//===--- HexagonCommonGEP.cpp ---------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "commgep" #include "llvm/Pass.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/CodeGen/MachineFunctionAnalysis.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include #include #include #include "HexagonTargetMachine.h" using namespace llvm; static cl::opt OptSpeculate("commgep-speculate", cl::init(true), cl::Hidden, cl::ZeroOrMore); static cl::opt OptEnableInv("commgep-inv", cl::init(true), cl::Hidden, cl::ZeroOrMore); static cl::opt OptEnableConst("commgep-const", cl::init(true), cl::Hidden, cl::ZeroOrMore); namespace llvm { void initializeHexagonCommonGEPPass(PassRegistry&); } namespace { struct GepNode; typedef std::set NodeSet; typedef std::map NodeToValueMap; typedef std::vector NodeVect; typedef std::map NodeChildrenMap; typedef std::set UseSet; typedef std::map NodeToUsesMap; // Numbering map for gep nodes. Used to keep track of ordering for // gep nodes. struct NodeOrdering { NodeOrdering() : LastNum(0) {} void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); } void clear() { Map.clear(); } bool operator()(const GepNode *N1, const GepNode *N2) const { auto F1 = Map.find(N1), F2 = Map.find(N2); assert(F1 != Map.end() && F2 != Map.end()); return F1->second < F2->second; } private: std::map Map; unsigned LastNum; }; class HexagonCommonGEP : public FunctionPass { public: static char ID; HexagonCommonGEP() : FunctionPass(ID) { initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry()); } virtual bool runOnFunction(Function &F); virtual const char *getPassName() const { return "Hexagon Common GEP"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); FunctionPass::getAnalysisUsage(AU); } private: typedef std::map ValueToNodeMap; typedef std::vector ValueVect; typedef std::map NodeToValuesMap; void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order); bool isHandledGepForm(GetElementPtrInst *GepI); void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM); void collect(); void common(); BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM, NodeToValueMap &Loc); BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM, NodeToValueMap &Loc); bool isInvariantIn(Value *Val, Loop *L); bool isInvariantIn(GepNode *Node, Loop *L); bool isInMainPath(BasicBlock *B, Loop *L); BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM, NodeToValueMap &Loc); void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc); void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM, NodeToValueMap &Loc); void computeNodePlacement(NodeToValueMap &Loc); Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At, BasicBlock *LocB); void getAllUsersForNode(GepNode *Node, ValueVect &Values, NodeChildrenMap &NCM); void materialize(NodeToValueMap &Loc); void removeDeadCode(); NodeVect Nodes; NodeToUsesMap Uses; NodeOrdering NodeOrder; // Node ordering, for deterministic behavior. SpecificBumpPtrAllocator *Mem; LLVMContext *Ctx; LoopInfo *LI; DominatorTree *DT; PostDominatorTree *PDT; Function *Fn; }; } char HexagonCommonGEP::ID = 0; INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", false, false) namespace { struct GepNode { enum { None = 0, Root = 0x01, Internal = 0x02, Used = 0x04 }; uint32_t Flags; union { GepNode *Parent; Value *BaseVal; }; Value *Idx; Type *PTy; // Type of the pointer operand. GepNode() : Flags(0), Parent(0), Idx(0), PTy(0) {} GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) { if (Flags & Root) BaseVal = N->BaseVal; else Parent = N->Parent; } friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN); }; Type *next_type(Type *Ty, Value *Idx) { // Advance the type. if (!Ty->isStructTy()) { Type *NexTy = cast(Ty)->getElementType(); return NexTy; } // Otherwise it is a struct type. ConstantInt *CI = dyn_cast(Idx); assert(CI && "Struct type with non-constant index"); int64_t i = CI->getValue().getSExtValue(); Type *NextTy = cast(Ty)->getElementType(i); return NextTy; } raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) { OS << "{ {"; bool Comma = false; if (GN.Flags & GepNode::Root) { OS << "root"; Comma = true; } if (GN.Flags & GepNode::Internal) { if (Comma) OS << ','; OS << "internal"; Comma = true; } if (GN.Flags & GepNode::Used) { if (Comma) OS << ','; OS << "used"; } OS << "} "; if (GN.Flags & GepNode::Root) OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')'; else OS << "Parent:" << GN.Parent; OS << " Idx:"; if (ConstantInt *CI = dyn_cast(GN.Idx)) OS << CI->getValue().getSExtValue(); else if (GN.Idx->hasName()) OS << GN.Idx->getName(); else OS << " =" << *GN.Idx; OS << " PTy:"; if (GN.PTy->isStructTy()) { StructType *STy = cast(GN.PTy); if (!STy->isLiteral()) OS << GN.PTy->getStructName(); else OS << ":" << *STy; } else OS << *GN.PTy; OS << " }"; return OS; } template void dump_node_container(raw_ostream &OS, const NodeContainer &S) { typedef typename NodeContainer::const_iterator const_iterator; for (const_iterator I = S.begin(), E = S.end(); I != E; ++I) OS << *I << ' ' << **I << '\n'; } raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) LLVM_ATTRIBUTE_UNUSED; raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) { dump_node_container(OS, S); return OS; } raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED; raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){ typedef NodeToUsesMap::const_iterator const_iterator; for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) { const UseSet &Us = I->second; OS << I->first << " -> #" << Us.size() << '{'; for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) { User *R = (*J)->getUser(); if (R->hasName()) OS << ' ' << R->getName(); else OS << " (" << *R << ')'; } OS << " }\n"; } return OS; } struct in_set { in_set(const NodeSet &S) : NS(S) {} bool operator() (GepNode *N) const { return NS.find(N) != NS.end(); } private: const NodeSet &NS; }; } inline void *operator new(size_t, SpecificBumpPtrAllocator &A) { return A.Allocate(); } void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order) { // Compute block ordering for a typical DT-based traversal of the flow // graph: "before visiting a block, all of its dominators must have been // visited". Order.push_back(Root); DomTreeNode *DTN = DT->getNode(Root); typedef GraphTraits GTN; typedef GTN::ChildIteratorType Iter; for (Iter I = GTN::child_begin(DTN), E = GTN::child_end(DTN); I != E; ++I) getBlockTraversalOrder((*I)->getBlock(), Order); } bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) { // No vector GEPs. if (!GepI->getType()->isPointerTy()) return false; // No GEPs without any indices. (Is this possible?) if (GepI->idx_begin() == GepI->idx_end()) return false; return true; } void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM) { DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n'); GepNode *N = new (*Mem) GepNode; Value *PtrOp = GepI->getPointerOperand(); ValueToNodeMap::iterator F = NM.find(PtrOp); if (F == NM.end()) { N->BaseVal = PtrOp; N->Flags |= GepNode::Root; } else { // If PtrOp was a GEP instruction, it must have already been processed. // The ValueToNodeMap entry for it is the last gep node in the generated // chain. Link to it here. N->Parent = F->second; } N->PTy = PtrOp->getType(); N->Idx = *GepI->idx_begin(); // Collect the list of users of this GEP instruction. Will add it to the // last node created for it. UseSet Us; for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end(); UI != UE; ++UI) { // Check if this gep is used by anything other than other geps that // we will process. if (isa(*UI)) { GetElementPtrInst *UserG = cast(*UI); if (isHandledGepForm(UserG)) continue; } Us.insert(&UI.getUse()); } Nodes.push_back(N); NodeOrder.insert(N); // Skip the first index operand, since we only handle 0. This dereferences // the pointer operand. GepNode *PN = N; Type *PtrTy = cast(PtrOp->getType())->getElementType(); for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end(); OI != OE; ++OI) { Value *Op = *OI; GepNode *Nx = new (*Mem) GepNode; Nx->Parent = PN; // Link Nx to the previous node. Nx->Flags |= GepNode::Internal; Nx->PTy = PtrTy; Nx->Idx = Op; Nodes.push_back(Nx); NodeOrder.insert(Nx); PN = Nx; PtrTy = next_type(PtrTy, Op); } // After last node has been created, update the use information. if (!Us.empty()) { PN->Flags |= GepNode::Used; Uses[PN].insert(Us.begin(), Us.end()); } // Link the last node with the originating GEP instruction. This is to // help with linking chained GEP instructions. NM.insert(std::make_pair(GepI, PN)); } void HexagonCommonGEP::collect() { // Establish depth-first traversal order of the dominator tree. ValueVect BO; getBlockTraversalOrder(&Fn->front(), BO); // The creation of gep nodes requires DT-traversal. When processing a GEP // instruction that uses another GEP instruction as the base pointer, the // gep node for the base pointer should already exist. ValueToNodeMap NM; for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) { BasicBlock *B = cast(*I); for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) { if (!isa(J)) continue; GetElementPtrInst *GepI = cast(J); if (isHandledGepForm(GepI)) processGepInst(GepI, NM); } } DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes); } namespace { void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM, NodeVect &Roots) { typedef NodeVect::const_iterator const_iterator; for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { GepNode *N = *I; if (N->Flags & GepNode::Root) { Roots.push_back(N); continue; } GepNode *PN = N->Parent; NCM[PN].push_back(N); } } void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, NodeSet &Nodes) { NodeVect Work; Work.push_back(Root); Nodes.insert(Root); while (!Work.empty()) { NodeVect::iterator First = Work.begin(); GepNode *N = *First; Work.erase(First); NodeChildrenMap::iterator CF = NCM.find(N); if (CF != NCM.end()) { Work.insert(Work.end(), CF->second.begin(), CF->second.end()); Nodes.insert(CF->second.begin(), CF->second.end()); } } } } namespace { typedef std::set NodeSymRel; typedef std::pair NodePair; typedef std::set NodePairSet; const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) { for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I) if (I->count(N)) return &*I; return 0; } // Create an ordered pair of GepNode pointers. The pair will be used in // determining equality. The only purpose of the ordering is to eliminate // duplication due to the commutativity of equality/non-equality. NodePair node_pair(GepNode *N1, GepNode *N2) { uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2); if (P1 <= P2) return std::make_pair(N1, N2); return std::make_pair(N2, N1); } unsigned node_hash(GepNode *N) { // Include everything except flags and parent. FoldingSetNodeID ID; ID.AddPointer(N->Idx); ID.AddPointer(N->PTy); return ID.ComputeHash(); } bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, NodePairSet &Ne) { // Don't cache the result for nodes with different hashes. The hash // comparison is fast enough. if (node_hash(N1) != node_hash(N2)) return false; NodePair NP = node_pair(N1, N2); NodePairSet::iterator FEq = Eq.find(NP); if (FEq != Eq.end()) return true; NodePairSet::iterator FNe = Ne.find(NP); if (FNe != Ne.end()) return false; // Not previously compared. bool Root1 = N1->Flags & GepNode::Root; bool Root2 = N2->Flags & GepNode::Root; NodePair P = node_pair(N1, N2); // If the Root flag has different values, the nodes are different. // If both nodes are root nodes, but their base pointers differ, // they are different. if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) { Ne.insert(P); return false; } // Here the root flags are identical, and for root nodes the // base pointers are equal, so the root nodes are equal. // For non-root nodes, compare their parent nodes. if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) { Eq.insert(P); return true; } return false; } } void HexagonCommonGEP::common() { // The essence of this commoning is finding gep nodes that are equal. // To do this we need to compare all pairs of nodes. To save time, // first, partition the set of all nodes into sets of potentially equal // nodes, and then compare pairs from within each partition. typedef std::map NodeSetMap; NodeSetMap MaybeEq; for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { GepNode *N = *I; unsigned H = node_hash(N); MaybeEq[H].insert(N); } // Compute the equivalence relation for the gep nodes. Use two caches, // one for equality and the other for non-equality. NodeSymRel EqRel; // Equality relation (as set of equivalence classes). NodePairSet Eq, Ne; // Caches. for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end(); I != E; ++I) { NodeSet &S = I->second; for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) { GepNode *N = *NI; // If node already has a class, then the class must have been created // in a prior iteration of this loop. Since equality is transitive, // nothing more will be added to that class, so skip it. if (node_class(N, EqRel)) continue; // Create a new class candidate now. NodeSet C; for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ) if (node_eq(N, *NJ, Eq, Ne)) C.insert(*NJ); // If Tmp is empty, N would be the only element in it. Don't bother // creating a class for it then. if (!C.empty()) { C.insert(N); // Finalize the set before adding it to the relation. std::pair Ins = EqRel.insert(C); (void)Ins; assert(Ins.second && "Cannot add a class"); } } } DEBUG({ dbgs() << "Gep node equality:\n"; for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I) dbgs() << "{ " << I->first << ", " << I->second << " }\n"; dbgs() << "Gep equivalence classes:\n"; for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) { dbgs() << '{'; const NodeSet &S = *I; for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) { if (J != S.begin()) dbgs() << ','; dbgs() << ' ' << *J; } dbgs() << " }\n"; } }); // Create a projection from a NodeSet to the minimal element in it. typedef std::map ProjMap; ProjMap PM; for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) { const NodeSet &S = *I; GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder); std::pair Ins = PM.insert(std::make_pair(&S, Min)); (void)Ins; assert(Ins.second && "Cannot add minimal element"); // Update the min element's flags, and user list. uint32_t Flags = 0; UseSet &MinUs = Uses[Min]; for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) { GepNode *N = *J; uint32_t NF = N->Flags; // If N is used, append all original values of N to the list of // original values of Min. if (NF & GepNode::Used) MinUs.insert(Uses[N].begin(), Uses[N].end()); Flags |= NF; } if (MinUs.empty()) Uses.erase(Min); // The collected flags should include all the flags from the min element. assert((Min->Flags & Flags) == Min->Flags); Min->Flags = Flags; } // Commoning: for each non-root gep node, replace "Parent" with the // selected (minimum) node from the corresponding equivalence class. // If a given parent does not have an equivalence class, leave it // unchanged (it means that it's the only element in its class). for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { GepNode *N = *I; if (N->Flags & GepNode::Root) continue; const NodeSet *PC = node_class(N->Parent, EqRel); if (!PC) continue; ProjMap::iterator F = PM.find(PC); if (F == PM.end()) continue; // Found a replacement, use it. GepNode *Rep = F->second; N->Parent = Rep; } DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes); // Finally, erase the nodes that are no longer used. NodeSet Erase; for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) { GepNode *N = *I; const NodeSet *PC = node_class(N, EqRel); if (!PC) continue; ProjMap::iterator F = PM.find(PC); if (F == PM.end()) continue; if (N == F->second) continue; // Node for removal. Erase.insert(*I); } NodeVect::iterator NewE = std::remove_if(Nodes.begin(), Nodes.end(), in_set(Erase)); Nodes.resize(std::distance(Nodes.begin(), NewE)); DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes); } namespace { template BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) { DEBUG({ dbgs() << "NCD of {"; for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E; ++I) { if (!*I) continue; BasicBlock *B = cast(*I); dbgs() << ' ' << B->getName(); } dbgs() << " }\n"; }); // Allow null basic blocks in Blocks. In such cases, return 0. typename T::iterator I = Blocks.begin(), E = Blocks.end(); if (I == E || !*I) return 0; BasicBlock *Dom = cast(*I); while (++I != E) { BasicBlock *B = cast_or_null(*I); Dom = B ? DT->findNearestCommonDominator(Dom, B) : 0; if (!Dom) return 0; } DEBUG(dbgs() << "computed:" << Dom->getName() << '\n'); return Dom; } template BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) { // If two blocks, A and B, dominate a block C, then A dominates B, // or B dominates A. typename T::iterator I = Blocks.begin(), E = Blocks.end(); // Find the first non-null block. while (I != E && !*I) ++I; if (I == E) return DT->getRoot(); BasicBlock *DomB = cast(*I); while (++I != E) { if (!*I) continue; BasicBlock *B = cast(*I); if (DT->dominates(B, DomB)) continue; if (!DT->dominates(DomB, B)) return 0; DomB = B; } return DomB; } // Find the first use in B of any value from Values. If no such use, // return B->end(). template BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) { BasicBlock::iterator FirstUse = B->end(), BEnd = B->end(); typedef typename T::iterator iterator; for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) { Value *V = *I; // If V is used in a PHI node, the use belongs to the incoming block, // not the block with the PHI node. In the incoming block, the use // would be considered as being at the end of it, so it cannot // influence the position of the first use (which is assumed to be // at the end to start with). if (isa(V)) continue; if (!isa(V)) continue; Instruction *In = cast(V); if (In->getParent() != B) continue; BasicBlock::iterator It = In->getIterator(); if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd)) FirstUse = It; } return FirstUse; } bool is_empty(const BasicBlock *B) { return B->empty() || (&*B->begin() == B->getTerminator()); } } BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM, NodeToValueMap &Loc) { DEBUG(dbgs() << "Loc for node:" << Node << '\n'); // Recalculate the placement for Node, assuming that the locations of // its children in Loc are valid. // Return 0 if there is no valid placement for Node (for example, it // uses an index value that is not available at the location required // to dominate all children, etc.). // Find the nearest common dominator for: // - all users, if the node is used, and // - all children. ValueVect Bs; if (Node->Flags & GepNode::Used) { // Append all blocks with uses of the original values to the // block vector Bs. NodeToUsesMap::iterator UF = Uses.find(Node); assert(UF != Uses.end() && "Used node with no use information"); UseSet &Us = UF->second; for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { Use *U = *I; User *R = U->getUser(); if (!isa(R)) continue; BasicBlock *PB = isa(R) ? cast(R)->getIncomingBlock(*U) : cast(R)->getParent(); Bs.push_back(PB); } } // Append the location of each child. NodeChildrenMap::iterator CF = NCM.find(Node); if (CF != NCM.end()) { NodeVect &Cs = CF->second; for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { GepNode *CN = *I; NodeToValueMap::iterator LF = Loc.find(CN); // If the child is only used in GEP instructions (i.e. is not used in // non-GEP instructions), the nearest dominator computed for it may // have been null. In such case it won't have a location available. if (LF == Loc.end()) continue; Bs.push_back(LF->second); } } BasicBlock *DomB = nearest_common_dominator(DT, Bs); if (!DomB) return 0; // Check if the index used by Node dominates the computed dominator. Instruction *IdxI = dyn_cast(Node->Idx); if (IdxI && !DT->dominates(IdxI->getParent(), DomB)) return 0; // Avoid putting nodes into empty blocks. while (is_empty(DomB)) { DomTreeNode *N = (*DT)[DomB]->getIDom(); if (!N) break; DomB = N->getBlock(); } // Otherwise, DomB is fine. Update the location map. Loc[Node] = DomB; return DomB; } BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM, NodeToValueMap &Loc) { DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n'); // Recalculate the placement of Node, after recursively recalculating the // placements of all its children. NodeChildrenMap::iterator CF = NCM.find(Node); if (CF != NCM.end()) { NodeVect &Cs = CF->second; for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) recalculatePlacementRec(*I, NCM, Loc); } BasicBlock *LB = recalculatePlacement(Node, NCM, Loc); DEBUG(dbgs() << "LocRec end for node:" << Node << '\n'); return LB; } bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) { if (isa(Val) || isa(Val)) return true; Instruction *In = dyn_cast(Val); if (!In) return false; BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent(); return DT->properlyDominates(DefB, HdrB); } bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) { if (Node->Flags & GepNode::Root) if (!isInvariantIn(Node->BaseVal, L)) return false; return isInvariantIn(Node->Idx, L); } bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) { BasicBlock *HB = L->getHeader(); BasicBlock *LB = L->getLoopLatch(); // B must post-dominate the loop header or dominate the loop latch. if (PDT->dominates(B, HB)) return true; if (LB && DT->dominates(B, LB)) return true; return false; } namespace { BasicBlock *preheader(DominatorTree *DT, Loop *L) { if (BasicBlock *PH = L->getLoopPreheader()) return PH; if (!OptSpeculate) return 0; DomTreeNode *DN = DT->getNode(L->getHeader()); if (!DN) return 0; return DN->getIDom()->getBlock(); } } BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM, NodeToValueMap &Loc) { // Find the "topmost" location for Node: it must be dominated by both, // its parent (or the BaseVal, if it's a root node), and by the index // value. ValueVect Bs; if (Node->Flags & GepNode::Root) { if (Instruction *PIn = dyn_cast(Node->BaseVal)) Bs.push_back(PIn->getParent()); } else { Bs.push_back(Loc[Node->Parent]); } if (Instruction *IIn = dyn_cast(Node->Idx)) Bs.push_back(IIn->getParent()); BasicBlock *TopB = nearest_common_dominatee(DT, Bs); // Traverse the loop nest upwards until we find a loop in which Node // is no longer invariant, or until we get to the upper limit of Node's // placement. The traversal will also stop when a suitable "preheader" // cannot be found for a given loop. The "preheader" may actually be // a regular block outside of the loop (i.e. not guarded), in which case // the Node will be speculated. // For nodes that are not in the main path of the containing loop (i.e. // are not executed in each iteration), do not move them out of the loop. BasicBlock *LocB = cast_or_null(Loc[Node]); if (LocB) { Loop *Lp = LI->getLoopFor(LocB); while (Lp) { if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp)) break; BasicBlock *NewLoc = preheader(DT, Lp); if (!NewLoc || !DT->dominates(TopB, NewLoc)) break; Lp = Lp->getParentLoop(); LocB = NewLoc; } } Loc[Node] = LocB; // Recursively compute the locations of all children nodes. NodeChildrenMap::iterator CF = NCM.find(Node); if (CF != NCM.end()) { NodeVect &Cs = CF->second; for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) adjustForInvariance(*I, NCM, Loc); } return LocB; } namespace { struct LocationAsBlock { LocationAsBlock(const NodeToValueMap &L) : Map(L) {} const NodeToValueMap ⤅ }; raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ; raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) { for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end(); I != E; ++I) { OS << I->first << " -> "; BasicBlock *B = cast(I->second); OS << B->getName() << '(' << B << ')'; OS << '\n'; } return OS; } inline bool is_constant(GepNode *N) { return isa(N->Idx); } } void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc) { User *R = U->getUser(); DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R << '\n'); BasicBlock *PB = cast(R)->getParent(); GepNode *N = Node; GepNode *C = 0, *NewNode = 0; while (is_constant(N) && !(N->Flags & GepNode::Root)) { // XXX if (single-use) dont-replicate; GepNode *NewN = new (*Mem) GepNode(N); Nodes.push_back(NewN); Loc[NewN] = PB; if (N == Node) NewNode = NewN; NewN->Flags &= ~GepNode::Used; if (C) C->Parent = NewN; C = NewN; N = N->Parent; } if (!NewNode) return; // Move over all uses that share the same user as U from Node to NewNode. NodeToUsesMap::iterator UF = Uses.find(Node); assert(UF != Uses.end()); UseSet &Us = UF->second; UseSet NewUs; for (UseSet::iterator I = Us.begin(); I != Us.end(); ) { User *S = (*I)->getUser(); UseSet::iterator Nx = std::next(I); if (S == R) { NewUs.insert(*I); Us.erase(I); } I = Nx; } if (Us.empty()) { Node->Flags &= ~GepNode::Used; Uses.erase(UF); } // Should at least have U in NewUs. NewNode->Flags |= GepNode::Used; DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n'); assert(!NewUs.empty()); Uses[NewNode] = NewUs; } void HexagonCommonGEP::separateConstantChains(GepNode *Node, NodeChildrenMap &NCM, NodeToValueMap &Loc) { // First approximation: extract all chains. NodeSet Ns; nodes_for_root(Node, NCM, Ns); DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n'); // Collect all used nodes together with the uses from loads and stores, // where the GEP node could be folded into the load/store instruction. NodeToUsesMap FNs; // Foldable nodes. for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) { GepNode *N = *I; if (!(N->Flags & GepNode::Used)) continue; NodeToUsesMap::iterator UF = Uses.find(N); assert(UF != Uses.end()); UseSet &Us = UF->second; // Loads/stores that use the node N. UseSet LSs; for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) { Use *U = *J; User *R = U->getUser(); // We're interested in uses that provide the address. It can happen // that the value may also be provided via GEP, but we won't handle // those cases here for now. if (LoadInst *Ld = dyn_cast(R)) { unsigned PtrX = LoadInst::getPointerOperandIndex(); if (&Ld->getOperandUse(PtrX) == U) LSs.insert(U); } else if (StoreInst *St = dyn_cast(R)) { unsigned PtrX = StoreInst::getPointerOperandIndex(); if (&St->getOperandUse(PtrX) == U) LSs.insert(U); } } // Even if the total use count is 1, separating the chain may still be // beneficial, since the constant chain may be longer than the GEP alone // would be (e.g. if the parent node has a constant index and also has // other children). if (!LSs.empty()) FNs.insert(std::make_pair(N, LSs)); } DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs); for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) { GepNode *N = I->first; UseSet &Us = I->second; for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) separateChainForNode(N, *J, Loc); } } void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) { // Compute the inverse of the Node.Parent links. Also, collect the set // of root nodes. NodeChildrenMap NCM; NodeVect Roots; invert_find_roots(Nodes, NCM, Roots); // Compute the initial placement determined by the users' locations, and // the locations of the child nodes. for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) recalculatePlacementRec(*I, NCM, Loc); DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc)); if (OptEnableInv) { for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) adjustForInvariance(*I, NCM, Loc); DEBUG(dbgs() << "Node placement after adjustment for invariance:\n" << LocationAsBlock(Loc)); } if (OptEnableConst) { for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I) separateConstantChains(*I, NCM, Loc); } DEBUG(dbgs() << "Node use information:\n" << Uses); // At the moment, there is no further refinement of the initial placement. // Such a refinement could include splitting the nodes if they are placed // too far from some of its users. DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc)); } Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At, BasicBlock *LocB) { DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName() << " for nodes:\n" << NA); unsigned Num = NA.size(); GepNode *RN = NA[0]; assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root"); Value *NewInst = 0; Value *Input = RN->BaseVal; Value **IdxList = new Value*[Num+1]; unsigned nax = 0; do { unsigned IdxC = 0; // If the type of the input of the first node is not a pointer, // we need to add an artificial i32 0 to the indices (because the // actual input in the IR will be a pointer). if (!NA[nax]->PTy->isPointerTy()) { Type *Int32Ty = Type::getInt32Ty(*Ctx); IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0); } // Keep adding indices from NA until we have to stop and generate // an "intermediate" GEP. while (++nax <= Num) { GepNode *N = NA[nax-1]; IdxList[IdxC++] = N->Idx; if (nax < Num) { // We have to stop, if the expected type of the output of this node // is not the same as the input type of the next node. Type *NextTy = next_type(N->PTy, N->Idx); if (NextTy != NA[nax]->PTy) break; } } ArrayRef A(IdxList, IdxC); Type *InpTy = Input->getType(); Type *ElTy = cast(InpTy->getScalarType())->getElementType(); NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At); DEBUG(dbgs() << "new GEP: " << *NewInst << '\n'); Input = NewInst; } while (nax <= Num); delete[] IdxList; return NewInst; } void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values, NodeChildrenMap &NCM) { NodeVect Work; Work.push_back(Node); while (!Work.empty()) { NodeVect::iterator First = Work.begin(); GepNode *N = *First; Work.erase(First); if (N->Flags & GepNode::Used) { NodeToUsesMap::iterator UF = Uses.find(N); assert(UF != Uses.end() && "No use information for used node"); UseSet &Us = UF->second; for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) Values.push_back((*I)->getUser()); } NodeChildrenMap::iterator CF = NCM.find(N); if (CF != NCM.end()) { NodeVect &Cs = CF->second; Work.insert(Work.end(), Cs.begin(), Cs.end()); } } } void HexagonCommonGEP::materialize(NodeToValueMap &Loc) { DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n'); NodeChildrenMap NCM; NodeVect Roots; // Compute the inversion again, since computing placement could alter // "parent" relation between nodes. invert_find_roots(Nodes, NCM, Roots); while (!Roots.empty()) { NodeVect::iterator First = Roots.begin(); GepNode *Root = *First, *Last = *First; Roots.erase(First); NodeVect NA; // Nodes to assemble. // Append to NA all child nodes up to (and including) the first child // that: // (1) has more than 1 child, or // (2) is used, or // (3) has a child located in a different block. bool LastUsed = false; unsigned LastCN = 0; // The location may be null if the computation failed (it can legitimately // happen for nodes created from dead GEPs). Value *LocV = Loc[Last]; if (!LocV) continue; BasicBlock *LastB = cast(LocV); do { NA.push_back(Last); LastUsed = (Last->Flags & GepNode::Used); if (LastUsed) break; NodeChildrenMap::iterator CF = NCM.find(Last); LastCN = (CF != NCM.end()) ? CF->second.size() : 0; if (LastCN != 1) break; GepNode *Child = CF->second.front(); BasicBlock *ChildB = cast_or_null(Loc[Child]); if (ChildB != 0 && LastB != ChildB) break; Last = Child; } while (true); BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator(); if (LastUsed || LastCN > 0) { ValueVect Urs; getAllUsersForNode(Root, Urs, NCM); BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB); if (FirstUse != LastB->end()) InsertAt = FirstUse; } // Generate a new instruction for NA. Value *NewInst = fabricateGEP(NA, InsertAt, LastB); // Convert all the children of Last node into roots, and append them // to the Roots list. if (LastCN > 0) { NodeVect &Cs = NCM[Last]; for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) { GepNode *CN = *I; CN->Flags &= ~GepNode::Internal; CN->Flags |= GepNode::Root; CN->BaseVal = NewInst; Roots.push_back(CN); } } // Lastly, if the Last node was used, replace all uses with the new GEP. // The uses reference the original GEP values. if (LastUsed) { NodeToUsesMap::iterator UF = Uses.find(Last); assert(UF != Uses.end() && "No use information found"); UseSet &Us = UF->second; for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) { Use *U = *I; U->set(NewInst); } } } } void HexagonCommonGEP::removeDeadCode() { ValueVect BO; BO.push_back(&Fn->front()); for (unsigned i = 0; i < BO.size(); ++i) { BasicBlock *B = cast(BO[i]); DomTreeNode *N = DT->getNode(B); typedef GraphTraits GTN; typedef GTN::ChildIteratorType Iter; for (Iter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) BO.push_back((*I)->getBlock()); } for (unsigned i = BO.size(); i > 0; --i) { BasicBlock *B = cast(BO[i-1]); BasicBlock::InstListType &IL = B->getInstList(); typedef BasicBlock::InstListType::reverse_iterator reverse_iterator; ValueVect Ins; for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I) Ins.push_back(&*I); for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) { Instruction *In = cast(*I); if (isInstructionTriviallyDead(In)) In->eraseFromParent(); } } } bool HexagonCommonGEP::runOnFunction(Function &F) { if (skipFunction(F)) return false; // For now bail out on C++ exception handling. for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A) for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I) if (isa(I) || isa(I)) return false; Fn = &F; DT = &getAnalysis().getDomTree(); PDT = &getAnalysis().getPostDomTree(); LI = &getAnalysis().getLoopInfo(); Ctx = &F.getContext(); Nodes.clear(); Uses.clear(); NodeOrder.clear(); SpecificBumpPtrAllocator Allocator; Mem = &Allocator; collect(); common(); NodeToValueMap Loc; computeNodePlacement(Loc); materialize(Loc); removeDeadCode(); #ifdef EXPENSIVE_CHECKS // Run this only when expensive checks are enabled. verifyFunction(F); #endif return true; } namespace llvm { FunctionPass *createHexagonCommonGEP() { return new HexagonCommonGEP(); } }