//===------------------------- AddressSpace.hpp ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // // // Abstracts accessing local vs remote address spaces. // //===----------------------------------------------------------------------===// #ifndef __ADDRESSSPACE_HPP__ #define __ADDRESSSPACE_HPP__ #include #include #include #include #ifndef _LIBUNWIND_IS_BAREMETAL #include #endif #ifdef __APPLE__ #include namespace libunwind { bool checkKeyMgrRegisteredFDEs(uintptr_t targetAddr, void *&fde); } #endif #include "libunwind.h" #include "config.h" #include "dwarf2.h" #include "EHHeaderParser.hpp" #include "Registers.hpp" namespace libunwind { /// Used by findUnwindSections() to return info about needed sections. struct UnwindInfoSections { #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) || defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) || \ defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) // No dso_base for ARM EHABI. uintptr_t dso_base; #endif #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) uintptr_t dwarf_section; uintptr_t dwarf_section_length; #endif #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) uintptr_t dwarf_index_section; uintptr_t dwarf_index_section_length; #endif #if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND) uintptr_t compact_unwind_section; uintptr_t compact_unwind_section_length; #endif #if defined(_LIBUNWIND_ARM_EHABI) uintptr_t arm_section; uintptr_t arm_section_length; #endif }; /// LocalAddressSpace is used as a template parameter to UnwindCursor when /// unwinding a thread in the same process. The wrappers compile away, /// making local unwinds fast. class __attribute__((visibility("hidden"))) LocalAddressSpace { public: #ifdef __LP64__ typedef uint64_t pint_t; typedef int64_t sint_t; #else typedef uint32_t pint_t; typedef int32_t sint_t; #endif uint8_t get8(pint_t addr) { uint8_t val; memcpy(&val, (void *)addr, sizeof(val)); return val; } uint16_t get16(pint_t addr) { uint16_t val; memcpy(&val, (void *)addr, sizeof(val)); return val; } uint32_t get32(pint_t addr) { uint32_t val; memcpy(&val, (void *)addr, sizeof(val)); return val; } uint64_t get64(pint_t addr) { uint64_t val; memcpy(&val, (void *)addr, sizeof(val)); return val; } double getDouble(pint_t addr) { double val; memcpy(&val, (void *)addr, sizeof(val)); return val; } v128 getVector(pint_t addr) { v128 val; memcpy(&val, (void *)addr, sizeof(val)); return val; } uintptr_t getP(pint_t addr); static uint64_t getULEB128(pint_t &addr, pint_t end); static int64_t getSLEB128(pint_t &addr, pint_t end); pint_t getEncodedP(pint_t &addr, pint_t end, uint8_t encoding, pint_t datarelBase = 0); bool findFunctionName(pint_t addr, char *buf, size_t bufLen, unw_word_t *offset); bool findUnwindSections(pint_t targetAddr, UnwindInfoSections &info); bool findOtherFDE(pint_t targetAddr, pint_t &fde); static LocalAddressSpace sThisAddressSpace; }; inline uintptr_t LocalAddressSpace::getP(pint_t addr) { #ifdef __LP64__ return get64(addr); #else return get32(addr); #endif } /// Read a ULEB128 into a 64-bit word. inline uint64_t LocalAddressSpace::getULEB128(pint_t &addr, pint_t end) { const uint8_t *p = (uint8_t *)addr; const uint8_t *pend = (uint8_t *)end; uint64_t result = 0; int bit = 0; do { uint64_t b; if (p == pend) _LIBUNWIND_ABORT("truncated uleb128 expression"); b = *p & 0x7f; if (bit >= 64 || b << bit >> bit != b) { _LIBUNWIND_ABORT("malformed uleb128 expression"); } else { result |= b << bit; bit += 7; } } while (*p++ >= 0x80); addr = (pint_t) p; return result; } /// Read a SLEB128 into a 64-bit word. inline int64_t LocalAddressSpace::getSLEB128(pint_t &addr, pint_t end) { const uint8_t *p = (uint8_t *)addr; const uint8_t *pend = (uint8_t *)end; int64_t result = 0; int bit = 0; uint8_t byte; do { if (p == pend) _LIBUNWIND_ABORT("truncated sleb128 expression"); byte = *p++; result |= ((byte & 0x7f) << bit); bit += 7; } while (byte & 0x80); // sign extend negative numbers if ((byte & 0x40) != 0) result |= (-1LL) << bit; addr = (pint_t) p; return result; } inline LocalAddressSpace::pint_t LocalAddressSpace::getEncodedP(pint_t &addr, pint_t end, uint8_t encoding, pint_t datarelBase) { pint_t startAddr = addr; const uint8_t *p = (uint8_t *)addr; pint_t result; // first get value switch (encoding & 0x0F) { case DW_EH_PE_ptr: result = getP(addr); p += sizeof(pint_t); addr = (pint_t) p; break; case DW_EH_PE_uleb128: result = (pint_t)getULEB128(addr, end); break; case DW_EH_PE_udata2: result = get16(addr); p += 2; addr = (pint_t) p; break; case DW_EH_PE_udata4: result = get32(addr); p += 4; addr = (pint_t) p; break; case DW_EH_PE_udata8: result = (pint_t)get64(addr); p += 8; addr = (pint_t) p; break; case DW_EH_PE_sleb128: result = (pint_t)getSLEB128(addr, end); break; case DW_EH_PE_sdata2: // Sign extend from signed 16-bit value. result = (pint_t)(int16_t)get16(addr); p += 2; addr = (pint_t) p; break; case DW_EH_PE_sdata4: // Sign extend from signed 32-bit value. result = (pint_t)(int32_t)get32(addr); p += 4; addr = (pint_t) p; break; case DW_EH_PE_sdata8: result = (pint_t)get64(addr); p += 8; addr = (pint_t) p; break; default: _LIBUNWIND_ABORT("unknown pointer encoding"); } // then add relative offset switch (encoding & 0x70) { case DW_EH_PE_absptr: // do nothing break; case DW_EH_PE_pcrel: result += startAddr; break; case DW_EH_PE_textrel: _LIBUNWIND_ABORT("DW_EH_PE_textrel pointer encoding not supported"); break; case DW_EH_PE_datarel: // DW_EH_PE_datarel is only valid in a few places, so the parameter has a // default value of 0, and we abort in the event that someone calls this // function with a datarelBase of 0 and DW_EH_PE_datarel encoding. if (datarelBase == 0) _LIBUNWIND_ABORT("DW_EH_PE_datarel is invalid with a datarelBase of 0"); result += datarelBase; break; case DW_EH_PE_funcrel: _LIBUNWIND_ABORT("DW_EH_PE_funcrel pointer encoding not supported"); break; case DW_EH_PE_aligned: _LIBUNWIND_ABORT("DW_EH_PE_aligned pointer encoding not supported"); break; default: _LIBUNWIND_ABORT("unknown pointer encoding"); break; } if (encoding & DW_EH_PE_indirect) result = getP(result); return result; } #ifdef __APPLE__ struct dyld_unwind_sections { const struct mach_header* mh; const void* dwarf_section; uintptr_t dwarf_section_length; const void* compact_unwind_section; uintptr_t compact_unwind_section_length; }; #if (defined(__MAC_OS_X_VERSION_MIN_REQUIRED) \ && (__MAC_OS_X_VERSION_MIN_REQUIRED >= 1070)) \ || defined(__IPHONE_OS_VERSION_MIN_REQUIRED) // In 10.7.0 or later, libSystem.dylib implements this function. extern "C" bool _dyld_find_unwind_sections(void *, dyld_unwind_sections *); #else // In 10.6.x and earlier, we need to implement this functionality. Note // that this requires a newer version of libmacho (from cctools) than is // present in libSystem on 10.6.x (for getsectiondata). static inline bool _dyld_find_unwind_sections(void* addr, dyld_unwind_sections* info) { // Find mach-o image containing address. Dl_info dlinfo; if (!dladdr(addr, &dlinfo)) return false; #if __LP64__ const struct mach_header_64 *mh = (const struct mach_header_64 *)dlinfo.dli_fbase; #else const struct mach_header *mh = (const struct mach_header *)dlinfo.dli_fbase; #endif // Initialize the return struct info->mh = (const struct mach_header *)mh; info->dwarf_section = getsectiondata(mh, "__TEXT", "__eh_frame", &info->dwarf_section_length); info->compact_unwind_section = getsectiondata(mh, "__TEXT", "__unwind_info", &info->compact_unwind_section_length); if (!info->dwarf_section) { info->dwarf_section_length = 0; } if (!info->compact_unwind_section) { info->compact_unwind_section_length = 0; } return true; } #endif #elif defined(_LIBUNWIND_ARM_EHABI) && defined(_LIBUNWIND_IS_BAREMETAL) // When statically linked on bare-metal, the symbols for the EH table are looked // up without going through the dynamic loader. extern char __exidx_start; extern char __exidx_end; #elif defined(_LIBUNWIND_ARM_EHABI) || defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) // ELF-based systems may use dl_iterate_phdr() to access sections // containing unwinding information. The ElfW() macro for pointer-size // independent ELF header traversal is not provided by on some // systems (e.g., FreeBSD). On these systems the data structures are // just called Elf_XXX. Define ElfW() locally. #include #if !defined(ElfW) #define ElfW(type) Elf_##type #endif #endif inline bool LocalAddressSpace::findUnwindSections(pint_t targetAddr, UnwindInfoSections &info) { #ifdef __APPLE__ dyld_unwind_sections dyldInfo; if (_dyld_find_unwind_sections((void *)targetAddr, &dyldInfo)) { info.dso_base = (uintptr_t)dyldInfo.mh; #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) info.dwarf_section = (uintptr_t)dyldInfo.dwarf_section; info.dwarf_section_length = dyldInfo.dwarf_section_length; #endif info.compact_unwind_section = (uintptr_t)dyldInfo.compact_unwind_section; info.compact_unwind_section_length = dyldInfo.compact_unwind_section_length; return true; } #elif defined(_LIBUNWIND_ARM_EHABI) && defined(_LIBUNWIND_IS_BAREMETAL) // Bare metal is statically linked, so no need to ask the dynamic loader info.arm_section = (uintptr_t)(&__exidx_start); info.arm_section_length = (uintptr_t)(&__exidx_end - &__exidx_start); _LIBUNWIND_TRACE_UNWINDING("findUnwindSections: section %X length %x", info.arm_section, info.arm_section_length); if (info.arm_section && info.arm_section_length) return true; #elif defined(_LIBUNWIND_ARM_EHABI) || defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) struct dl_iterate_cb_data { LocalAddressSpace *addressSpace; UnwindInfoSections *sects; uintptr_t targetAddr; }; dl_iterate_cb_data cb_data = {this, &info, targetAddr}; int found = dl_iterate_phdr( [](struct dl_phdr_info *pinfo, size_t, void *data) -> int { auto cbdata = static_cast(data); bool found_obj = false; bool found_hdr = false; assert(cbdata); assert(cbdata->sects); if (cbdata->targetAddr < pinfo->dlpi_addr) { return false; } #if !defined(Elf_Half) typedef ElfW(Half) Elf_Half; #endif #if !defined(Elf_Phdr) typedef ElfW(Phdr) Elf_Phdr; #endif #if !defined(Elf_Addr) && defined(__ANDROID__) typedef ElfW(Addr) Elf_Addr; #endif #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND) #if !defined(_LIBUNWIND_SUPPORT_DWARF_INDEX) #error "_LIBUNWIND_SUPPORT_DWARF_UNWIND requires _LIBUNWIND_SUPPORT_DWARF_INDEX on this platform." #endif size_t object_length; #if defined(__ANDROID__) Elf_Addr image_base = pinfo->dlpi_phnum ? reinterpret_cast(pinfo->dlpi_phdr) - reinterpret_cast(pinfo->dlpi_phdr) ->p_offset : 0; #endif for (Elf_Half i = 0; i < pinfo->dlpi_phnum; i++) { const Elf_Phdr *phdr = &pinfo->dlpi_phdr[i]; if (phdr->p_type == PT_LOAD) { uintptr_t begin = pinfo->dlpi_addr + phdr->p_vaddr; #if defined(__ANDROID__) if (pinfo->dlpi_addr == 0 && phdr->p_vaddr < image_base) begin = begin + image_base; #endif uintptr_t end = begin + phdr->p_memsz; if (cbdata->targetAddr >= begin && cbdata->targetAddr < end) { cbdata->sects->dso_base = begin; object_length = phdr->p_memsz; found_obj = true; } } else if (phdr->p_type == PT_GNU_EH_FRAME) { EHHeaderParser::EHHeaderInfo hdrInfo; uintptr_t eh_frame_hdr_start = pinfo->dlpi_addr + phdr->p_vaddr; #if defined(__ANDROID__) if (pinfo->dlpi_addr == 0 && phdr->p_vaddr < image_base) eh_frame_hdr_start = eh_frame_hdr_start + image_base; #endif cbdata->sects->dwarf_index_section = eh_frame_hdr_start; cbdata->sects->dwarf_index_section_length = phdr->p_memsz; EHHeaderParser::decodeEHHdr( *cbdata->addressSpace, eh_frame_hdr_start, phdr->p_memsz, hdrInfo); cbdata->sects->dwarf_section = hdrInfo.eh_frame_ptr; found_hdr = true; } } if (found_obj && found_hdr) { cbdata->sects->dwarf_section_length = object_length; return true; } else { return false; } #else // defined(_LIBUNWIND_ARM_EHABI) for (Elf_Half i = 0; i < pinfo->dlpi_phnum; i++) { const Elf_Phdr *phdr = &pinfo->dlpi_phdr[i]; if (phdr->p_type == PT_LOAD) { uintptr_t begin = pinfo->dlpi_addr + phdr->p_vaddr; uintptr_t end = begin + phdr->p_memsz; if (cbdata->targetAddr >= begin && cbdata->targetAddr < end) found_obj = true; } else if (phdr->p_type == PT_ARM_EXIDX) { uintptr_t exidx_start = pinfo->dlpi_addr + phdr->p_vaddr; cbdata->sects->arm_section = exidx_start; cbdata->sects->arm_section_length = phdr->p_memsz; found_hdr = true; } } return found_obj && found_hdr; #endif }, &cb_data); return static_cast(found); #endif return false; } inline bool LocalAddressSpace::findOtherFDE(pint_t targetAddr, pint_t &fde) { #ifdef __APPLE__ return checkKeyMgrRegisteredFDEs(targetAddr, *((void**)&fde)); #else // TO DO: if OS has way to dynamically register FDEs, check that. (void)targetAddr; (void)fde; return false; #endif } inline bool LocalAddressSpace::findFunctionName(pint_t addr, char *buf, size_t bufLen, unw_word_t *offset) { #ifndef _LIBUNWIND_IS_BAREMETAL Dl_info dyldInfo; if (dladdr((void *)addr, &dyldInfo)) { if (dyldInfo.dli_sname != NULL) { snprintf(buf, bufLen, "%s", dyldInfo.dli_sname); *offset = (addr - (pint_t) dyldInfo.dli_saddr); return true; } } #endif return false; } #ifdef UNW_REMOTE /// RemoteAddressSpace is used as a template parameter to UnwindCursor when /// unwinding a thread in the another process. The other process can be a /// different endianness and a different pointer size which is handled by /// the P template parameter. template class RemoteAddressSpace { public: RemoteAddressSpace(task_t task) : fTask(task) {} typedef typename P::uint_t pint_t; uint8_t get8(pint_t addr); uint16_t get16(pint_t addr); uint32_t get32(pint_t addr); uint64_t get64(pint_t addr); pint_t getP(pint_t addr); uint64_t getULEB128(pint_t &addr, pint_t end); int64_t getSLEB128(pint_t &addr, pint_t end); pint_t getEncodedP(pint_t &addr, pint_t end, uint8_t encoding, pint_t datarelBase = 0); bool findFunctionName(pint_t addr, char *buf, size_t bufLen, unw_word_t *offset); bool findUnwindSections(pint_t targetAddr, UnwindInfoSections &info); bool findOtherFDE(pint_t targetAddr, pint_t &fde); private: void *localCopy(pint_t addr); task_t fTask; }; template uint8_t RemoteAddressSpace

::get8(pint_t addr) { return *((uint8_t *)localCopy(addr)); } template uint16_t RemoteAddressSpace

::get16(pint_t addr) { return P::E::get16(*(uint16_t *)localCopy(addr)); } template uint32_t RemoteAddressSpace

::get32(pint_t addr) { return P::E::get32(*(uint32_t *)localCopy(addr)); } template uint64_t RemoteAddressSpace

::get64(pint_t addr) { return P::E::get64(*(uint64_t *)localCopy(addr)); } template typename P::uint_t RemoteAddressSpace

::getP(pint_t addr) { return P::getP(*(uint64_t *)localCopy(addr)); } template uint64_t RemoteAddressSpace

::getULEB128(pint_t &addr, pint_t end) { uintptr_t size = (end - addr); LocalAddressSpace::pint_t laddr = (LocalAddressSpace::pint_t) localCopy(addr); LocalAddressSpace::pint_t sladdr = laddr; uint64_t result = LocalAddressSpace::getULEB128(laddr, laddr + size); addr += (laddr - sladdr); return result; } template int64_t RemoteAddressSpace

::getSLEB128(pint_t &addr, pint_t end) { uintptr_t size = (end - addr); LocalAddressSpace::pint_t laddr = (LocalAddressSpace::pint_t) localCopy(addr); LocalAddressSpace::pint_t sladdr = laddr; uint64_t result = LocalAddressSpace::getSLEB128(laddr, laddr + size); addr += (laddr - sladdr); return result; } template void *RemoteAddressSpace

::localCopy(pint_t addr) { // FIX ME } template bool RemoteAddressSpace

::findFunctionName(pint_t addr, char *buf, size_t bufLen, unw_word_t *offset) { // FIX ME } /// unw_addr_space is the base class that abstract unw_addr_space_t type in /// libunwind.h points to. struct unw_addr_space { cpu_type_t cpuType; task_t taskPort; }; /// unw_addr_space_i386 is the concrete instance that a unw_addr_space_t points /// to when examining /// a 32-bit intel process. struct unw_addr_space_i386 : public unw_addr_space { unw_addr_space_i386(task_t task) : oas(task) {} RemoteAddressSpace> oas; }; /// unw_addr_space_x86_64 is the concrete instance that a unw_addr_space_t /// points to when examining /// a 64-bit intel process. struct unw_addr_space_x86_64 : public unw_addr_space { unw_addr_space_x86_64(task_t task) : oas(task) {} RemoteAddressSpace> oas; }; /// unw_addr_space_ppc is the concrete instance that a unw_addr_space_t points /// to when examining /// a 32-bit PowerPC process. struct unw_addr_space_ppc : public unw_addr_space { unw_addr_space_ppc(task_t task) : oas(task) {} RemoteAddressSpace> oas; }; #endif // UNW_REMOTE } // namespace libunwind #endif // __ADDRESSSPACE_HPP__