/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef LIBTEXTCLASSIFIER_COMMON_FEATURE_DESCRIPTORS_H_ #define LIBTEXTCLASSIFIER_COMMON_FEATURE_DESCRIPTORS_H_ #include #include #include #include "util/base/integral_types.h" #include "util/base/logging.h" #include "util/base/macros.h" namespace libtextclassifier { namespace nlp_core { // Named feature parameter. class Parameter { public: Parameter() {} void set_name(const std::string &name) { name_ = name; } const std::string &name() const { return name_; } void set_value(const std::string &value) { value_ = value; } const std::string &value() const { return value_; } private: std::string name_; std::string value_; }; // Descriptor for a feature function. Used to store the results of parsing one // feature function. class FeatureFunctionDescriptor { public: FeatureFunctionDescriptor() {} // Accessors for the feature function type. The function type is the string // that the feature extractor code is registered under. void set_type(const std::string &type) { type_ = type; } bool has_type() const { return !type_.empty(); } const std::string &type() const { return type_; } // Accessors for the feature function name. The function name (if available) // is used for some log messages. Otherwise, a more precise, but also more // verbose name based on the feature specification is used. void set_name(const std::string &name) { name_ = name; } bool has_name() const { return !name_.empty(); } const std::string &name() { return name_; } // Accessors for the default (name-less) parameter. void set_argument(int32 argument) { argument_ = argument; } bool has_argument() const { // If argument has not been specified, clients should treat it as 0. This // makes the test below correct, without having a separate has_argument_ // bool field. return argument_ != 0; } int32 argument() const { return argument_; } // Accessors for the named parameters. Parameter *add_parameter() { parameters_.emplace_back(); return &(parameters_.back()); } int parameter_size() const { return parameters_.size(); } const Parameter ¶meter(int i) const { TC_DCHECK((i >= 0) && (i < parameter_size())); return parameters_[i]; } // Accessors for the sub (i.e., nested) features. Nested features: as in // offset(1).label. FeatureFunctionDescriptor *add_feature() { sub_features_.emplace_back(new FeatureFunctionDescriptor()); return sub_features_.back().get(); } int feature_size() const { return sub_features_.size(); } const FeatureFunctionDescriptor &feature(int i) const { TC_DCHECK((i >= 0) && (i < feature_size())); return *(sub_features_[i].get()); } FeatureFunctionDescriptor *mutable_feature(int i) { TC_DCHECK((i >= 0) && (i < feature_size())); return sub_features_[i].get(); } private: // See comments for set_type(). std::string type_; // See comments for set_name(). std::string name_; // See comments for set_argument(). int32 argument_ = 0; // See comemnts for add_parameter(). std::vector parameters_; // See comments for add_feature(). std::vector> sub_features_; TC_DISALLOW_COPY_AND_ASSIGN(FeatureFunctionDescriptor); }; // List of FeatureFunctionDescriptors. Used to store the result of parsing the // spec for several feature functions. class FeatureExtractorDescriptor { public: FeatureExtractorDescriptor() {} int feature_size() const { return features_.size(); } FeatureFunctionDescriptor *add_feature() { features_.emplace_back(new FeatureFunctionDescriptor()); return features_.back().get(); } const FeatureFunctionDescriptor &feature(int i) const { TC_DCHECK((i >= 0) && (i < feature_size())); return *(features_[i].get()); } FeatureFunctionDescriptor *mutable_feature(int i) { TC_DCHECK((i >= 0) && (i < feature_size())); return features_[i].get(); } private: std::vector> features_; TC_DISALLOW_COPY_AND_ASSIGN(FeatureExtractorDescriptor); }; } // namespace nlp_core } // namespace libtextclassifier #endif // LIBTEXTCLASSIFIER_COMMON_FEATURE_DESCRIPTORS_H_