//===- FuzzerTraceState.cpp - Trace-based fuzzer mutator ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This file implements a mutation algorithm based on instruction traces and // on taint analysis feedback from DFSan. // // Instruction traces are special hooks inserted by the compiler around // interesting instructions. Currently supported traces: // * __sanitizer_cov_trace_cmp -- inserted before every ICMP instruction, // receives the type, size and arguments of ICMP. // // Every time a traced event is intercepted we analyse the data involved // in the event and suggest a mutation for future executions. // For example if 4 bytes of data that derive from input bytes {4,5,6,7} // are compared with a constant 12345, // we try to insert 12345, 12344, 12346 into bytes // {4,5,6,7} of the next fuzzed inputs. // // The fuzzer can work only with the traces, or with both traces and DFSan. // // DataFlowSanitizer (DFSan) is a tool for // generalised dynamic data flow (taint) analysis: // http://clang.llvm.org/docs/DataFlowSanitizer.html . // // The approach with DFSan-based fuzzing has some similarity to // "Taint-based Directed Whitebox Fuzzing" // by Vijay Ganesh & Tim Leek & Martin Rinard: // http://dspace.mit.edu/openaccess-disseminate/1721.1/59320, // but it uses a full blown LLVM IR taint analysis and separate instrumentation // to analyze all of the "attack points" at once. // // Workflow with DFSan: // * lib/Fuzzer/Fuzzer*.cpp is compiled w/o any instrumentation. // * The code under test is compiled with DFSan *and* with instruction traces. // * Every call to HOOK(a,b) is replaced by DFSan with // __dfsw_HOOK(a, b, label(a), label(b)) so that __dfsw_HOOK // gets all the taint labels for the arguments. // * At the Fuzzer startup we assign a unique DFSan label // to every byte of the input string (Fuzzer::CurrentUnitData) so that // for any chunk of data we know which input bytes it has derived from. // * The __dfsw_* functions (implemented in this file) record the // parameters (i.e. the application data and the corresponding taint labels) // in a global state. // // Parts of this code will not function when DFSan is not linked in. // Instead of using ifdefs and thus requiring a separate build of lib/Fuzzer // we redeclare the dfsan_* interface functions as weak and check if they // are nullptr before calling. // If this approach proves to be useful we may add attribute(weak) to the // dfsan declarations in dfsan_interface.h // // This module is in the "proof of concept" stage. // It is capable of solving only the simplest puzzles // like test/dfsan/DFSanSimpleCmpTest.cpp. //===----------------------------------------------------------------------===// /* Example of manual usage (-fsanitize=dataflow is optional): ( cd $LLVM/lib/Fuzzer/ clang -fPIC -c -g -O2 -std=c++11 Fuzzer*.cpp clang++ -O0 -std=c++11 -fsanitize-coverage=edge,trace-cmp \ -fsanitize=dataflow \ test/SimpleCmpTest.cpp Fuzzer*.o ./a.out -use_traces=1 ) */ #include "FuzzerDFSan.h" #include "FuzzerInternal.h" #include #include #include #include #if !LLVM_FUZZER_SUPPORTS_DFSAN // Stubs for dfsan for platforms where dfsan does not exist and weak // functions don't work. extern "C" { dfsan_label dfsan_create_label(const char *desc, void *userdata) { return 0; } void dfsan_set_label(dfsan_label label, void *addr, size_t size) {} void dfsan_add_label(dfsan_label label, void *addr, size_t size) {} const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label) { return nullptr; } dfsan_label dfsan_read_label(const void *addr, size_t size) { return 0; } } // extern "C" #endif // !LLVM_FUZZER_SUPPORTS_DFSAN namespace fuzzer { // These values are copied from include/llvm/IR/InstrTypes.h. // We do not include the LLVM headers here to remain independent. // If these values ever change, an assertion in ComputeCmp will fail. enum Predicate { ICMP_EQ = 32, ///< equal ICMP_NE = 33, ///< not equal ICMP_UGT = 34, ///< unsigned greater than ICMP_UGE = 35, ///< unsigned greater or equal ICMP_ULT = 36, ///< unsigned less than ICMP_ULE = 37, ///< unsigned less or equal ICMP_SGT = 38, ///< signed greater than ICMP_SGE = 39, ///< signed greater or equal ICMP_SLT = 40, ///< signed less than ICMP_SLE = 41, ///< signed less or equal }; template bool ComputeCmp(size_t CmpType, U Arg1, U Arg2) { switch(CmpType) { case ICMP_EQ : return Arg1 == Arg2; case ICMP_NE : return Arg1 != Arg2; case ICMP_UGT: return Arg1 > Arg2; case ICMP_UGE: return Arg1 >= Arg2; case ICMP_ULT: return Arg1 < Arg2; case ICMP_ULE: return Arg1 <= Arg2; case ICMP_SGT: return (S)Arg1 > (S)Arg2; case ICMP_SGE: return (S)Arg1 >= (S)Arg2; case ICMP_SLT: return (S)Arg1 < (S)Arg2; case ICMP_SLE: return (S)Arg1 <= (S)Arg2; default: assert(0 && "unsupported CmpType"); } return false; } static bool ComputeCmp(size_t CmpSize, size_t CmpType, uint64_t Arg1, uint64_t Arg2) { if (CmpSize == 8) return ComputeCmp(CmpType, Arg1, Arg2); if (CmpSize == 4) return ComputeCmp(CmpType, Arg1, Arg2); if (CmpSize == 2) return ComputeCmp(CmpType, Arg1, Arg2); if (CmpSize == 1) return ComputeCmp(CmpType, Arg1, Arg2); // Other size, == if (CmpType == ICMP_EQ) return Arg1 == Arg2; // assert(0 && "unsupported cmp and type size combination"); return true; } // As a simplification we use the range of input bytes instead of a set of input // bytes. struct LabelRange { uint16_t Beg, End; // Range is [Beg, End), thus Beg==End is an empty range. LabelRange(uint16_t Beg = 0, uint16_t End = 0) : Beg(Beg), End(End) {} static LabelRange Join(LabelRange LR1, LabelRange LR2) { if (LR1.Beg == LR1.End) return LR2; if (LR2.Beg == LR2.End) return LR1; return {std::min(LR1.Beg, LR2.Beg), std::max(LR1.End, LR2.End)}; } LabelRange &Join(LabelRange LR) { return *this = Join(*this, LR); } static LabelRange Singleton(const dfsan_label_info *LI) { uint16_t Idx = (uint16_t)(uintptr_t)LI->userdata; assert(Idx > 0); return {(uint16_t)(Idx - 1), Idx}; } }; // For now, very simple: put Size bytes of Data at position Pos. struct TraceBasedMutation { uint32_t Pos; Word W; }; // Declared as static globals for faster checks inside the hooks. static bool RecordingTraces = false; static bool RecordingMemcmp = false; class TraceState { public: TraceState(MutationDispatcher &MD, const FuzzingOptions &Options, const Fuzzer *F) : MD(MD), Options(Options), F(F) {} LabelRange GetLabelRange(dfsan_label L); void DFSanCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType, uint64_t Arg1, uint64_t Arg2, dfsan_label L1, dfsan_label L2); void DFSanMemcmpCallback(size_t CmpSize, const uint8_t *Data1, const uint8_t *Data2, dfsan_label L1, dfsan_label L2); void DFSanSwitchCallback(uint64_t PC, size_t ValSizeInBits, uint64_t Val, size_t NumCases, uint64_t *Cases, dfsan_label L); void TraceCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType, uint64_t Arg1, uint64_t Arg2); void TraceMemcmpCallback(size_t CmpSize, const uint8_t *Data1, const uint8_t *Data2); void TraceSwitchCallback(uintptr_t PC, size_t ValSizeInBits, uint64_t Val, size_t NumCases, uint64_t *Cases); int TryToAddDesiredData(uint64_t PresentData, uint64_t DesiredData, size_t DataSize); int TryToAddDesiredData(const uint8_t *PresentData, const uint8_t *DesiredData, size_t DataSize); void StartTraceRecording() { if (!Options.UseTraces && !Options.UseMemcmp) return; RecordingTraces = Options.UseTraces; RecordingMemcmp = Options.UseMemcmp; NumMutations = 0; MD.ClearAutoDictionary(); } void StopTraceRecording() { if (!RecordingTraces && !RecordingMemcmp) return; RecordingTraces = false; RecordingMemcmp = false; for (size_t i = 0; i < NumMutations; i++) { auto &M = Mutations[i]; if (Options.Verbosity >= 2) { AutoDictUnitCounts[M.W]++; AutoDictAdds++; if ((AutoDictAdds & (AutoDictAdds - 1)) == 0) { typedef std::pair CU; std::vector CountedUnits; for (auto &I : AutoDictUnitCounts) CountedUnits.push_back(std::make_pair(I.second, I.first)); std::sort(CountedUnits.begin(), CountedUnits.end(), [](const CU &a, const CU &b) { return a.first > b.first; }); Printf("AutoDict:\n"); for (auto &I : CountedUnits) { Printf(" %zd ", I.first); PrintASCII(I.second); Printf("\n"); } } } MD.AddWordToAutoDictionary(M.W, M.Pos); } } void AddMutation(uint32_t Pos, uint32_t Size, const uint8_t *Data) { if (NumMutations >= kMaxMutations) return; auto &M = Mutations[NumMutations++]; M.Pos = Pos; M.W.Set(Data, Size); } void AddMutation(uint32_t Pos, uint32_t Size, uint64_t Data) { assert(Size <= sizeof(Data)); AddMutation(Pos, Size, reinterpret_cast(&Data)); } void EnsureDfsanLabels(size_t Size) { for (; LastDfsanLabel < Size; LastDfsanLabel++) { dfsan_label L = dfsan_create_label("input", (void *)(LastDfsanLabel + 1)); // We assume that no one else has called dfsan_create_label before. if (L != LastDfsanLabel + 1) { Printf("DFSan labels are not starting from 1, exiting\n"); exit(1); } } } private: bool IsTwoByteData(uint64_t Data) { int64_t Signed = static_cast(Data); Signed >>= 16; return Signed == 0 || Signed == -1L; } // We don't want to create too many trace-based mutations as it is both // expensive and useless. So after some number of mutations is collected, // start rejecting some of them. The more there are mutations the more we // reject. bool WantToHandleOneMoreMutation() { const size_t FirstN = 64; // Gladly handle first N mutations. if (NumMutations <= FirstN) return true; size_t Diff = NumMutations - FirstN; size_t DiffLog = sizeof(long) * 8 - __builtin_clzl((long)Diff); assert(DiffLog > 0 && DiffLog < 64); bool WantThisOne = MD.GetRand()(1 << DiffLog) == 0; // 1 out of DiffLog. return WantThisOne; } static const size_t kMaxMutations = 1 << 16; size_t NumMutations; TraceBasedMutation Mutations[kMaxMutations]; LabelRange LabelRanges[1 << (sizeof(dfsan_label) * 8)]; size_t LastDfsanLabel = 0; MutationDispatcher &MD; const FuzzingOptions Options; const Fuzzer *F; std::map AutoDictUnitCounts; size_t AutoDictAdds = 0; }; LabelRange TraceState::GetLabelRange(dfsan_label L) { LabelRange &LR = LabelRanges[L]; if (LR.Beg < LR.End || L == 0) return LR; const dfsan_label_info *LI = dfsan_get_label_info(L); if (LI->l1 || LI->l2) return LR = LabelRange::Join(GetLabelRange(LI->l1), GetLabelRange(LI->l2)); return LR = LabelRange::Singleton(LI); } void TraceState::DFSanCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType, uint64_t Arg1, uint64_t Arg2, dfsan_label L1, dfsan_label L2) { assert(ReallyHaveDFSan()); if (!RecordingTraces || !F->InFuzzingThread()) return; if (L1 == 0 && L2 == 0) return; // Not actionable. if (L1 != 0 && L2 != 0) return; // Probably still actionable. bool Res = ComputeCmp(CmpSize, CmpType, Arg1, Arg2); uint64_t Data = L1 ? Arg2 : Arg1; LabelRange LR = L1 ? GetLabelRange(L1) : GetLabelRange(L2); for (size_t Pos = LR.Beg; Pos + CmpSize <= LR.End; Pos++) { AddMutation(Pos, CmpSize, Data); AddMutation(Pos, CmpSize, Data + 1); AddMutation(Pos, CmpSize, Data - 1); } if (CmpSize > (size_t)(LR.End - LR.Beg)) AddMutation(LR.Beg, (unsigned)(LR.End - LR.Beg), Data); if (Options.Verbosity >= 3) Printf("DFSanCmpCallback: PC %lx S %zd T %zd A1 %llx A2 %llx R %d L1 %d L2 " "%d MU %zd\n", PC, CmpSize, CmpType, Arg1, Arg2, Res, L1, L2, NumMutations); } void TraceState::DFSanMemcmpCallback(size_t CmpSize, const uint8_t *Data1, const uint8_t *Data2, dfsan_label L1, dfsan_label L2) { assert(ReallyHaveDFSan()); if (!RecordingMemcmp || !F->InFuzzingThread()) return; if (L1 == 0 && L2 == 0) return; // Not actionable. if (L1 != 0 && L2 != 0) return; // Probably still actionable. const uint8_t *Data = L1 ? Data2 : Data1; LabelRange LR = L1 ? GetLabelRange(L1) : GetLabelRange(L2); for (size_t Pos = LR.Beg; Pos + CmpSize <= LR.End; Pos++) { AddMutation(Pos, CmpSize, Data); if (Options.Verbosity >= 3) Printf("DFSanMemcmpCallback: Pos %d Size %d\n", Pos, CmpSize); } } void TraceState::DFSanSwitchCallback(uint64_t PC, size_t ValSizeInBits, uint64_t Val, size_t NumCases, uint64_t *Cases, dfsan_label L) { assert(ReallyHaveDFSan()); if (!RecordingTraces || !F->InFuzzingThread()) return; if (!L) return; // Not actionable. LabelRange LR = GetLabelRange(L); size_t ValSize = ValSizeInBits / 8; bool TryShort = IsTwoByteData(Val); for (size_t i = 0; i < NumCases; i++) TryShort &= IsTwoByteData(Cases[i]); for (size_t Pos = LR.Beg; Pos + ValSize <= LR.End; Pos++) for (size_t i = 0; i < NumCases; i++) AddMutation(Pos, ValSize, Cases[i]); if (TryShort) for (size_t Pos = LR.Beg; Pos + 2 <= LR.End; Pos++) for (size_t i = 0; i < NumCases; i++) AddMutation(Pos, 2, Cases[i]); if (Options.Verbosity >= 3) Printf("DFSanSwitchCallback: PC %lx Val %zd SZ %zd # %zd L %d: {%d, %d} " "TryShort %d\n", PC, Val, ValSize, NumCases, L, LR.Beg, LR.End, TryShort); } int TraceState::TryToAddDesiredData(uint64_t PresentData, uint64_t DesiredData, size_t DataSize) { if (NumMutations >= kMaxMutations || !WantToHandleOneMoreMutation()) return 0; const uint8_t *UnitData; auto UnitSize = F->GetCurrentUnitInFuzzingThead(&UnitData); int Res = 0; const uint8_t *Beg = UnitData; const uint8_t *End = Beg + UnitSize; for (const uint8_t *Cur = Beg; Cur < End; Cur++) { Cur = (uint8_t *)memmem(Cur, End - Cur, &PresentData, DataSize); if (!Cur) break; size_t Pos = Cur - Beg; assert(Pos < UnitSize); AddMutation(Pos, DataSize, DesiredData); AddMutation(Pos, DataSize, DesiredData + 1); AddMutation(Pos, DataSize, DesiredData - 1); Res++; } return Res; } int TraceState::TryToAddDesiredData(const uint8_t *PresentData, const uint8_t *DesiredData, size_t DataSize) { if (NumMutations >= kMaxMutations || !WantToHandleOneMoreMutation()) return 0; const uint8_t *UnitData; auto UnitSize = F->GetCurrentUnitInFuzzingThead(&UnitData); int Res = 0; const uint8_t *Beg = UnitData; const uint8_t *End = Beg + UnitSize; for (const uint8_t *Cur = Beg; Cur < End; Cur++) { Cur = (uint8_t *)memmem(Cur, End - Cur, PresentData, DataSize); if (!Cur) break; size_t Pos = Cur - Beg; assert(Pos < UnitSize); AddMutation(Pos, DataSize, DesiredData); Res++; } return Res; } void TraceState::TraceCmpCallback(uintptr_t PC, size_t CmpSize, size_t CmpType, uint64_t Arg1, uint64_t Arg2) { if (!RecordingTraces || !F->InFuzzingThread()) return; if ((CmpType == ICMP_EQ || CmpType == ICMP_NE) && Arg1 == Arg2) return; // No reason to mutate. int Added = 0; Added += TryToAddDesiredData(Arg1, Arg2, CmpSize); Added += TryToAddDesiredData(Arg2, Arg1, CmpSize); if (!Added && CmpSize == 4 && IsTwoByteData(Arg1) && IsTwoByteData(Arg2)) { Added += TryToAddDesiredData(Arg1, Arg2, 2); Added += TryToAddDesiredData(Arg2, Arg1, 2); } if (Options.Verbosity >= 3 && Added) Printf("TraceCmp %zd/%zd: %p %zd %zd\n", CmpSize, CmpType, PC, Arg1, Arg2); } void TraceState::TraceMemcmpCallback(size_t CmpSize, const uint8_t *Data1, const uint8_t *Data2) { if (!RecordingMemcmp || !F->InFuzzingThread()) return; CmpSize = std::min(CmpSize, Word::GetMaxSize()); int Added2 = TryToAddDesiredData(Data1, Data2, CmpSize); int Added1 = TryToAddDesiredData(Data2, Data1, CmpSize); if ((Added1 || Added2) && Options.Verbosity >= 3) { Printf("MemCmp Added %d%d: ", Added1, Added2); if (Added1) PrintASCII(Data1, CmpSize); if (Added2) PrintASCII(Data2, CmpSize); Printf("\n"); } } void TraceState::TraceSwitchCallback(uintptr_t PC, size_t ValSizeInBits, uint64_t Val, size_t NumCases, uint64_t *Cases) { if (!RecordingTraces || !F->InFuzzingThread()) return; size_t ValSize = ValSizeInBits / 8; bool TryShort = IsTwoByteData(Val); for (size_t i = 0; i < NumCases; i++) TryShort &= IsTwoByteData(Cases[i]); if (Options.Verbosity >= 3) Printf("TraceSwitch: %p %zd # %zd; TryShort %d\n", PC, Val, NumCases, TryShort); for (size_t i = 0; i < NumCases; i++) { TryToAddDesiredData(Val, Cases[i], ValSize); if (TryShort) TryToAddDesiredData(Val, Cases[i], 2); } } static TraceState *TS; void Fuzzer::StartTraceRecording() { if (!TS) return; TS->StartTraceRecording(); } void Fuzzer::StopTraceRecording() { if (!TS) return; TS->StopTraceRecording(); } void Fuzzer::AssignTaintLabels(uint8_t *Data, size_t Size) { if (!Options.UseTraces && !Options.UseMemcmp) return; if (!ReallyHaveDFSan()) return; TS->EnsureDfsanLabels(Size); for (size_t i = 0; i < Size; i++) dfsan_set_label(i + 1, &Data[i], 1); } void Fuzzer::InitializeTraceState() { if (!Options.UseTraces && !Options.UseMemcmp) return; TS = new TraceState(MD, Options, this); } static size_t InternalStrnlen(const char *S, size_t MaxLen) { size_t Len = 0; for (; Len < MaxLen && S[Len]; Len++) {} return Len; } } // namespace fuzzer using fuzzer::TS; using fuzzer::RecordingTraces; using fuzzer::RecordingMemcmp; extern "C" { void __dfsw___sanitizer_cov_trace_cmp(uint64_t SizeAndType, uint64_t Arg1, uint64_t Arg2, dfsan_label L0, dfsan_label L1, dfsan_label L2) { if (!RecordingTraces) return; assert(L0 == 0); uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); uint64_t CmpSize = (SizeAndType >> 32) / 8; uint64_t Type = (SizeAndType << 32) >> 32; TS->DFSanCmpCallback(PC, CmpSize, Type, Arg1, Arg2, L1, L2); } void __dfsw___sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases, dfsan_label L1, dfsan_label L2) { if (!RecordingTraces) return; uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); TS->DFSanSwitchCallback(PC, Cases[1], Val, Cases[0], Cases+2, L1); } void dfsan_weak_hook_memcmp(void *caller_pc, const void *s1, const void *s2, size_t n, dfsan_label s1_label, dfsan_label s2_label, dfsan_label n_label) { if (!RecordingMemcmp) return; dfsan_label L1 = dfsan_read_label(s1, n); dfsan_label L2 = dfsan_read_label(s2, n); TS->DFSanMemcmpCallback(n, reinterpret_cast(s1), reinterpret_cast(s2), L1, L2); } void dfsan_weak_hook_strncmp(void *caller_pc, const char *s1, const char *s2, size_t n, dfsan_label s1_label, dfsan_label s2_label, dfsan_label n_label) { if (!RecordingMemcmp) return; n = std::min(n, fuzzer::InternalStrnlen(s1, n)); n = std::min(n, fuzzer::InternalStrnlen(s2, n)); dfsan_label L1 = dfsan_read_label(s1, n); dfsan_label L2 = dfsan_read_label(s2, n); TS->DFSanMemcmpCallback(n, reinterpret_cast(s1), reinterpret_cast(s2), L1, L2); } void dfsan_weak_hook_strcmp(void *caller_pc, const char *s1, const char *s2, dfsan_label s1_label, dfsan_label s2_label) { if (!RecordingMemcmp) return; size_t Len1 = strlen(s1); size_t Len2 = strlen(s2); size_t N = std::min(Len1, Len2); if (N <= 1) return; // Not interesting. dfsan_label L1 = dfsan_read_label(s1, Len1); dfsan_label L2 = dfsan_read_label(s2, Len2); TS->DFSanMemcmpCallback(N, reinterpret_cast(s1), reinterpret_cast(s2), L1, L2); } // We may need to avoid defining weak hooks to stay compatible with older clang. #ifndef LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS # define LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS 1 #endif #if LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS void __sanitizer_weak_hook_memcmp(void *caller_pc, const void *s1, const void *s2, size_t n, int result) { if (!RecordingMemcmp) return; if (result == 0) return; // No reason to mutate. if (n <= 1) return; // Not interesting. TS->TraceMemcmpCallback(n, reinterpret_cast(s1), reinterpret_cast(s2)); } void __sanitizer_weak_hook_strncmp(void *caller_pc, const char *s1, const char *s2, size_t n, int result) { if (!RecordingMemcmp) return; if (result == 0) return; // No reason to mutate. size_t Len1 = fuzzer::InternalStrnlen(s1, n); size_t Len2 = fuzzer::InternalStrnlen(s2, n); n = std::min(n, Len1); n = std::min(n, Len2); if (n <= 1) return; // Not interesting. TS->TraceMemcmpCallback(n, reinterpret_cast(s1), reinterpret_cast(s2)); } void __sanitizer_weak_hook_strcmp(void *caller_pc, const char *s1, const char *s2, int result) { if (!RecordingMemcmp) return; if (result == 0) return; // No reason to mutate. size_t Len1 = strlen(s1); size_t Len2 = strlen(s2); size_t N = std::min(Len1, Len2); if (N <= 1) return; // Not interesting. TS->TraceMemcmpCallback(N, reinterpret_cast(s1), reinterpret_cast(s2)); } #endif // LLVM_FUZZER_DEFINES_SANITIZER_WEAK_HOOOKS __attribute__((visibility("default"))) void __sanitizer_cov_trace_cmp(uint64_t SizeAndType, uint64_t Arg1, uint64_t Arg2) { if (!RecordingTraces) return; uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); uint64_t CmpSize = (SizeAndType >> 32) / 8; uint64_t Type = (SizeAndType << 32) >> 32; TS->TraceCmpCallback(PC, CmpSize, Type, Arg1, Arg2); } __attribute__((visibility("default"))) void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) { if (!RecordingTraces) return; uintptr_t PC = reinterpret_cast(__builtin_return_address(0)); TS->TraceSwitchCallback(PC, Cases[1], Val, Cases[0], Cases + 2); } } // extern "C"