//===-- HexagonFrameLowering.cpp - Define frame lowering ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "hexagon-pei" #include "HexagonBlockRanges.h" #include "HexagonFrameLowering.h" #include "HexagonInstrInfo.h" #include "HexagonMachineFunctionInfo.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "HexagonTargetMachine.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachinePostDominators.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/IR/Function.h" #include "llvm/IR/Type.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" // Hexagon stack frame layout as defined by the ABI: // // Incoming arguments // passed via stack // | // | // SP during function's FP during function's | // +-- runtime (top of stack) runtime (bottom) --+ | // | | | // --++---------------------+------------------+-----------------++-+------- // | parameter area for | variable-size | fixed-size |LR| arg // | called functions | local objects | local objects |FP| // --+----------------------+------------------+-----------------+--+------- // <- size known -> <- size unknown -> <- size known -> // // Low address High address // // <--- stack growth // // // - In any circumstances, the outgoing function arguments are always accessi- // ble using the SP, and the incoming arguments are accessible using the FP. // - If the local objects are not aligned, they can always be accessed using // the FP. // - If there are no variable-sized objects, the local objects can always be // accessed using the SP, regardless whether they are aligned or not. (The // alignment padding will be at the bottom of the stack (highest address), // and so the offset with respect to the SP will be known at the compile- // -time.) // // The only complication occurs if there are both, local aligned objects, and // dynamically allocated (variable-sized) objects. The alignment pad will be // placed between the FP and the local objects, thus preventing the use of the // FP to access the local objects. At the same time, the variable-sized objects // will be between the SP and the local objects, thus introducing an unknown // distance from the SP to the locals. // // To avoid this problem, a new register is created that holds the aligned // address of the bottom of the stack, referred in the sources as AP (aligned // pointer). The AP will be equal to "FP-p", where "p" is the smallest pad // that aligns AP to the required boundary (a maximum of the alignments of // all stack objects, fixed- and variable-sized). All local objects[1] will // then use AP as the base pointer. // [1] The exception is with "fixed" stack objects. "Fixed" stack objects get // their name from being allocated at fixed locations on the stack, relative // to the FP. In the presence of dynamic allocation and local alignment, such // objects can only be accessed through the FP. // // Illustration of the AP: // FP --+ // | // ---------------+---------------------+-----+-----------------------++-+-- // Rest of the | Local stack objects | Pad | Fixed stack objects |LR| // stack frame | (aligned) | | (CSR, spills, etc.) |FP| // ---------------+---------------------+-----+-----------------+-----+--+-- // |<-- Multiple of the -->| // stack alignment +-- AP // // The AP is set up at the beginning of the function. Since it is not a dedi- // cated (reserved) register, it needs to be kept live throughout the function // to be available as the base register for local object accesses. // Normally, an address of a stack objects is obtained by a pseudo-instruction // TFR_FI. To access local objects with the AP register present, a different // pseudo-instruction needs to be used: TFR_FIA. The TFR_FIA takes one extra // argument compared to TFR_FI: the first input register is the AP register. // This keeps the register live between its definition and its uses. // The AP register is originally set up using pseudo-instruction ALIGNA: // AP = ALIGNA A // where // A - required stack alignment // The alignment value must be the maximum of all alignments required by // any stack object. // The dynamic allocation uses a pseudo-instruction ALLOCA: // Rd = ALLOCA Rs, A // where // Rd - address of the allocated space // Rs - minimum size (the actual allocated can be larger to accommodate // alignment) // A - required alignment using namespace llvm; static cl::opt DisableDeallocRet("disable-hexagon-dealloc-ret", cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target")); static cl::opt NumberScavengerSlots("number-scavenger-slots", cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2), cl::ZeroOrMore); static cl::opt SpillFuncThreshold("spill-func-threshold", cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"), cl::init(6), cl::ZeroOrMore); static cl::opt SpillFuncThresholdOs("spill-func-threshold-Os", cl::Hidden, cl::desc("Specify Os spill func threshold"), cl::init(1), cl::ZeroOrMore); static cl::opt EnableStackOVFSanitizer("enable-stackovf-sanitizer", cl::Hidden, cl::desc("Enable runtime checks for stack overflow."), cl::init(false), cl::ZeroOrMore); static cl::opt EnableShrinkWrapping("hexagon-shrink-frame", cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("Enable stack frame shrink wrapping")); static cl::opt ShrinkLimit("shrink-frame-limit", cl::init(UINT_MAX), cl::Hidden, cl::ZeroOrMore, cl::desc("Max count of stack frame " "shrink-wraps")); static cl::opt UseAllocframe("use-allocframe", cl::init(true), cl::Hidden, cl::desc("Use allocframe more conservatively")); static cl::opt OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden, cl::init(true), cl::desc("Optimize spill slots")); namespace llvm { void initializeHexagonCallFrameInformationPass(PassRegistry&); FunctionPass *createHexagonCallFrameInformation(); } namespace { class HexagonCallFrameInformation : public MachineFunctionPass { public: static char ID; HexagonCallFrameInformation() : MachineFunctionPass(ID) { PassRegistry &PR = *PassRegistry::getPassRegistry(); initializeHexagonCallFrameInformationPass(PR); } bool runOnMachineFunction(MachineFunction &MF) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::AllVRegsAllocated); } }; char HexagonCallFrameInformation::ID = 0; } bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) { auto &HFI = *MF.getSubtarget().getFrameLowering(); bool NeedCFI = MF.getMMI().hasDebugInfo() || MF.getFunction()->needsUnwindTableEntry(); if (!NeedCFI) return false; HFI.insertCFIInstructions(MF); return true; } INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi", "Hexagon call frame information", false, false) FunctionPass *llvm::createHexagonCallFrameInformation() { return new HexagonCallFrameInformation(); } namespace { /// Map a register pair Reg to the subregister that has the greater "number", /// i.e. D3 (aka R7:6) will be mapped to R7, etc. unsigned getMax32BitSubRegister(unsigned Reg, const TargetRegisterInfo &TRI, bool hireg = true) { if (Reg < Hexagon::D0 || Reg > Hexagon::D15) return Reg; unsigned RegNo = 0; for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) { if (hireg) { if (*SubRegs > RegNo) RegNo = *SubRegs; } else { if (!RegNo || *SubRegs < RegNo) RegNo = *SubRegs; } } return RegNo; } /// Returns the callee saved register with the largest id in the vector. unsigned getMaxCalleeSavedReg(const std::vector &CSI, const TargetRegisterInfo &TRI) { static_assert(Hexagon::R1 > 0, "Assume physical registers are encoded as positive integers"); if (CSI.empty()) return 0; unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI); for (unsigned I = 1, E = CSI.size(); I < E; ++I) { unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI); if (Reg > Max) Max = Reg; } return Max; } /// Checks if the basic block contains any instruction that needs a stack /// frame to be already in place. bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR, const HexagonRegisterInfo &HRI) { for (auto &I : MBB) { const MachineInstr *MI = &I; if (MI->isCall()) return true; unsigned Opc = MI->getOpcode(); switch (Opc) { case Hexagon::ALLOCA: case Hexagon::ALIGNA: return true; default: break; } // Check individual operands. for (const MachineOperand &MO : MI->operands()) { // While the presence of a frame index does not prove that a stack // frame will be required, all frame indexes should be within alloc- // frame/deallocframe. Otherwise, the code that translates a frame // index into an offset would have to be aware of the placement of // the frame creation/destruction instructions. if (MO.isFI()) return true; if (!MO.isReg()) continue; unsigned R = MO.getReg(); // Virtual registers will need scavenging, which then may require // a stack slot. if (TargetRegisterInfo::isVirtualRegister(R)) return true; for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S) if (CSR[*S]) return true; } } return false; } /// Returns true if MBB has a machine instructions that indicates a tail call /// in the block. bool hasTailCall(const MachineBasicBlock &MBB) { MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); unsigned RetOpc = I->getOpcode(); return RetOpc == Hexagon::TCRETURNi || RetOpc == Hexagon::TCRETURNr; } /// Returns true if MBB contains an instruction that returns. bool hasReturn(const MachineBasicBlock &MBB) { for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I) if (I->isReturn()) return true; return false; } /// Returns the "return" instruction from this block, or nullptr if there /// isn't any. MachineInstr *getReturn(MachineBasicBlock &MBB) { for (auto &I : MBB) if (I.isReturn()) return &I; return nullptr; } bool isRestoreCall(unsigned Opc) { switch (Opc) { case Hexagon::RESTORE_DEALLOC_RET_JMP_V4: case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC: case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4: case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC: return true; } return false; } inline bool isOptNone(const MachineFunction &MF) { return MF.getFunction()->hasFnAttribute(Attribute::OptimizeNone) || MF.getTarget().getOptLevel() == CodeGenOpt::None; } inline bool isOptSize(const MachineFunction &MF) { const Function &F = *MF.getFunction(); return F.optForSize() && !F.optForMinSize(); } inline bool isMinSize(const MachineFunction &MF) { return MF.getFunction()->optForMinSize(); } } /// Implements shrink-wrapping of the stack frame. By default, stack frame /// is created in the function entry block, and is cleaned up in every block /// that returns. This function finds alternate blocks: one for the frame /// setup (prolog) and one for the cleanup (epilog). void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF, MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const { static unsigned ShrinkCounter = 0; if (ShrinkLimit.getPosition()) { if (ShrinkCounter >= ShrinkLimit) return; ShrinkCounter++; } auto &HST = static_cast(MF.getSubtarget()); auto &HRI = *HST.getRegisterInfo(); MachineDominatorTree MDT; MDT.runOnMachineFunction(MF); MachinePostDominatorTree MPT; MPT.runOnMachineFunction(MF); typedef DenseMap UnsignedMap; UnsignedMap RPO; typedef ReversePostOrderTraversal RPOTType; RPOTType RPOT(&MF); unsigned RPON = 0; for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) RPO[(*I)->getNumber()] = RPON++; // Don't process functions that have loops, at least for now. Placement // of prolog and epilog must take loop structure into account. For simpli- // city don't do it right now. for (auto &I : MF) { unsigned BN = RPO[I.getNumber()]; for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) { // If found a back-edge, return. if (RPO[(*SI)->getNumber()] <= BN) return; } } // Collect the set of blocks that need a stack frame to execute. Scan // each block for uses/defs of callee-saved registers, calls, etc. SmallVector SFBlocks; BitVector CSR(Hexagon::NUM_TARGET_REGS); for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P) for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S) CSR[*S] = true; for (auto &I : MF) if (needsStackFrame(I, CSR, HRI)) SFBlocks.push_back(&I); DEBUG({ dbgs() << "Blocks needing SF: {"; for (auto &B : SFBlocks) dbgs() << " BB#" << B->getNumber(); dbgs() << " }\n"; }); // No frame needed? if (SFBlocks.empty()) return; // Pick a common dominator and a common post-dominator. MachineBasicBlock *DomB = SFBlocks[0]; for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]); if (!DomB) break; } MachineBasicBlock *PDomB = SFBlocks[0]; for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]); if (!PDomB) break; } DEBUG({ dbgs() << "Computed dom block: BB#"; if (DomB) dbgs() << DomB->getNumber(); else dbgs() << ""; dbgs() << ", computed pdom block: BB#"; if (PDomB) dbgs() << PDomB->getNumber(); else dbgs() << ""; dbgs() << "\n"; }); if (!DomB || !PDomB) return; // Make sure that DomB dominates PDomB and PDomB post-dominates DomB. if (!MDT.dominates(DomB, PDomB)) { DEBUG(dbgs() << "Dom block does not dominate pdom block\n"); return; } if (!MPT.dominates(PDomB, DomB)) { DEBUG(dbgs() << "PDom block does not post-dominate dom block\n"); return; } // Finally, everything seems right. PrologB = DomB; EpilogB = PDomB; } /// Perform most of the PEI work here: /// - saving/restoring of the callee-saved registers, /// - stack frame creation and destruction. /// Normally, this work is distributed among various functions, but doing it /// in one place allows shrink-wrapping of the stack frame. void HexagonFrameLowering::emitPrologue(MachineFunction &MF, MachineBasicBlock &MBB) const { auto &HST = static_cast(MF.getSubtarget()); auto &HRI = *HST.getRegisterInfo(); MachineFrameInfo *MFI = MF.getFrameInfo(); const std::vector &CSI = MFI->getCalleeSavedInfo(); MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr; if (EnableShrinkWrapping) findShrunkPrologEpilog(MF, PrologB, EpilogB); bool PrologueStubs = false; insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs); insertPrologueInBlock(*PrologB, PrologueStubs); if (EpilogB) { insertCSRRestoresInBlock(*EpilogB, CSI, HRI); insertEpilogueInBlock(*EpilogB); } else { for (auto &B : MF) if (B.isReturnBlock()) insertCSRRestoresInBlock(B, CSI, HRI); for (auto &B : MF) if (B.isReturnBlock()) insertEpilogueInBlock(B); for (auto &B : MF) { if (B.empty()) continue; MachineInstr *RetI = getReturn(B); if (!RetI || isRestoreCall(RetI->getOpcode())) continue; for (auto &R : CSI) RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); } } if (EpilogB) { // If there is an epilog block, it may not have a return instruction. // In such case, we need to add the callee-saved registers as live-ins // in all blocks on all paths from the epilog to any return block. unsigned MaxBN = 0; for (auto &B : MF) if (B.getNumber() >= 0) MaxBN = std::max(MaxBN, unsigned(B.getNumber())); BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1); updateExitPaths(*EpilogB, EpilogB, DoneT, DoneF, Path); } } void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB, bool PrologueStubs) const { MachineFunction &MF = *MBB.getParent(); MachineFrameInfo *MFI = MF.getFrameInfo(); auto &HST = MF.getSubtarget(); auto &HII = *HST.getInstrInfo(); auto &HRI = *HST.getRegisterInfo(); DebugLoc dl; unsigned MaxAlign = std::max(MFI->getMaxAlignment(), getStackAlignment()); // Calculate the total stack frame size. // Get the number of bytes to allocate from the FrameInfo. unsigned FrameSize = MFI->getStackSize(); // Round up the max call frame size to the max alignment on the stack. unsigned MaxCFA = alignTo(MFI->getMaxCallFrameSize(), MaxAlign); MFI->setMaxCallFrameSize(MaxCFA); FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign); MFI->setStackSize(FrameSize); bool AlignStack = (MaxAlign > getStackAlignment()); // Get the number of bytes to allocate from the FrameInfo. unsigned NumBytes = MFI->getStackSize(); unsigned SP = HRI.getStackRegister(); unsigned MaxCF = MFI->getMaxCallFrameSize(); MachineBasicBlock::iterator InsertPt = MBB.begin(); auto *FuncInfo = MF.getInfo(); auto &AdjustRegs = FuncInfo->getAllocaAdjustInsts(); for (auto MI : AdjustRegs) { assert((MI->getOpcode() == Hexagon::ALLOCA) && "Expected alloca"); expandAlloca(MI, HII, SP, MaxCF); MI->eraseFromParent(); } if (!hasFP(MF)) return; // Check for overflow. // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used? const unsigned int ALLOCFRAME_MAX = 16384; // Create a dummy memory operand to avoid allocframe from being treated as // a volatile memory reference. MachineMemOperand *MMO = MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore, 4, 4); if (NumBytes >= ALLOCFRAME_MAX) { // Emit allocframe(#0). BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) .addImm(0) .addMemOperand(MMO); // Subtract offset from frame pointer. // We use a caller-saved non-parameter register for that. unsigned CallerSavedReg = HRI.getFirstCallerSavedNonParamReg(); BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CONST32_Int_Real), CallerSavedReg).addImm(NumBytes); BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_sub), SP) .addReg(SP) .addReg(CallerSavedReg); } else { BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) .addImm(NumBytes) .addMemOperand(MMO); } if (AlignStack) { BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP) .addReg(SP) .addImm(-int64_t(MaxAlign)); } // If the stack-checking is enabled, and we spilled the callee-saved // registers inline (i.e. did not use a spill function), then call // the stack checker directly. if (EnableStackOVFSanitizer && !PrologueStubs) BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CALLstk)) .addExternalSymbol("__runtime_stack_check"); } void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const { MachineFunction &MF = *MBB.getParent(); if (!hasFP(MF)) return; auto &HST = static_cast(MF.getSubtarget()); auto &HII = *HST.getInstrInfo(); auto &HRI = *HST.getRegisterInfo(); unsigned SP = HRI.getStackRegister(); MachineInstr *RetI = getReturn(MBB); unsigned RetOpc = RetI ? RetI->getOpcode() : 0; MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator(); DebugLoc DL; if (InsertPt != MBB.end()) DL = InsertPt->getDebugLoc(); else if (!MBB.empty()) DL = std::prev(MBB.end())->getDebugLoc(); // Handle EH_RETURN. if (RetOpc == Hexagon::EH_RETURN_JMPR) { BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe)); BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::A2_add), SP) .addReg(SP) .addReg(Hexagon::R28); return; } // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc- // frame instruction if we encounter it. if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 || RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC) { MachineBasicBlock::iterator It = RetI; ++It; // Delete all instructions after the RESTORE (except labels). while (It != MBB.end()) { if (!It->isLabel()) It = MBB.erase(It); else ++It; } return; } // It is possible that the restoring code is a call to a library function. // All of the restore* functions include "deallocframe", so we need to make // sure that we don't add an extra one. bool NeedsDeallocframe = true; if (!MBB.empty() && InsertPt != MBB.begin()) { MachineBasicBlock::iterator PrevIt = std::prev(InsertPt); unsigned COpc = PrevIt->getOpcode(); if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 || COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC) NeedsDeallocframe = false; } if (!NeedsDeallocframe) return; // If the returning instruction is JMPret, replace it with dealloc_return, // otherwise just add deallocframe. The function could be returning via a // tail call. if (RetOpc != Hexagon::JMPret || DisableDeallocRet) { BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe)); return; } unsigned NewOpc = Hexagon::L4_return; MachineInstr *NewI = BuildMI(MBB, RetI, DL, HII.get(NewOpc)); // Transfer the function live-out registers. NewI->copyImplicitOps(MF, *RetI); MBB.erase(RetI); } bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB, MachineBasicBlock *RestoreB, BitVector &DoneT, BitVector &DoneF, BitVector &Path) const { assert(MBB.getNumber() >= 0); unsigned BN = MBB.getNumber(); if (Path[BN] || DoneF[BN]) return false; if (DoneT[BN]) return true; auto &CSI = MBB.getParent()->getFrameInfo()->getCalleeSavedInfo(); Path[BN] = true; bool ReachedExit = false; for (auto &SB : MBB.successors()) ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path); if (!MBB.empty() && MBB.back().isReturn()) { // Add implicit uses of all callee-saved registers to the reached // return instructions. This is to prevent the anti-dependency breaker // from renaming these registers. MachineInstr &RetI = MBB.back(); if (!isRestoreCall(RetI.getOpcode())) for (auto &R : CSI) RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true)); ReachedExit = true; } // We don't want to add unnecessary live-ins to the restore block: since // the callee-saved registers are being defined in it, the entry of the // restore block cannot be on the path from the definitions to any exit. if (ReachedExit && &MBB != RestoreB) { for (auto &R : CSI) if (!MBB.isLiveIn(R.getReg())) MBB.addLiveIn(R.getReg()); DoneT[BN] = true; } if (!ReachedExit) DoneF[BN] = true; Path[BN] = false; return ReachedExit; } namespace { bool IsAllocFrame(MachineBasicBlock::const_iterator It) { if (!It->isBundle()) return It->getOpcode() == Hexagon::S2_allocframe; auto End = It->getParent()->instr_end(); MachineBasicBlock::const_instr_iterator I = It.getInstrIterator(); while (++I != End && I->isBundled()) if (I->getOpcode() == Hexagon::S2_allocframe) return true; return false; } MachineBasicBlock::iterator FindAllocFrame(MachineBasicBlock &B) { for (auto &I : B) if (IsAllocFrame(I)) return I; return B.end(); } } void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const { for (auto &B : MF) { auto AF = FindAllocFrame(B); if (AF == B.end()) continue; insertCFIInstructionsAt(B, ++AF); } } void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator At) const { MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = *MF.getFrameInfo(); MachineModuleInfo &MMI = MF.getMMI(); auto &HST = MF.getSubtarget(); auto &HII = *HST.getInstrInfo(); auto &HRI = *HST.getRegisterInfo(); // If CFI instructions have debug information attached, something goes // wrong with the final assembly generation: the prolog_end is placed // in a wrong location. DebugLoc DL; const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION); MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); bool HasFP = hasFP(MF); if (HasFP) { unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true); unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true); // Define CFA via an offset from the value of FP. // // -8 -4 0 (SP) // --+----+----+--------------------- // | FP | LR | increasing addresses --> // --+----+----+--------------------- // | +-- Old SP (before allocframe) // +-- New FP (after allocframe) // // MCCFIInstruction::createDefCfa subtracts the offset from the register. // MCCFIInstruction::createOffset takes the offset without sign change. auto DefCfa = MCCFIInstruction::createDefCfa(FrameLabel, DwFPReg, -8); BuildMI(MBB, At, DL, CFID) .addCFIIndex(MMI.addFrameInst(DefCfa)); // R31 (return addr) = CFA - 4 auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4); BuildMI(MBB, At, DL, CFID) .addCFIIndex(MMI.addFrameInst(OffR31)); // R30 (frame ptr) = CFA - 8 auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8); BuildMI(MBB, At, DL, CFID) .addCFIIndex(MMI.addFrameInst(OffR30)); } static unsigned int RegsToMove[] = { Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2, Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18, Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22, Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26, Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9, Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13, Hexagon::NoRegister }; const std::vector &CSI = MFI.getCalleeSavedInfo(); for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) { unsigned Reg = RegsToMove[i]; auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool { return C.getReg() == Reg; }; auto F = std::find_if(CSI.begin(), CSI.end(), IfR); if (F == CSI.end()) continue; int64_t Offset; if (HasFP) { // If the function has a frame pointer (i.e. has an allocframe), // then the CFA has been defined in terms of FP. Any offsets in // the following CFI instructions have to be defined relative // to FP, which points to the bottom of the stack frame. // The function getFrameIndexReference can still choose to use SP // for the offset calculation, so we cannot simply call it here. // Instead, get the offset (relative to the FP) directly. Offset = MFI.getObjectOffset(F->getFrameIdx()); } else { unsigned FrameReg; Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg); } // Subtract 8 to make room for R30 and R31, which are added above. Offset -= 8; if (Reg < Hexagon::D0 || Reg > Hexagon::D15) { unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true); auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg, Offset); BuildMI(MBB, At, DL, CFID) .addCFIIndex(MMI.addFrameInst(OffReg)); } else { // Split the double regs into subregs, and generate appropriate // cfi_offsets. // The only reason, we are split double regs is, llvm-mc does not // understand paired registers for cfi_offset. // Eg .cfi_offset r1:0, -64 unsigned HiReg = HRI.getSubReg(Reg, Hexagon::subreg_hireg); unsigned LoReg = HRI.getSubReg(Reg, Hexagon::subreg_loreg); unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true); unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true); auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg, Offset+4); BuildMI(MBB, At, DL, CFID) .addCFIIndex(MMI.addFrameInst(OffHi)); auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg, Offset); BuildMI(MBB, At, DL, CFID) .addCFIIndex(MMI.addFrameInst(OffLo)); } } } bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const { auto &MFI = *MF.getFrameInfo(); auto &HRI = *MF.getSubtarget().getRegisterInfo(); bool HasFixed = MFI.getNumFixedObjects(); bool HasPrealloc = const_cast(MFI) .getLocalFrameObjectCount(); bool HasExtraAlign = HRI.needsStackRealignment(MF); bool HasAlloca = MFI.hasVarSizedObjects(); // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think // that this shouldn't be required, but doing so now because gcc does and // gdb can't break at the start of the function without it. Will remove if // this turns out to be a gdb bug. // if (MF.getTarget().getOptLevel() == CodeGenOpt::None) return true; // By default we want to use SP (since it's always there). FP requires // some setup (i.e. ALLOCFRAME). // Fixed and preallocated objects need FP if the distance from them to // the SP is unknown (as is with alloca or aligna). if ((HasFixed || HasPrealloc) && (HasAlloca || HasExtraAlign)) return true; if (MFI.getStackSize() > 0) { if (EnableStackOVFSanitizer || UseAllocframe) return true; } if (MFI.hasCalls() || MF.getInfo()->hasClobberLR()) return true; return false; } enum SpillKind { SK_ToMem, SK_FromMem, SK_FromMemTailcall }; static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType, bool Stkchk = false) { const char * V4SpillToMemoryFunctions[] = { "__save_r16_through_r17", "__save_r16_through_r19", "__save_r16_through_r21", "__save_r16_through_r23", "__save_r16_through_r25", "__save_r16_through_r27" }; const char * V4SpillToMemoryStkchkFunctions[] = { "__save_r16_through_r17_stkchk", "__save_r16_through_r19_stkchk", "__save_r16_through_r21_stkchk", "__save_r16_through_r23_stkchk", "__save_r16_through_r25_stkchk", "__save_r16_through_r27_stkchk" }; const char * V4SpillFromMemoryFunctions[] = { "__restore_r16_through_r17_and_deallocframe", "__restore_r16_through_r19_and_deallocframe", "__restore_r16_through_r21_and_deallocframe", "__restore_r16_through_r23_and_deallocframe", "__restore_r16_through_r25_and_deallocframe", "__restore_r16_through_r27_and_deallocframe" }; const char * V4SpillFromMemoryTailcallFunctions[] = { "__restore_r16_through_r17_and_deallocframe_before_tailcall", "__restore_r16_through_r19_and_deallocframe_before_tailcall", "__restore_r16_through_r21_and_deallocframe_before_tailcall", "__restore_r16_through_r23_and_deallocframe_before_tailcall", "__restore_r16_through_r25_and_deallocframe_before_tailcall", "__restore_r16_through_r27_and_deallocframe_before_tailcall" }; const char **SpillFunc = nullptr; switch(SpillType) { case SK_ToMem: SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions : V4SpillToMemoryFunctions; break; case SK_FromMem: SpillFunc = V4SpillFromMemoryFunctions; break; case SK_FromMemTailcall: SpillFunc = V4SpillFromMemoryTailcallFunctions; break; } assert(SpillFunc && "Unknown spill kind"); // Spill all callee-saved registers up to the highest register used. switch (MaxReg) { case Hexagon::R17: return SpillFunc[0]; case Hexagon::R19: return SpillFunc[1]; case Hexagon::R21: return SpillFunc[2]; case Hexagon::R23: return SpillFunc[3]; case Hexagon::R25: return SpillFunc[4]; case Hexagon::R27: return SpillFunc[5]; default: llvm_unreachable("Unhandled maximum callee save register"); } return 0; } int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, unsigned &FrameReg) const { auto &MFI = *MF.getFrameInfo(); auto &HRI = *MF.getSubtarget().getRegisterInfo(); int Offset = MFI.getObjectOffset(FI); bool HasAlloca = MFI.hasVarSizedObjects(); bool HasExtraAlign = HRI.needsStackRealignment(MF); bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None; unsigned SP = HRI.getStackRegister(), FP = HRI.getFrameRegister(); auto &HMFI = *MF.getInfo(); unsigned AP = HMFI.getStackAlignBasePhysReg(); unsigned FrameSize = MFI.getStackSize(); bool UseFP = false, UseAP = false; // Default: use SP (except at -O0). // Use FP at -O0, except when there are objects with extra alignment. // That additional alignment requirement may cause a pad to be inserted, // which will make it impossible to use FP to access objects located // past the pad. if (NoOpt && !HasExtraAlign) UseFP = true; if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) { // Fixed and preallocated objects will be located before any padding // so FP must be used to access them. UseFP |= (HasAlloca || HasExtraAlign); } else { if (HasAlloca) { if (HasExtraAlign) UseAP = true; else UseFP = true; } } // If FP was picked, then there had better be FP. bool HasFP = hasFP(MF); assert((HasFP || !UseFP) && "This function must have frame pointer"); // Having FP implies allocframe. Allocframe will store extra 8 bytes: // FP/LR. If the base register is used to access an object across these // 8 bytes, then the offset will need to be adjusted by 8. // // After allocframe: // HexagonISelLowering adds 8 to ---+ // the offsets of all stack-based | // arguments (*) | // | // getObjectOffset < 0 0 8 getObjectOffset >= 8 // ------------------------+-----+------------------------> increasing // |FP/LR| addresses // -----------------+------+-----+------------------------> // | | // SP/AP point --+ +-- FP points here (**) // somewhere on // this side of FP/LR // // (*) See LowerFormalArguments. The FP/LR is assumed to be present. // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR. // The lowering assumes that FP/LR is present, and so the offsets of // the formal arguments start at 8. If FP/LR is not there we need to // reduce the offset by 8. if (Offset > 0 && !HasFP) Offset -= 8; if (UseFP) FrameReg = FP; else if (UseAP) FrameReg = AP; else FrameReg = SP; // Calculate the actual offset in the instruction. If there is no FP // (in other words, no allocframe), then SP will not be adjusted (i.e. // there will be no SP -= FrameSize), so the frame size should not be // added to the calculated offset. int RealOffset = Offset; if (!UseFP && !UseAP && HasFP) RealOffset = FrameSize+Offset; return RealOffset; } bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB, const CSIVect &CSI, const HexagonRegisterInfo &HRI, bool &PrologueStubs) const { if (CSI.empty()) return true; MachineBasicBlock::iterator MI = MBB.begin(); PrologueStubs = false; MachineFunction &MF = *MBB.getParent(); auto &HII = *MF.getSubtarget().getInstrInfo(); if (useSpillFunction(MF, CSI)) { PrologueStubs = true; unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI); bool StkOvrFlowEnabled = EnableStackOVFSanitizer; const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem, StkOvrFlowEnabled); auto &HTM = static_cast(MF.getTarget()); bool IsPIC = HTM.isPositionIndependent(); // Call spill function. DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); unsigned SpillOpc; if (StkOvrFlowEnabled) SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC : Hexagon::SAVE_REGISTERS_CALL_V4STK; else SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC : Hexagon::SAVE_REGISTERS_CALL_V4; MachineInstr *SaveRegsCall = BuildMI(MBB, MI, DL, HII.get(SpillOpc)) .addExternalSymbol(SpillFun); // Add callee-saved registers as use. addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true); // Add live in registers. for (unsigned I = 0; I < CSI.size(); ++I) MBB.addLiveIn(CSI[I].getReg()); return true; } for (unsigned i = 0, n = CSI.size(); i < n; ++i) { unsigned Reg = CSI[i].getReg(); // Add live in registers. We treat eh_return callee saved register r0 - r3 // specially. They are not really callee saved registers as they are not // supposed to be killed. bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg); int FI = CSI[i].getFrameIdx(); const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI); if (IsKill) MBB.addLiveIn(Reg); } return true; } bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB, const CSIVect &CSI, const HexagonRegisterInfo &HRI) const { if (CSI.empty()) return false; MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); MachineFunction &MF = *MBB.getParent(); auto &HII = *MF.getSubtarget().getInstrInfo(); if (useRestoreFunction(MF, CSI)) { bool HasTC = hasTailCall(MBB) || !hasReturn(MBB); unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI); SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem; const char *RestoreFn = getSpillFunctionFor(MaxR, Kind); auto &HTM = static_cast(MF.getTarget()); bool IsPIC = HTM.isPositionIndependent(); // Call spill function. DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : MBB.getLastNonDebugInstr()->getDebugLoc(); MachineInstr *DeallocCall = nullptr; if (HasTC) { unsigned ROpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4; DeallocCall = BuildMI(MBB, MI, DL, HII.get(ROpc)) .addExternalSymbol(RestoreFn); } else { // The block has a return. MachineBasicBlock::iterator It = MBB.getFirstTerminator(); assert(It->isReturn() && std::next(It) == MBB.end()); unsigned ROpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC : Hexagon::RESTORE_DEALLOC_RET_JMP_V4; DeallocCall = BuildMI(MBB, It, DL, HII.get(ROpc)) .addExternalSymbol(RestoreFn); // Transfer the function live-out registers. DeallocCall->copyImplicitOps(MF, *It); } addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false); return true; } for (unsigned i = 0; i < CSI.size(); ++i) { unsigned Reg = CSI[i].getReg(); const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); int FI = CSI[i].getFrameIdx(); HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI); } return true; } MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr( MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { MachineInstr &MI = *I; unsigned Opc = MI.getOpcode(); (void)Opc; // Silence compiler warning. assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) && "Cannot handle this call frame pseudo instruction"); return MBB.erase(I); } void HexagonFrameLowering::processFunctionBeforeFrameFinalized( MachineFunction &MF, RegScavenger *RS) const { // If this function has uses aligned stack and also has variable sized stack // objects, then we need to map all spill slots to fixed positions, so that // they can be accessed through FP. Otherwise they would have to be accessed // via AP, which may not be available at the particular place in the program. MachineFrameInfo *MFI = MF.getFrameInfo(); bool HasAlloca = MFI->hasVarSizedObjects(); bool NeedsAlign = (MFI->getMaxAlignment() > getStackAlignment()); if (!HasAlloca || !NeedsAlign) return; unsigned LFS = MFI->getLocalFrameSize(); for (int i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) { if (!MFI->isSpillSlotObjectIndex(i) || MFI->isDeadObjectIndex(i)) continue; unsigned S = MFI->getObjectSize(i); // Reduce the alignment to at most 8. This will require unaligned vector // stores if they happen here. unsigned A = std::max(MFI->getObjectAlignment(i), 8U); MFI->setObjectAlignment(i, 8); LFS = alignTo(LFS+S, A); MFI->mapLocalFrameObject(i, -LFS); } MFI->setLocalFrameSize(LFS); unsigned A = MFI->getLocalFrameMaxAlign(); assert(A <= 8 && "Unexpected local frame alignment"); if (A == 0) MFI->setLocalFrameMaxAlign(8); MFI->setUseLocalStackAllocationBlock(true); // Set the physical aligned-stack base address register. unsigned AP = 0; if (const MachineInstr *AI = getAlignaInstr(MF)) AP = AI->getOperand(0).getReg(); auto &HMFI = *MF.getInfo(); HMFI.setStackAlignBasePhysReg(AP); } /// Returns true if there are no caller-saved registers available in class RC. static bool needToReserveScavengingSpillSlots(MachineFunction &MF, const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) { MachineRegisterInfo &MRI = MF.getRegInfo(); auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool { for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI) if (MRI.isPhysRegUsed(*AI)) return true; return false; }; // Check for an unused caller-saved register. Callee-saved registers // have become pristine by now. for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P) if (!IsUsed(*P)) return false; // All caller-saved registers are used. return true; } #ifndef NDEBUG static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) { dbgs() << '{'; for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) { unsigned R = x; dbgs() << ' ' << PrintReg(R, &TRI); } dbgs() << " }"; } #endif bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF, const TargetRegisterInfo *TRI, std::vector &CSI) const { DEBUG(dbgs() << LLVM_FUNCTION_NAME << " on " << MF.getFunction()->getName() << '\n'); MachineFrameInfo *MFI = MF.getFrameInfo(); BitVector SRegs(Hexagon::NUM_TARGET_REGS); // Generate a set of unique, callee-saved registers (SRegs), where each // register in the set is maximal in terms of sub-/super-register relation, // i.e. for each R in SRegs, no proper super-register of R is also in SRegs. // (1) For each callee-saved register, add that register and all of its // sub-registers to SRegs. DEBUG(dbgs() << "Initial CS registers: {"); for (unsigned i = 0, n = CSI.size(); i < n; ++i) { unsigned R = CSI[i].getReg(); DEBUG(dbgs() << ' ' << PrintReg(R, TRI)); for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) SRegs[*SR] = true; } DEBUG(dbgs() << " }\n"); DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); dbgs() << "\n"); // (2) For each reserved register, remove that register and all of its // sub- and super-registers from SRegs. BitVector Reserved = TRI->getReservedRegs(MF); for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) { unsigned R = x; for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR) SRegs[*SR] = false; } DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI); dbgs() << "\n"); DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); dbgs() << "\n"); // (3) Collect all registers that have at least one sub-register in SRegs, // and also have no sub-registers that are reserved. These will be the can- // didates for saving as a whole instead of their individual sub-registers. // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.) BitVector TmpSup(Hexagon::NUM_TARGET_REGS); for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { unsigned R = x; for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) TmpSup[*SR] = true; } for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) { unsigned R = x; for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) { if (!Reserved[*SR]) continue; TmpSup[R] = false; break; } } DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI); dbgs() << "\n"); // (4) Include all super-registers found in (3) into SRegs. SRegs |= TmpSup; DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); dbgs() << "\n"); // (5) For each register R in SRegs, if any super-register of R is in SRegs, // remove R from SRegs. for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { unsigned R = x; for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) { if (!SRegs[*SR]) continue; SRegs[R] = false; break; } } DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); dbgs() << "\n"); // Now, for each register that has a fixed stack slot, create the stack // object for it. CSI.clear(); typedef TargetFrameLowering::SpillSlot SpillSlot; unsigned NumFixed; int MinOffset = 0; // CS offsets are negative. const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed); for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) { if (!SRegs[S->Reg]) continue; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg); int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), S->Offset); MinOffset = std::min(MinOffset, S->Offset); CSI.push_back(CalleeSavedInfo(S->Reg, FI)); SRegs[S->Reg] = false; } // There can be some registers that don't have fixed slots. For example, // we need to store R0-R3 in functions with exception handling. For each // such register, create a non-fixed stack object. for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { unsigned R = x; const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R); int Off = MinOffset - RC->getSize(); unsigned Align = std::min(RC->getAlignment(), getStackAlignment()); assert(isPowerOf2_32(Align)); Off &= -Align; int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), Off); MinOffset = std::min(MinOffset, Off); CSI.push_back(CalleeSavedInfo(R, FI)); SRegs[R] = false; } DEBUG({ dbgs() << "CS information: {"; for (unsigned i = 0, n = CSI.size(); i < n; ++i) { int FI = CSI[i].getFrameIdx(); int Off = MFI->getObjectOffset(FI); dbgs() << ' ' << PrintReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp"; if (Off >= 0) dbgs() << '+'; dbgs() << Off; } dbgs() << " }\n"; }); #ifndef NDEBUG // Verify that all registers were handled. bool MissedReg = false; for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { unsigned R = x; dbgs() << PrintReg(R, TRI) << ' '; MissedReg = true; } if (MissedReg) llvm_unreachable("...there are unhandled callee-saved registers!"); #endif return true; } bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl &NewRegs) const { MachineInstr *MI = &*It; DebugLoc DL = MI->getDebugLoc(); unsigned DstR = MI->getOperand(0).getReg(); unsigned SrcR = MI->getOperand(1).getReg(); if (!Hexagon::ModRegsRegClass.contains(DstR) || !Hexagon::ModRegsRegClass.contains(SrcR)) return false; unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR) .addOperand(MI->getOperand(1)); BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR) .addReg(TmpR, RegState::Kill); NewRegs.push_back(TmpR); B.erase(It); return true; } bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl &NewRegs) const { MachineInstr *MI = &*It; DebugLoc DL = MI->getDebugLoc(); unsigned Opc = MI->getOpcode(); unsigned SrcR = MI->getOperand(2).getReg(); bool IsKill = MI->getOperand(2).isKill(); assert(MI->getOperand(0).isFI() && "Expect a frame index"); int FI = MI->getOperand(0).getIndex(); // TmpR = C2_tfrpr SrcR if SrcR is a predicate register // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr : Hexagon::A2_tfrcrr; BuildMI(B, It, DL, HII.get(TfrOpc), TmpR) .addReg(SrcR, getKillRegState(IsKill)); // S2_storeri_io FI, 0, TmpR BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io)) .addFrameIndex(FI) .addImm(0) .addReg(TmpR, RegState::Kill) .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); NewRegs.push_back(TmpR); B.erase(It); return true; } bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl &NewRegs) const { MachineInstr *MI = &*It; DebugLoc DL = MI->getDebugLoc(); unsigned Opc = MI->getOpcode(); unsigned DstR = MI->getOperand(0).getReg(); assert(MI->getOperand(1).isFI() && "Expect a frame index"); int FI = MI->getOperand(1).getIndex(); // TmpR = L2_loadri_io FI, 0 unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR) .addFrameIndex(FI) .addImm(0) .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); // DstR = C2_tfrrp TmpR if DstR is a predicate register // DstR = A2_tfrrcr TmpR if DstR is a modifier register unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp : Hexagon::A2_tfrrcr; BuildMI(B, It, DL, HII.get(TfrOpc), DstR) .addReg(TmpR, RegState::Kill); NewRegs.push_back(TmpR); B.erase(It); return true; } bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl &NewRegs) const { auto &HST = B.getParent()->getSubtarget(); MachineInstr *MI = &*It; DebugLoc DL = MI->getDebugLoc(); unsigned SrcR = MI->getOperand(2).getReg(); bool IsKill = MI->getOperand(2).isKill(); assert(MI->getOperand(0).isFI() && "Expect a frame index"); int FI = MI->getOperand(0).getIndex(); bool Is128B = HST.useHVXDblOps(); auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass : &Hexagon::VectorRegs128BRegClass; // Insert transfer to general vector register. // TmpR0 = A2_tfrsi 0x01010101 // TmpR1 = V6_vandqrt Qx, TmpR0 // store FI, 0, TmpR1 unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); unsigned TmpR1 = MRI.createVirtualRegister(RC); BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) .addImm(0x01010101); unsigned VandOpc = !Is128B ? Hexagon::V6_vandqrt : Hexagon::V6_vandqrt_128B; BuildMI(B, It, DL, HII.get(VandOpc), TmpR1) .addReg(SrcR, getKillRegState(IsKill)) .addReg(TmpR0, RegState::Kill); auto *HRI = B.getParent()->getSubtarget().getRegisterInfo(); HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI); expandStoreVec(B, std::prev(It), MRI, HII, NewRegs); NewRegs.push_back(TmpR0); NewRegs.push_back(TmpR1); B.erase(It); return true; } bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl &NewRegs) const { auto &HST = B.getParent()->getSubtarget(); MachineInstr *MI = &*It; DebugLoc DL = MI->getDebugLoc(); unsigned DstR = MI->getOperand(0).getReg(); assert(MI->getOperand(1).isFI() && "Expect a frame index"); int FI = MI->getOperand(1).getIndex(); bool Is128B = HST.useHVXDblOps(); auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass : &Hexagon::VectorRegs128BRegClass; // TmpR0 = A2_tfrsi 0x01010101 // TmpR1 = load FI, 0 // DstR = V6_vandvrt TmpR1, TmpR0 unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); unsigned TmpR1 = MRI.createVirtualRegister(RC); BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0) .addImm(0x01010101); auto *HRI = B.getParent()->getSubtarget().getRegisterInfo(); HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI); expandLoadVec(B, std::prev(It), MRI, HII, NewRegs); unsigned VandOpc = !Is128B ? Hexagon::V6_vandvrt : Hexagon::V6_vandvrt_128B; BuildMI(B, It, DL, HII.get(VandOpc), DstR) .addReg(TmpR1, RegState::Kill) .addReg(TmpR0, RegState::Kill); NewRegs.push_back(TmpR0); NewRegs.push_back(TmpR1); B.erase(It); return true; } bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl &NewRegs) const { MachineFunction &MF = *B.getParent(); auto &HST = MF.getSubtarget(); auto &MFI = *MF.getFrameInfo(); auto &HRI = *MF.getSubtarget().getRegisterInfo(); MachineInstr *MI = &*It; DebugLoc DL = MI->getDebugLoc(); unsigned SrcR = MI->getOperand(2).getReg(); unsigned SrcLo = HRI.getSubReg(SrcR, Hexagon::subreg_loreg); unsigned SrcHi = HRI.getSubReg(SrcR, Hexagon::subreg_hireg); bool IsKill = MI->getOperand(2).isKill(); assert(MI->getOperand(0).isFI() && "Expect a frame index"); int FI = MI->getOperand(0).getIndex(); bool Is128B = HST.useHVXDblOps(); auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass : &Hexagon::VectorRegs128BRegClass; unsigned Size = RC->getSize(); unsigned NeedAlign = RC->getAlignment(); unsigned HasAlign = MFI.getObjectAlignment(FI); unsigned StoreOpc; // Store low part. if (NeedAlign <= HasAlign) StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32b_ai_128B; else StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B; BuildMI(B, It, DL, HII.get(StoreOpc)) .addFrameIndex(FI) .addImm(0) .addReg(SrcLo, getKillRegState(IsKill)) .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); // Load high part. if (NeedAlign <= MinAlign(HasAlign, Size)) StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32b_ai_128B; else StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B; BuildMI(B, It, DL, HII.get(StoreOpc)) .addFrameIndex(FI) .addImm(Size) .addReg(SrcHi, getKillRegState(IsKill)) .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); B.erase(It); return true; } bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl &NewRegs) const { MachineFunction &MF = *B.getParent(); auto &HST = MF.getSubtarget(); auto &MFI = *MF.getFrameInfo(); auto &HRI = *MF.getSubtarget().getRegisterInfo(); MachineInstr *MI = &*It; DebugLoc DL = MI->getDebugLoc(); unsigned DstR = MI->getOperand(0).getReg(); unsigned DstHi = HRI.getSubReg(DstR, Hexagon::subreg_hireg); unsigned DstLo = HRI.getSubReg(DstR, Hexagon::subreg_loreg); assert(MI->getOperand(1).isFI() && "Expect a frame index"); int FI = MI->getOperand(1).getIndex(); bool Is128B = HST.useHVXDblOps(); auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass : &Hexagon::VectorRegs128BRegClass; unsigned Size = RC->getSize(); unsigned NeedAlign = RC->getAlignment(); unsigned HasAlign = MFI.getObjectAlignment(FI); unsigned LoadOpc; // Load low part. if (NeedAlign <= HasAlign) LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32b_ai_128B; else LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B; BuildMI(B, It, DL, HII.get(LoadOpc), DstLo) .addFrameIndex(FI) .addImm(0) .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); // Load high part. if (NeedAlign <= MinAlign(HasAlign, Size)) LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32b_ai_128B; else LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B; BuildMI(B, It, DL, HII.get(LoadOpc), DstHi) .addFrameIndex(FI) .addImm(Size) .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); B.erase(It); return true; } bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl &NewRegs) const { MachineFunction &MF = *B.getParent(); auto &HST = MF.getSubtarget(); auto &MFI = *MF.getFrameInfo(); MachineInstr *MI = &*It; DebugLoc DL = MI->getDebugLoc(); unsigned SrcR = MI->getOperand(2).getReg(); bool IsKill = MI->getOperand(2).isKill(); assert(MI->getOperand(0).isFI() && "Expect a frame index"); int FI = MI->getOperand(0).getIndex(); bool Is128B = HST.useHVXDblOps(); auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass : &Hexagon::VectorRegs128BRegClass; unsigned NeedAlign = RC->getAlignment(); unsigned HasAlign = MFI.getObjectAlignment(FI); unsigned StoreOpc; if (NeedAlign <= HasAlign) StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32b_ai_128B; else StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B; BuildMI(B, It, DL, HII.get(StoreOpc)) .addFrameIndex(FI) .addImm(0) .addReg(SrcR, getKillRegState(IsKill)) .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); B.erase(It); return true; } bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B, MachineBasicBlock::iterator It, MachineRegisterInfo &MRI, const HexagonInstrInfo &HII, SmallVectorImpl &NewRegs) const { MachineFunction &MF = *B.getParent(); auto &HST = MF.getSubtarget(); auto &MFI = *MF.getFrameInfo(); MachineInstr *MI = &*It; DebugLoc DL = MI->getDebugLoc(); unsigned DstR = MI->getOperand(0).getReg(); assert(MI->getOperand(1).isFI() && "Expect a frame index"); int FI = MI->getOperand(1).getIndex(); bool Is128B = HST.useHVXDblOps(); auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass : &Hexagon::VectorRegs128BRegClass; unsigned NeedAlign = RC->getAlignment(); unsigned HasAlign = MFI.getObjectAlignment(FI); unsigned LoadOpc; if (NeedAlign <= HasAlign) LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32b_ai_128B; else LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B; BuildMI(B, It, DL, HII.get(LoadOpc), DstR) .addFrameIndex(FI) .addImm(0) .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); B.erase(It); return true; } bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF, SmallVectorImpl &NewRegs) const { auto &HST = MF.getSubtarget(); auto &HII = *HST.getInstrInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); bool Changed = false; for (auto &B : MF) { // Traverse the basic block. MachineBasicBlock::iterator NextI; for (auto I = B.begin(), E = B.end(); I != E; I = NextI) { MachineInstr *MI = &*I; NextI = std::next(I); unsigned Opc = MI->getOpcode(); switch (Opc) { case TargetOpcode::COPY: Changed |= expandCopy(B, I, MRI, HII, NewRegs); break; case Hexagon::STriw_pred: case Hexagon::STriw_mod: Changed |= expandStoreInt(B, I, MRI, HII, NewRegs); break; case Hexagon::LDriw_pred: case Hexagon::LDriw_mod: Changed |= expandLoadInt(B, I, MRI, HII, NewRegs); break; case Hexagon::STriq_pred_V6: case Hexagon::STriq_pred_V6_128B: Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs); break; case Hexagon::LDriq_pred_V6: case Hexagon::LDriq_pred_V6_128B: Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs); break; case Hexagon::LDrivv_pseudo_V6: case Hexagon::LDrivv_pseudo_V6_128B: Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs); break; case Hexagon::STrivv_pseudo_V6: case Hexagon::STrivv_pseudo_V6_128B: Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs); break; case Hexagon::STriv_pseudo_V6: case Hexagon::STriv_pseudo_V6_128B: Changed |= expandStoreVec(B, I, MRI, HII, NewRegs); break; case Hexagon::LDriv_pseudo_V6: case Hexagon::LDriv_pseudo_V6_128B: Changed |= expandLoadVec(B, I, MRI, HII, NewRegs); break; } } } return Changed; } void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS) const { auto &HST = MF.getSubtarget(); auto &HRI = *HST.getRegisterInfo(); SavedRegs.resize(HRI.getNumRegs()); // If we have a function containing __builtin_eh_return we want to spill and // restore all callee saved registers. Pretend that they are used. if (MF.getInfo()->hasEHReturn()) for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R) SavedRegs.set(*R); // Replace predicate register pseudo spill code. SmallVector NewRegs; expandSpillMacros(MF, NewRegs); if (OptimizeSpillSlots && !isOptNone(MF)) optimizeSpillSlots(MF, NewRegs); // We need to reserve a a spill slot if scavenging could potentially require // spilling a scavenged register. if (!NewRegs.empty()) { MachineFrameInfo &MFI = *MF.getFrameInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); SetVector SpillRCs; // Reserve an int register in any case, because it could be used to hold // the stack offset in case it does not fit into a spill instruction. SpillRCs.insert(&Hexagon::IntRegsRegClass); for (unsigned VR : NewRegs) SpillRCs.insert(MRI.getRegClass(VR)); for (auto *RC : SpillRCs) { if (!needToReserveScavengingSpillSlots(MF, HRI, RC)) continue; unsigned Num = RC == &Hexagon::IntRegsRegClass ? NumberScavengerSlots : 1; unsigned S = RC->getSize(), A = RC->getAlignment(); for (unsigned i = 0; i < Num; i++) { int NewFI = MFI.CreateSpillStackObject(S, A); RS->addScavengingFrameIndex(NewFI); } } } TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); } unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF, HexagonBlockRanges::IndexRange &FIR, HexagonBlockRanges::InstrIndexMap &IndexMap, HexagonBlockRanges::RegToRangeMap &DeadMap, const TargetRegisterClass *RC) const { auto &HRI = *MF.getSubtarget().getRegisterInfo(); auto &MRI = MF.getRegInfo(); auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool { auto F = DeadMap.find({Reg,0}); if (F == DeadMap.end()) return false; for (auto &DR : F->second) if (DR.contains(FIR)) return true; return false; }; for (unsigned Reg : RC->getRawAllocationOrder(MF)) { bool Dead = true; for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) { if (isDead(R.Reg)) continue; Dead = false; break; } if (Dead) return Reg; } return 0; } void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF, SmallVectorImpl &VRegs) const { auto &HST = MF.getSubtarget(); auto &HII = *HST.getInstrInfo(); auto &HRI = *HST.getRegisterInfo(); auto &MRI = MF.getRegInfo(); HexagonBlockRanges HBR(MF); typedef std::map BlockIndexMap; typedef std::map BlockRangeMap; typedef HexagonBlockRanges::IndexType IndexType; struct SlotInfo { BlockRangeMap Map; unsigned Size; const TargetRegisterClass *RC; SlotInfo() : Map(), Size(0), RC(nullptr) {} }; BlockIndexMap BlockIndexes; SmallSet BadFIs; std::map FIRangeMap; auto getRegClass = [&MRI,&HRI] (HexagonBlockRanges::RegisterRef R) -> const TargetRegisterClass* { if (TargetRegisterInfo::isPhysicalRegister(R.Reg)) assert(R.Sub == 0); if (TargetRegisterInfo::isVirtualRegister(R.Reg)) { auto *RCR = MRI.getRegClass(R.Reg); if (R.Sub == 0) return RCR; unsigned PR = *RCR->begin(); R.Reg = HRI.getSubReg(PR, R.Sub); } return HRI.getMinimalPhysRegClass(R.Reg); }; // Accumulate register classes: get a common class for a pre-existing // class HaveRC and a new class NewRC. Return nullptr if a common class // cannot be found, otherwise return the resulting class. If HaveRC is // nullptr, assume that it is still unset. auto getCommonRC = [&HRI] (const TargetRegisterClass *HaveRC, const TargetRegisterClass *NewRC) -> const TargetRegisterClass* { if (HaveRC == nullptr || HaveRC == NewRC) return NewRC; // Different classes, both non-null. Pick the more general one. if (HaveRC->hasSubClassEq(NewRC)) return HaveRC; if (NewRC->hasSubClassEq(HaveRC)) return NewRC; return nullptr; }; // Scan all blocks in the function. Check all occurrences of frame indexes, // and collect relevant information. for (auto &B : MF) { std::map LastStore, LastLoad; // Emplace appears not to be supported in gcc 4.7.2-4. //auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B)); auto P = BlockIndexes.insert( std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B))); auto &IndexMap = P.first->second; DEBUG(dbgs() << "Index map for BB#" << B.getNumber() << "\n" << IndexMap << '\n'); for (auto &In : B) { int LFI, SFI; bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In); bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In); if (Load && Store) { // If it's both a load and a store, then we won't handle it. BadFIs.insert(LFI); BadFIs.insert(SFI); continue; } // Check for register classes of the register used as the source for // the store, and the register used as the destination for the load. // Also, only accept base+imm_offset addressing modes. Other addressing // modes can have side-effects (post-increments, etc.). For stack // slots they are very unlikely, so there is not much loss due to // this restriction. if (Load || Store) { int TFI = Load ? LFI : SFI; unsigned AM = HII.getAddrMode(&In); SlotInfo &SI = FIRangeMap[TFI]; bool Bad = (AM != HexagonII::BaseImmOffset); if (!Bad) { // If the addressing mode is ok, check the register class. const TargetRegisterClass *RC = nullptr; if (Load) { MachineOperand &DataOp = In.getOperand(0); RC = getRegClass({DataOp.getReg(), DataOp.getSubReg()}); } else { MachineOperand &DataOp = In.getOperand(2); RC = getRegClass({DataOp.getReg(), DataOp.getSubReg()}); } RC = getCommonRC(SI.RC, RC); if (RC == nullptr) Bad = true; else SI.RC = RC; } if (!Bad) { // Check sizes. unsigned S = (1U << (HII.getMemAccessSize(&In) - 1)); if (SI.Size != 0 && SI.Size != S) Bad = true; else SI.Size = S; } if (Bad) BadFIs.insert(TFI); } // Locate uses of frame indices. for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) { const MachineOperand &Op = In.getOperand(i); if (!Op.isFI()) continue; int FI = Op.getIndex(); // Make sure that the following operand is an immediate and that // it is 0. This is the offset in the stack object. if (i+1 >= n || !In.getOperand(i+1).isImm() || In.getOperand(i+1).getImm() != 0) BadFIs.insert(FI); if (BadFIs.count(FI)) continue; IndexType Index = IndexMap.getIndex(&In); if (Load) { if (LastStore[FI] == IndexType::None) LastStore[FI] = IndexType::Entry; LastLoad[FI] = Index; } else if (Store) { HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; if (LastStore[FI] != IndexType::None) RL.add(LastStore[FI], LastLoad[FI], false, false); else if (LastLoad[FI] != IndexType::None) RL.add(IndexType::Entry, LastLoad[FI], false, false); LastLoad[FI] = IndexType::None; LastStore[FI] = Index; } else { BadFIs.insert(FI); } } } for (auto &I : LastLoad) { IndexType LL = I.second; if (LL == IndexType::None) continue; auto &RL = FIRangeMap[I.first].Map[&B]; IndexType &LS = LastStore[I.first]; if (LS != IndexType::None) RL.add(LS, LL, false, false); else RL.add(IndexType::Entry, LL, false, false); LS = IndexType::None; } for (auto &I : LastStore) { IndexType LS = I.second; if (LS == IndexType::None) continue; auto &RL = FIRangeMap[I.first].Map[&B]; RL.add(LS, IndexType::None, false, false); } } DEBUG({ for (auto &P : FIRangeMap) { dbgs() << "fi#" << P.first; if (BadFIs.count(P.first)) dbgs() << " (bad)"; dbgs() << " RC: "; if (P.second.RC != nullptr) dbgs() << HRI.getRegClassName(P.second.RC) << '\n'; else dbgs() << "\n"; for (auto &R : P.second.Map) dbgs() << " BB#" << R.first->getNumber() << " { " << R.second << "}\n"; } }); // When a slot is loaded from in a block without being stored to in the // same block, it is live-on-entry to this block. To avoid CFG analysis, // consider this slot to be live-on-exit from all blocks. SmallSet LoxFIs; std::map> BlockFIMap; for (auto &P : FIRangeMap) { // P = pair(FI, map: BB->RangeList) if (BadFIs.count(P.first)) continue; for (auto &B : MF) { auto F = P.second.Map.find(&B); // F = pair(BB, RangeList) if (F == P.second.Map.end() || F->second.empty()) continue; HexagonBlockRanges::IndexRange &IR = F->second.front(); if (IR.start() == IndexType::Entry) LoxFIs.insert(P.first); BlockFIMap[&B].push_back(P.first); } } DEBUG({ dbgs() << "Block-to-FI map (* -- live-on-exit):\n"; for (auto &P : BlockFIMap) { auto &FIs = P.second; if (FIs.empty()) continue; dbgs() << " BB#" << P.first->getNumber() << ": {"; for (auto I : FIs) { dbgs() << " fi#" << I; if (LoxFIs.count(I)) dbgs() << '*'; } dbgs() << " }\n"; } }); // eliminate loads, when all loads eliminated, eliminate all stores. for (auto &B : MF) { auto F = BlockIndexes.find(&B); assert(F != BlockIndexes.end()); HexagonBlockRanges::InstrIndexMap &IM = F->second; HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM); HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM); DEBUG(dbgs() << "BB#" << B.getNumber() << " dead map\n" << HexagonBlockRanges::PrintRangeMap(DM, HRI)); for (auto FI : BlockFIMap[&B]) { if (BadFIs.count(FI)) continue; DEBUG(dbgs() << "Working on fi#" << FI << '\n'); HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B]; for (auto &Range : RL) { DEBUG(dbgs() << "--Examining range:" << RL << '\n'); if (!IndexType::isInstr(Range.start()) || !IndexType::isInstr(Range.end())) continue; MachineInstr *SI = IM.getInstr(Range.start()); MachineInstr *EI = IM.getInstr(Range.end()); assert(SI->mayStore() && "Unexpected start instruction"); assert(EI->mayLoad() && "Unexpected end instruction"); MachineOperand &SrcOp = SI->getOperand(2); HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(), SrcOp.getSubReg() }; auto *RC = getRegClass({SrcOp.getReg(), SrcOp.getSubReg()}); // The this-> is needed to unconfuse MSVC. unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC); DEBUG(dbgs() << "Replacement reg:" << PrintReg(FoundR, &HRI) << '\n'); if (FoundR == 0) continue; // Generate the copy-in: "FoundR = COPY SrcR" at the store location. MachineBasicBlock::iterator StartIt = SI, NextIt; MachineInstr *CopyIn = nullptr; if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) { const DebugLoc &DL = SI->getDebugLoc(); CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR) .addOperand(SrcOp); } ++StartIt; // Check if this is a last store and the FI is live-on-exit. if (LoxFIs.count(FI) && (&Range == &RL.back())) { // Update store's source register. if (unsigned SR = SrcOp.getSubReg()) SrcOp.setReg(HRI.getSubReg(FoundR, SR)); else SrcOp.setReg(FoundR); SrcOp.setSubReg(0); // We are keeping this register live. SrcOp.setIsKill(false); } else { B.erase(SI); IM.replaceInstr(SI, CopyIn); } auto EndIt = std::next(MachineBasicBlock::iterator(EI)); for (auto It = StartIt; It != EndIt; It = NextIt) { MachineInstr *MI = &*It; NextIt = std::next(It); int TFI; if (!HII.isLoadFromStackSlot(*MI, TFI) || TFI != FI) continue; unsigned DstR = MI->getOperand(0).getReg(); assert(MI->getOperand(0).getSubReg() == 0); MachineInstr *CopyOut = nullptr; if (DstR != FoundR) { DebugLoc DL = MI->getDebugLoc(); unsigned MemSize = (1U << (HII.getMemAccessSize(MI) - 1)); assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset); unsigned CopyOpc = TargetOpcode::COPY; if (HII.isSignExtendingLoad(*MI)) CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth; else if (HII.isZeroExtendingLoad(*MI)) CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth; CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR) .addReg(FoundR, getKillRegState(MI == EI)); } IM.replaceInstr(MI, CopyOut); B.erase(It); } // Update the dead map. HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 }; for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI)) DM[RR].subtract(Range); } // for Range in range list } } } void HexagonFrameLowering::expandAlloca(MachineInstr *AI, const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const { MachineBasicBlock &MB = *AI->getParent(); DebugLoc DL = AI->getDebugLoc(); unsigned A = AI->getOperand(2).getImm(); // Have // Rd = alloca Rs, #A // // If Rs and Rd are different registers, use this sequence: // Rd = sub(r29, Rs) // r29 = sub(r29, Rs) // Rd = and(Rd, #-A) ; if necessary // r29 = and(r29, #-A) ; if necessary // Rd = add(Rd, #CF) ; CF size aligned to at most A // otherwise, do // Rd = sub(r29, Rs) // Rd = and(Rd, #-A) ; if necessary // r29 = Rd // Rd = add(Rd, #CF) ; CF size aligned to at most A MachineOperand &RdOp = AI->getOperand(0); MachineOperand &RsOp = AI->getOperand(1); unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg(); // Rd = sub(r29, Rs) BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd) .addReg(SP) .addReg(Rs); if (Rs != Rd) { // r29 = sub(r29, Rs) BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP) .addReg(SP) .addReg(Rs); } if (A > 8) { // Rd = and(Rd, #-A) BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd) .addReg(Rd) .addImm(-int64_t(A)); if (Rs != Rd) BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP) .addReg(SP) .addImm(-int64_t(A)); } if (Rs == Rd) { // r29 = Rd BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP) .addReg(Rd); } if (CF > 0) { // Rd = add(Rd, #CF) BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd) .addReg(Rd) .addImm(CF); } } bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); if (!MFI->hasVarSizedObjects()) return false; unsigned MaxA = MFI->getMaxAlignment(); if (MaxA <= getStackAlignment()) return false; return true; } const MachineInstr *HexagonFrameLowering::getAlignaInstr( const MachineFunction &MF) const { for (auto &B : MF) for (auto &I : B) if (I.getOpcode() == Hexagon::ALIGNA) return &I; return nullptr; } /// Adds all callee-saved registers as implicit uses or defs to the /// instruction. void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI, const CSIVect &CSI, bool IsDef, bool IsKill) const { // Add the callee-saved registers as implicit uses. for (auto &R : CSI) MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill)); } /// Determine whether the callee-saved register saves and restores should /// be generated via inline code. If this function returns "true", inline /// code will be generated. If this function returns "false", additional /// checks are performed, which may still lead to the inline code. bool HexagonFrameLowering::shouldInlineCSR(MachineFunction &MF, const CSIVect &CSI) const { if (MF.getInfo()->hasEHReturn()) return true; if (!isOptSize(MF) && !isMinSize(MF)) if (MF.getTarget().getOptLevel() > CodeGenOpt::Default) return true; // Check if CSI only has double registers, and if the registers form // a contiguous block starting from D8. BitVector Regs(Hexagon::NUM_TARGET_REGS); for (unsigned i = 0, n = CSI.size(); i < n; ++i) { unsigned R = CSI[i].getReg(); if (!Hexagon::DoubleRegsRegClass.contains(R)) return true; Regs[R] = true; } int F = Regs.find_first(); if (F != Hexagon::D8) return true; while (F >= 0) { int N = Regs.find_next(F); if (N >= 0 && N != F+1) return true; F = N; } return false; } bool HexagonFrameLowering::useSpillFunction(MachineFunction &MF, const CSIVect &CSI) const { if (shouldInlineCSR(MF, CSI)) return false; unsigned NumCSI = CSI.size(); if (NumCSI <= 1) return false; unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs : SpillFuncThreshold; return Threshold < NumCSI; } bool HexagonFrameLowering::useRestoreFunction(MachineFunction &MF, const CSIVect &CSI) const { if (shouldInlineCSR(MF, CSI)) return false; // The restore functions do a bit more than just restoring registers. // The non-returning versions will go back directly to the caller's // caller, others will clean up the stack frame in preparation for // a tail call. Using them can still save code size even if only one // register is getting restores. Make the decision based on -Oz: // using -Os will use inline restore for a single register. if (isMinSize(MF)) return true; unsigned NumCSI = CSI.size(); if (NumCSI <= 1) return false; unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1 : SpillFuncThreshold; return Threshold < NumCSI; }