//===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // UNSUPPORTED: libcpp-has-no-threads // UNSUPPORTED: c++98, c++03 // // class future // template // future_status // wait_until(const chrono::time_point& abs_time) const; #include #include #include enum class WorkerThreadState { Uninitialized, AllowedToRun, Exiting }; typedef std::chrono::milliseconds ms; std::atomic thread_state(WorkerThreadState::Uninitialized); void set_worker_thread_state(WorkerThreadState state) { thread_state.store(state, std::memory_order_relaxed); } void wait_for_worker_thread_state(WorkerThreadState state) { while (thread_state.load(std::memory_order_relaxed) != state); } void func1(std::promise p) { wait_for_worker_thread_state(WorkerThreadState::AllowedToRun); p.set_value(3); set_worker_thread_state(WorkerThreadState::Exiting); } int j = 0; void func3(std::promise p) { wait_for_worker_thread_state(WorkerThreadState::AllowedToRun); j = 5; p.set_value(j); set_worker_thread_state(WorkerThreadState::Exiting); } void func5(std::promise p) { wait_for_worker_thread_state(WorkerThreadState::AllowedToRun); p.set_value(); set_worker_thread_state(WorkerThreadState::Exiting); } int main() { typedef std::chrono::high_resolution_clock Clock; { typedef int T; std::promise p; std::future f = p.get_future(); std::thread(func1, std::move(p)).detach(); assert(f.valid()); assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout); assert(f.valid()); // allow the worker thread to produce the result and wait until the worker is done set_worker_thread_state(WorkerThreadState::AllowedToRun); wait_for_worker_thread_state(WorkerThreadState::Exiting); assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready); assert(f.valid()); Clock::time_point t0 = Clock::now(); f.wait(); Clock::time_point t1 = Clock::now(); assert(f.valid()); assert(t1-t0 < ms(5)); } { typedef int& T; std::promise p; std::future f = p.get_future(); std::thread(func3, std::move(p)).detach(); assert(f.valid()); assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout); assert(f.valid()); // allow the worker thread to produce the result and wait until the worker is done set_worker_thread_state(WorkerThreadState::AllowedToRun); wait_for_worker_thread_state(WorkerThreadState::Exiting); assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready); assert(f.valid()); Clock::time_point t0 = Clock::now(); f.wait(); Clock::time_point t1 = Clock::now(); assert(f.valid()); assert(t1-t0 < ms(5)); } { typedef void T; std::promise p; std::future f = p.get_future(); std::thread(func5, std::move(p)).detach(); assert(f.valid()); assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout); assert(f.valid()); // allow the worker thread to produce the result and wait until the worker is done set_worker_thread_state(WorkerThreadState::AllowedToRun); wait_for_worker_thread_state(WorkerThreadState::Exiting); assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready); assert(f.valid()); Clock::time_point t0 = Clock::now(); f.wait(); Clock::time_point t1 = Clock::now(); assert(f.valid()); assert(t1-t0 < ms(5)); } }