10); assert(r == m.end()); } } #if TEST_STD_VER >= 11 { typedef std::multimap, min_allocator>> M; { typedef M::iterator R; V ar[] = { V(5, 1), V(5, 2), V(5, 3), V(7, 1), V(7, 2), V(7, 3), V(9, 1), V(9, 2), V(9, 3) }; M m(ar, ar+sizeof(ar)/sizeof(ar[0])); R r = m.upper_bound(4); assert(r == m.begin()); r = m.upper_bound(5); assert(r == next(m.begin(), 3)); r = m.upper_bound(6); assert(r == next(m.begin(), 3)); r = m.upper_bound(7); assert(r == next(m.begin(), 6)); r = m.upper_bound(8); assert(r == next(m.begin(), 6)); r = m.upper_bound(9); assert(r == next(m.begin(), 9)); r = m.upper_bound(10); assert(r == m.end()); } { typedef M::const_iterator R; V ar[] = { V(5, 1), V(5, 2), V(5, 3), V(7, 1), V(7, 2), V(7, 3), V(9, 1), V(9, 2), V(9, 3) }; const M m(ar, ar+sizeof(ar)/sizeof(ar[0])); R r = m.upper_bound(4); assert(r == m.begin()); r = m.upper_bound(5); assert(r == next(m.begin(), 3)); r = m.upper_bound(6); assert(r == next(m.begin(), 3)); r = m.upper_bound(7); assert(r == next(m.begin(), 6)); r = m.upper_bound(8); assert(r == next(m.begin(), 6)); r = m.upper_bound(9); assert(r == next(m.begin(), 9)); r = m.upper_bound(10); assert(r == m.end()); } } #endif #if TEST_STD_VER > 11 { typedef std::pair V; typedef std::multimap> M; typedef M::iterator R; V ar[] = { V(5, 1), V(5, 2), V(5, 3), V(7, 1), V(7, 2), V(7, 3), V(9, 1), V(9, 2), V(9, 3) }; M m(ar, ar+sizeof(ar)/sizeof(ar[0])); R r = m.upper_bound(4); assert(r == m.begin()); r = m.upper_bound(5); assert(r == next(m.begin(), 3)); r = m.upper_bound(6); assert(r == next(m.begin(), 3)); r = m.upper_bound(7); assert(r == next(m.begin(), 6)); r = m.upper_bound(8); assert(r == next(m.begin(), 6)); r = m.upper_bound(9); assert(r == next(m.begin(), 9)); r = m.upper_bound(10); assert(r == m.end()); r = m.upper_bound(C2Int(4)); assert(r == m.begin()); r = m.upper_bound(C2Int(5)); assert(r == next(m.begin(), 3)); r = m.upper_bound(C2Int(6)); assert(r == next(m.begin(), 3)); r = m.upper_bound(C2Int(7)); assert(r == next(m.begin(), 6)); r = m.upper_bound(C2Int(8)); assert(r == next(m.begin(), 6)); r = m.upper_bound(C2Int(9)); assert(r == next(m.begin(), 9)); r = m.upper_bound(C2Int(10)); } { typedef PrivateConstructor PC; typedef std::multimap> M; typedef M::iterator R; M m; m.insert ( std::make_pair ( PC::make(5), 1 )); m.insert ( std::make_pair ( PC::make(5), 2 )); m.insert ( std::make_pair ( PC::make(5), 3 )); m.insert ( std::make_pair ( PC::make(7), 1 )); m.insert ( std::make_pair ( PC::make(7), 2 )); m.insert ( std::make_pair ( PC::make(7), 3 )); m.insert ( std::make_pair ( PC::make(9), 1 )); m.insert ( std::make_pair ( PC::make(9), 2 )); m.insert ( std::make_pair ( PC::make(9), 3 )); R r = m.upper_bound(4); assert(r == m.begin()); r = m.upper_bound(5); assert(r == next(m.begin(), 3)); r = m.upper_bound(6); assert(r == next(m.begin(), 3)); r = m.upper_bound(7); assert(r == next(m.begin(), 6)); r = m.upper_bound(8); assert(r == next(m.begin(), 6)); r = m.upper_bound(9); assert(r == next(m.begin(), 9)); r = m.upper_bound(10); assert(r == m.end()); } #endif }