//===- Archive.cpp - ar File Format implementation --------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ArchiveObjectFile class. // //===----------------------------------------------------------------------===// #include "llvm/Object/Archive.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" using namespace llvm; using namespace object; using namespace llvm::support::endian; static const char *const Magic = "!\n"; static const char *const ThinMagic = "!\n"; void Archive::anchor() { } StringRef ArchiveMemberHeader::getName() const { char EndCond; if (Name[0] == '/' || Name[0] == '#') EndCond = ' '; else EndCond = '/'; llvm::StringRef::size_type end = llvm::StringRef(Name, sizeof(Name)).find(EndCond); if (end == llvm::StringRef::npos) end = sizeof(Name); assert(end <= sizeof(Name) && end > 0); // Don't include the EndCond if there is one. return llvm::StringRef(Name, end); } ErrorOr ArchiveMemberHeader::getSize() const { uint32_t Ret; if (llvm::StringRef(Size, sizeof(Size)).rtrim(" ").getAsInteger(10, Ret)) return object_error::parse_failed; // Size is not a decimal number. return Ret; } sys::fs::perms ArchiveMemberHeader::getAccessMode() const { unsigned Ret; if (StringRef(AccessMode, sizeof(AccessMode)).rtrim(' ').getAsInteger(8, Ret)) llvm_unreachable("Access mode is not an octal number."); return static_cast(Ret); } sys::TimeValue ArchiveMemberHeader::getLastModified() const { unsigned Seconds; if (StringRef(LastModified, sizeof(LastModified)).rtrim(' ') .getAsInteger(10, Seconds)) llvm_unreachable("Last modified time not a decimal number."); sys::TimeValue Ret; Ret.fromEpochTime(Seconds); return Ret; } unsigned ArchiveMemberHeader::getUID() const { unsigned Ret; StringRef User = StringRef(UID, sizeof(UID)).rtrim(' '); if (User.empty()) return 0; if (User.getAsInteger(10, Ret)) llvm_unreachable("UID time not a decimal number."); return Ret; } unsigned ArchiveMemberHeader::getGID() const { unsigned Ret; StringRef Group = StringRef(GID, sizeof(GID)).rtrim(' '); if (Group.empty()) return 0; if (Group.getAsInteger(10, Ret)) llvm_unreachable("GID time not a decimal number."); return Ret; } Archive::Child::Child(const Archive *Parent, StringRef Data, uint16_t StartOfFile) : Parent(Parent), Data(Data), StartOfFile(StartOfFile) {} Archive::Child::Child(const Archive *Parent, const char *Start, std::error_code *EC) : Parent(Parent) { if (!Start) return; uint64_t Size = sizeof(ArchiveMemberHeader); Data = StringRef(Start, Size); if (!isThinMember()) { ErrorOr MemberSize = getRawSize(); if ((*EC = MemberSize.getError())) return; Size += MemberSize.get(); Data = StringRef(Start, Size); } // Setup StartOfFile and PaddingBytes. StartOfFile = sizeof(ArchiveMemberHeader); // Don't include attached name. StringRef Name = getRawName(); if (Name.startswith("#1/")) { uint64_t NameSize; if (Name.substr(3).rtrim(' ').getAsInteger(10, NameSize)) llvm_unreachable("Long name length is not an integer"); StartOfFile += NameSize; } } ErrorOr Archive::Child::getSize() const { if (Parent->IsThin) { ErrorOr Size = getHeader()->getSize(); if (std::error_code EC = Size.getError()) return EC; return Size.get(); } return Data.size() - StartOfFile; } ErrorOr Archive::Child::getRawSize() const { ErrorOr Size = getHeader()->getSize(); if (std::error_code EC = Size.getError()) return EC; return Size.get(); } bool Archive::Child::isThinMember() const { StringRef Name = getHeader()->getName(); return Parent->IsThin && Name != "/" && Name != "//"; } ErrorOr Archive::Child::getFullName() const { assert(isThinMember()); ErrorOr NameOrErr = getName(); if (std::error_code EC = NameOrErr.getError()) return EC; StringRef Name = *NameOrErr; if (sys::path::is_absolute(Name)) return Name; SmallString<128> FullName = sys::path::parent_path( Parent->getMemoryBufferRef().getBufferIdentifier()); sys::path::append(FullName, Name); return StringRef(FullName); } ErrorOr Archive::Child::getBuffer() const { if (!isThinMember()) { ErrorOr Size = getSize(); if (std::error_code EC = Size.getError()) return EC; return StringRef(Data.data() + StartOfFile, Size.get()); } ErrorOr FullNameOrEr = getFullName(); if (std::error_code EC = FullNameOrEr.getError()) return EC; const std::string &FullName = *FullNameOrEr; ErrorOr> Buf = MemoryBuffer::getFile(FullName); if (std::error_code EC = Buf.getError()) return EC; Parent->ThinBuffers.push_back(std::move(*Buf)); return Parent->ThinBuffers.back()->getBuffer(); } ErrorOr Archive::Child::getNext() const { size_t SpaceToSkip = Data.size(); // If it's odd, add 1 to make it even. if (SpaceToSkip & 1) ++SpaceToSkip; const char *NextLoc = Data.data() + SpaceToSkip; // Check to see if this is at the end of the archive. if (NextLoc == Parent->Data.getBufferEnd()) return Child(Parent, nullptr, nullptr); // Check to see if this is past the end of the archive. if (NextLoc > Parent->Data.getBufferEnd()) return object_error::parse_failed; std::error_code EC; Child Ret(Parent, NextLoc, &EC); if (EC) return EC; return Ret; } uint64_t Archive::Child::getChildOffset() const { const char *a = Parent->Data.getBuffer().data(); const char *c = Data.data(); uint64_t offset = c - a; return offset; } ErrorOr Archive::Child::getName() const { StringRef name = getRawName(); // Check if it's a special name. if (name[0] == '/') { if (name.size() == 1) // Linker member. return name; if (name.size() == 2 && name[1] == '/') // String table. return name; // It's a long name. // Get the offset. std::size_t offset; if (name.substr(1).rtrim(' ').getAsInteger(10, offset)) llvm_unreachable("Long name offset is not an integer"); // Verify it. if (offset >= Parent->StringTable.size()) return object_error::parse_failed; const char *addr = Parent->StringTable.begin() + offset; // GNU long file names end with a "/\n". if (Parent->kind() == K_GNU || Parent->kind() == K_MIPS64) { StringRef::size_type End = StringRef(addr).find('\n'); return StringRef(addr, End - 1); } return StringRef(addr); } else if (name.startswith("#1/")) { uint64_t name_size; if (name.substr(3).rtrim(' ').getAsInteger(10, name_size)) llvm_unreachable("Long name length is not an ingeter"); return Data.substr(sizeof(ArchiveMemberHeader), name_size).rtrim('\0'); } else { // It is not a long name so trim the blanks at the end of the name. if (name[name.size() - 1] != '/') { return name.rtrim(' '); } } // It's a simple name. if (name[name.size() - 1] == '/') return name.substr(0, name.size() - 1); return name; } ErrorOr Archive::Child::getMemoryBufferRef() const { ErrorOr NameOrErr = getName(); if (std::error_code EC = NameOrErr.getError()) return EC; StringRef Name = NameOrErr.get(); ErrorOr Buf = getBuffer(); if (std::error_code EC = Buf.getError()) return EC; return MemoryBufferRef(*Buf, Name); } Expected> Archive::Child::getAsBinary(LLVMContext *Context) const { ErrorOr BuffOrErr = getMemoryBufferRef(); if (std::error_code EC = BuffOrErr.getError()) return errorCodeToError(EC); auto BinaryOrErr = createBinary(BuffOrErr.get(), Context); if (BinaryOrErr) return std::move(*BinaryOrErr); return BinaryOrErr.takeError(); } Expected> Archive::create(MemoryBufferRef Source) { Error Err; std::unique_ptr Ret(new Archive(Source, Err)); if (Err) return std::move(Err); return std::move(Ret); } void Archive::setFirstRegular(const Child &C) { FirstRegularData = C.Data; FirstRegularStartOfFile = C.StartOfFile; } Archive::Archive(MemoryBufferRef Source, Error &Err) : Binary(Binary::ID_Archive, Source) { ErrorAsOutParameter ErrAsOutParam(Err); StringRef Buffer = Data.getBuffer(); // Check for sufficient magic. if (Buffer.startswith(ThinMagic)) { IsThin = true; } else if (Buffer.startswith(Magic)) { IsThin = false; } else { Err = make_error("File too small to be an archive", object_error::invalid_file_type); return; } // Get the special members. child_iterator I = child_begin(Err, false); if (Err) return; child_iterator E = child_end(); // This is at least a valid empty archive. Since an empty archive is the // same in all formats, just claim it to be gnu to make sure Format is // initialized. Format = K_GNU; if (I == E) { Err = Error::success(); return; } const Child *C = &*I; auto Increment = [&]() { ++I; if (Err) return true; C = &*I; return false; }; StringRef Name = C->getRawName(); // Below is the pattern that is used to figure out the archive format // GNU archive format // First member : / (may exist, if it exists, points to the symbol table ) // Second member : // (may exist, if it exists, points to the string table) // Note : The string table is used if the filename exceeds 15 characters // BSD archive format // First member : __.SYMDEF or "__.SYMDEF SORTED" (the symbol table) // There is no string table, if the filename exceeds 15 characters or has a // embedded space, the filename has #1/, The size represents the size // of the filename that needs to be read after the archive header // COFF archive format // First member : / // Second member : / (provides a directory of symbols) // Third member : // (may exist, if it exists, contains the string table) // Note: Microsoft PE/COFF Spec 8.3 says that the third member is present // even if the string table is empty. However, lib.exe does not in fact // seem to create the third member if there's no member whose filename // exceeds 15 characters. So the third member is optional. if (Name == "__.SYMDEF" || Name == "__.SYMDEF_64") { if (Name == "__.SYMDEF") Format = K_BSD; else // Name == "__.SYMDEF_64" Format = K_DARWIN64; // We know that the symbol table is not an external file, so we just assert // there is no error. SymbolTable = *C->getBuffer(); if (Increment()) return; setFirstRegular(*C); Err = Error::success(); return; } if (Name.startswith("#1/")) { Format = K_BSD; // We know this is BSD, so getName will work since there is no string table. ErrorOr NameOrErr = C->getName(); if (auto ec = NameOrErr.getError()) { Err = errorCodeToError(ec); return; } Name = NameOrErr.get(); if (Name == "__.SYMDEF SORTED" || Name == "__.SYMDEF") { // We know that the symbol table is not an external file, so we just // assert there is no error. SymbolTable = *C->getBuffer(); if (Increment()) return; } else if (Name == "__.SYMDEF_64 SORTED" || Name == "__.SYMDEF_64") { Format = K_DARWIN64; // We know that the symbol table is not an external file, so we just // assert there is no error. SymbolTable = *C->getBuffer(); if (Increment()) return; } setFirstRegular(*C); return; } // MIPS 64-bit ELF archives use a special format of a symbol table. // This format is marked by `ar_name` field equals to "/SYM64/". // For detailed description see page 96 in the following document: // http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf bool has64SymTable = false; if (Name == "/" || Name == "/SYM64/") { // We know that the symbol table is not an external file, so we just assert // there is no error. SymbolTable = *C->getBuffer(); if (Name == "/SYM64/") has64SymTable = true; if (Increment()) return; if (I == E) { Err = Error::success(); return; } Name = C->getRawName(); } if (Name == "//") { Format = has64SymTable ? K_MIPS64 : K_GNU; // The string table is never an external member, so we just assert on the // ErrorOr. StringTable = *C->getBuffer(); if (Increment()) return; setFirstRegular(*C); Err = Error::success(); return; } if (Name[0] != '/') { Format = has64SymTable ? K_MIPS64 : K_GNU; setFirstRegular(*C); Err = Error::success(); return; } if (Name != "/") { Err = errorCodeToError(object_error::parse_failed); return; } Format = K_COFF; // We know that the symbol table is not an external file, so we just assert // there is no error. SymbolTable = *C->getBuffer(); if (Increment()) return; if (I == E) { setFirstRegular(*C); Err = Error::success(); return; } Name = C->getRawName(); if (Name == "//") { // The string table is never an external member, so we just assert on the // ErrorOr. StringTable = *C->getBuffer(); if (Increment()) return; } setFirstRegular(*C); Err = Error::success(); } Archive::child_iterator Archive::child_begin(Error &Err, bool SkipInternal) const { if (Data.getBufferSize() == 8) // empty archive. return child_end(); if (SkipInternal) return child_iterator(Child(this, FirstRegularData, FirstRegularStartOfFile), &Err); const char *Loc = Data.getBufferStart() + strlen(Magic); std::error_code EC; Child C(this, Loc, &EC); if (EC) { ErrorAsOutParameter ErrAsOutParam(Err); Err = errorCodeToError(EC); return child_end(); } return child_iterator(C, &Err); } Archive::child_iterator Archive::child_end() const { return child_iterator(Child(this, nullptr, nullptr), nullptr); } StringRef Archive::Symbol::getName() const { return Parent->getSymbolTable().begin() + StringIndex; } ErrorOr Archive::Symbol::getMember() const { const char *Buf = Parent->getSymbolTable().begin(); const char *Offsets = Buf; if (Parent->kind() == K_MIPS64 || Parent->kind() == K_DARWIN64) Offsets += sizeof(uint64_t); else Offsets += sizeof(uint32_t); uint32_t Offset = 0; if (Parent->kind() == K_GNU) { Offset = read32be(Offsets + SymbolIndex * 4); } else if (Parent->kind() == K_MIPS64) { Offset = read64be(Offsets + SymbolIndex * 8); } else if (Parent->kind() == K_BSD) { // The SymbolIndex is an index into the ranlib structs that start at // Offsets (the first uint32_t is the number of bytes of the ranlib // structs). The ranlib structs are a pair of uint32_t's the first // being a string table offset and the second being the offset into // the archive of the member that defines the symbol. Which is what // is needed here. Offset = read32le(Offsets + SymbolIndex * 8 + 4); } else if (Parent->kind() == K_DARWIN64) { // The SymbolIndex is an index into the ranlib_64 structs that start at // Offsets (the first uint64_t is the number of bytes of the ranlib_64 // structs). The ranlib_64 structs are a pair of uint64_t's the first // being a string table offset and the second being the offset into // the archive of the member that defines the symbol. Which is what // is needed here. Offset = read64le(Offsets + SymbolIndex * 16 + 8); } else { // Skip offsets. uint32_t MemberCount = read32le(Buf); Buf += MemberCount * 4 + 4; uint32_t SymbolCount = read32le(Buf); if (SymbolIndex >= SymbolCount) return object_error::parse_failed; // Skip SymbolCount to get to the indices table. const char *Indices = Buf + 4; // Get the index of the offset in the file member offset table for this // symbol. uint16_t OffsetIndex = read16le(Indices + SymbolIndex * 2); // Subtract 1 since OffsetIndex is 1 based. --OffsetIndex; if (OffsetIndex >= MemberCount) return object_error::parse_failed; Offset = read32le(Offsets + OffsetIndex * 4); } const char *Loc = Parent->getData().begin() + Offset; std::error_code EC; Child C(Parent, Loc, &EC); if (EC) return EC; return C; } Archive::Symbol Archive::Symbol::getNext() const { Symbol t(*this); if (Parent->kind() == K_BSD) { // t.StringIndex is an offset from the start of the __.SYMDEF or // "__.SYMDEF SORTED" member into the string table for the ranlib // struct indexed by t.SymbolIndex . To change t.StringIndex to the // offset in the string table for t.SymbolIndex+1 we subtract the // its offset from the start of the string table for t.SymbolIndex // and add the offset of the string table for t.SymbolIndex+1. // The __.SYMDEF or "__.SYMDEF SORTED" member starts with a uint32_t // which is the number of bytes of ranlib structs that follow. The ranlib // structs are a pair of uint32_t's the first being a string table offset // and the second being the offset into the archive of the member that // define the symbol. After that the next uint32_t is the byte count of // the string table followed by the string table. const char *Buf = Parent->getSymbolTable().begin(); uint32_t RanlibCount = 0; RanlibCount = read32le(Buf) / 8; // If t.SymbolIndex + 1 will be past the count of symbols (the RanlibCount) // don't change the t.StringIndex as we don't want to reference a ranlib // past RanlibCount. if (t.SymbolIndex + 1 < RanlibCount) { const char *Ranlibs = Buf + 4; uint32_t CurRanStrx = 0; uint32_t NextRanStrx = 0; CurRanStrx = read32le(Ranlibs + t.SymbolIndex * 8); NextRanStrx = read32le(Ranlibs + (t.SymbolIndex + 1) * 8); t.StringIndex -= CurRanStrx; t.StringIndex += NextRanStrx; } } else { // Go to one past next null. t.StringIndex = Parent->getSymbolTable().find('\0', t.StringIndex) + 1; } ++t.SymbolIndex; return t; } Archive::symbol_iterator Archive::symbol_begin() const { if (!hasSymbolTable()) return symbol_iterator(Symbol(this, 0, 0)); const char *buf = getSymbolTable().begin(); if (kind() == K_GNU) { uint32_t symbol_count = 0; symbol_count = read32be(buf); buf += sizeof(uint32_t) + (symbol_count * (sizeof(uint32_t))); } else if (kind() == K_MIPS64) { uint64_t symbol_count = read64be(buf); buf += sizeof(uint64_t) + (symbol_count * (sizeof(uint64_t))); } else if (kind() == K_BSD) { // The __.SYMDEF or "__.SYMDEF SORTED" member starts with a uint32_t // which is the number of bytes of ranlib structs that follow. The ranlib // structs are a pair of uint32_t's the first being a string table offset // and the second being the offset into the archive of the member that // define the symbol. After that the next uint32_t is the byte count of // the string table followed by the string table. uint32_t ranlib_count = 0; ranlib_count = read32le(buf) / 8; const char *ranlibs = buf + 4; uint32_t ran_strx = 0; ran_strx = read32le(ranlibs); buf += sizeof(uint32_t) + (ranlib_count * (2 * (sizeof(uint32_t)))); // Skip the byte count of the string table. buf += sizeof(uint32_t); buf += ran_strx; } else if (kind() == K_DARWIN64) { // The __.SYMDEF_64 or "__.SYMDEF_64 SORTED" member starts with a uint64_t // which is the number of bytes of ranlib_64 structs that follow. The // ranlib_64 structs are a pair of uint64_t's the first being a string // table offset and the second being the offset into the archive of the // member that define the symbol. After that the next uint64_t is the byte // count of the string table followed by the string table. uint64_t ranlib_count = 0; ranlib_count = read64le(buf) / 16; const char *ranlibs = buf + 8; uint64_t ran_strx = 0; ran_strx = read64le(ranlibs); buf += sizeof(uint64_t) + (ranlib_count * (2 * (sizeof(uint64_t)))); // Skip the byte count of the string table. buf += sizeof(uint64_t); buf += ran_strx; } else { uint32_t member_count = 0; uint32_t symbol_count = 0; member_count = read32le(buf); buf += 4 + (member_count * 4); // Skip offsets. symbol_count = read32le(buf); buf += 4 + (symbol_count * 2); // Skip indices. } uint32_t string_start_offset = buf - getSymbolTable().begin(); return symbol_iterator(Symbol(this, 0, string_start_offset)); } Archive::symbol_iterator Archive::symbol_end() const { return symbol_iterator(Symbol(this, getNumberOfSymbols(), 0)); } uint32_t Archive::getNumberOfSymbols() const { if (!hasSymbolTable()) return 0; const char *buf = getSymbolTable().begin(); if (kind() == K_GNU) return read32be(buf); if (kind() == K_MIPS64) return read64be(buf); if (kind() == K_BSD) return read32le(buf) / 8; if (kind() == K_DARWIN64) return read64le(buf) / 16; uint32_t member_count = 0; member_count = read32le(buf); buf += 4 + (member_count * 4); // Skip offsets. return read32le(buf); } Expected> Archive::findSym(StringRef name) const { Archive::symbol_iterator bs = symbol_begin(); Archive::symbol_iterator es = symbol_end(); for (; bs != es; ++bs) { StringRef SymName = bs->getName(); if (SymName == name) { if (auto MemberOrErr = bs->getMember()) return Child(*MemberOrErr); else return errorCodeToError(MemberOrErr.getError()); } } return Optional(); } bool Archive::hasSymbolTable() const { return !SymbolTable.empty(); }