//===-- LanaiAsmParser.cpp - Parse Lanai assembly to MCInst instructions --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Lanai.h" #include "MCTargetDesc/LanaiMCExpr.h" #include "MCTargetDesc/LanaiMCTargetDesc.h" #include "llvm/ADT/STLExtras.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCParser/MCTargetAsmParser.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/TargetRegistry.h" namespace llvm { namespace { struct LanaiOperand; class LanaiAsmParser : public MCTargetAsmParser { // Parse operands std::unique_ptr parseRegister(); std::unique_ptr parseImmediate(); std::unique_ptr parseIdentifier(); unsigned parseAluOperator(bool PreOp, bool PostOp); // Split the mnemonic stripping conditional code and quantifiers StringRef splitMnemonic(StringRef Name, SMLoc NameLoc, OperandVector *Operands); bool parsePrePost(StringRef Type, int *OffsetValue); bool ParseDirective(AsmToken DirectiveID) override; bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override; bool ParseRegister(unsigned &RegNum, SMLoc &StartLoc, SMLoc &EndLoc) override; bool MatchAndEmitInstruction(SMLoc IdLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) override; // Auto-generated instruction matching functions #define GET_ASSEMBLER_HEADER #include "LanaiGenAsmMatcher.inc" OperandMatchResultTy parseOperand(OperandVector *Operands, StringRef Mnemonic); OperandMatchResultTy parseMemoryOperand(OperandVector &Operands); public: LanaiAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, const MCInstrInfo &MII, const MCTargetOptions &Options) : MCTargetAsmParser(Options, STI), Parser(Parser), Lexer(Parser.getLexer()), SubtargetInfo(STI) { setAvailableFeatures( ComputeAvailableFeatures(SubtargetInfo.getFeatureBits())); } private: MCAsmParser &Parser; MCAsmLexer &Lexer; const MCSubtargetInfo &SubtargetInfo; }; // Auto-generated by TableGen static unsigned MatchRegisterName(llvm::StringRef Name); // LanaiOperand - Instances of this class represented a parsed machine // instruction struct LanaiOperand : public MCParsedAsmOperand { enum KindTy { TOKEN, REGISTER, IMMEDIATE, MEMORY_IMM, MEMORY_REG_IMM, MEMORY_REG_REG, } Kind; SMLoc StartLoc, EndLoc; struct Token { const char *Data; unsigned Length; }; struct RegOp { unsigned RegNum; }; struct ImmOp { const MCExpr *Value; }; struct MemOp { unsigned BaseReg; unsigned OffsetReg; unsigned AluOp; const MCExpr *Offset; }; union { struct Token Tok; struct RegOp Reg; struct ImmOp Imm; struct MemOp Mem; }; explicit LanaiOperand(KindTy Kind) : MCParsedAsmOperand(), Kind(Kind) {} public: // The functions below are used by the autogenerated ASM matcher and hence to // be of the form expected. // getStartLoc - Gets location of the first token of this operand SMLoc getStartLoc() const override { return StartLoc; } // getEndLoc - Gets location of the last token of this operand SMLoc getEndLoc() const override { return EndLoc; } unsigned getReg() const override { assert(isReg() && "Invalid type access!"); return Reg.RegNum; } const MCExpr *getImm() const { assert(isImm() && "Invalid type access!"); return Imm.Value; } StringRef getToken() const { assert(isToken() && "Invalid type access!"); return StringRef(Tok.Data, Tok.Length); } unsigned getMemBaseReg() const { assert(isMem() && "Invalid type access!"); return Mem.BaseReg; } unsigned getMemOffsetReg() const { assert(isMem() && "Invalid type access!"); return Mem.OffsetReg; } const MCExpr *getMemOffset() const { assert(isMem() && "Invalid type access!"); return Mem.Offset; } unsigned getMemOp() const { assert(isMem() && "Invalid type access!"); return Mem.AluOp; } // Functions for testing operand type bool isReg() const override { return Kind == REGISTER; } bool isImm() const override { return Kind == IMMEDIATE; } bool isMem() const override { return isMemImm() || isMemRegImm() || isMemRegReg(); } bool isMemImm() const { return Kind == MEMORY_IMM; } bool isMemRegImm() const { return Kind == MEMORY_REG_IMM; } bool isMemRegReg() const { return Kind == MEMORY_REG_REG; } bool isMemSpls() const { return isMemRegImm() || isMemRegReg(); } bool isToken() const override { return Kind == TOKEN; } bool isBrImm() { if (!isImm()) return false; // Constant case const MCConstantExpr *MCE = dyn_cast(Imm.Value); if (!MCE) return true; int64_t Value = MCE->getValue(); // Check if value fits in 25 bits with 2 least significant bits 0. return isShiftedUInt<23, 2>(static_cast(Value)); } bool isBrTarget() { return isBrImm() || isToken(); } bool isCallTarget() { return isImm() || isToken(); } bool isHiImm16() { if (!isImm()) return false; // Constant case if (const MCConstantExpr *ConstExpr = dyn_cast(Imm.Value)) { int64_t Value = ConstExpr->getValue(); return Value != 0 && isShiftedUInt<16, 16>(Value); } // Symbolic reference expression if (const LanaiMCExpr *SymbolRefExpr = dyn_cast(Imm.Value)) return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_HI; // Binary expression if (const MCBinaryExpr *BinaryExpr = dyn_cast(Imm.Value)) if (const LanaiMCExpr *SymbolRefExpr = dyn_cast(BinaryExpr->getLHS())) return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_HI; return false; } bool isHiImm16And() { if (!isImm()) return false; const MCConstantExpr *ConstExpr = dyn_cast(Imm.Value); if (ConstExpr) { int64_t Value = ConstExpr->getValue(); // Check if in the form 0xXYZWffff return (Value != 0) && ((Value & ~0xffff0000) == 0xffff); } return false; } bool isLoImm16() { if (!isImm()) return false; // Constant case if (const MCConstantExpr *ConstExpr = dyn_cast(Imm.Value)) { int64_t Value = ConstExpr->getValue(); // Check if value fits in 16 bits return isUInt<16>(static_cast(Value)); } // Symbolic reference expression if (const LanaiMCExpr *SymbolRefExpr = dyn_cast(Imm.Value)) return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO; // Binary expression if (const MCBinaryExpr *BinaryExpr = dyn_cast(Imm.Value)) if (const LanaiMCExpr *SymbolRefExpr = dyn_cast(BinaryExpr->getLHS())) return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO; return false; } bool isLoImm16Signed() { if (!isImm()) return false; // Constant case if (const MCConstantExpr *ConstExpr = dyn_cast(Imm.Value)) { int64_t Value = ConstExpr->getValue(); // Check if value fits in 16 bits or value of the form 0xffffxyzw return isInt<16>(static_cast(Value)); } // Symbolic reference expression if (const LanaiMCExpr *SymbolRefExpr = dyn_cast(Imm.Value)) return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO; // Binary expression if (const MCBinaryExpr *BinaryExpr = dyn_cast(Imm.Value)) if (const LanaiMCExpr *SymbolRefExpr = dyn_cast(BinaryExpr->getLHS())) return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO; return false; } bool isLoImm16And() { if (!isImm()) return false; const MCConstantExpr *ConstExpr = dyn_cast(Imm.Value); if (ConstExpr) { int64_t Value = ConstExpr->getValue(); // Check if in the form 0xffffXYZW return ((Value & ~0xffff) == 0xffff0000); } return false; } bool isImmShift() { if (!isImm()) return false; const MCConstantExpr *ConstExpr = dyn_cast(Imm.Value); if (!ConstExpr) return false; int64_t Value = ConstExpr->getValue(); return (Value >= -31) && (Value <= 31); } bool isLoImm21() { if (!isImm()) return false; // Constant case if (const MCConstantExpr *ConstExpr = dyn_cast(Imm.Value)) { int64_t Value = ConstExpr->getValue(); return isUInt<21>(Value); } // Symbolic reference expression if (const LanaiMCExpr *SymbolRefExpr = dyn_cast(Imm.Value)) return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None; if (const MCSymbolRefExpr *SymbolRefExpr = dyn_cast(Imm.Value)) { return SymbolRefExpr->getKind() == MCSymbolRefExpr::VK_None; } // Binary expression if (const MCBinaryExpr *BinaryExpr = dyn_cast(Imm.Value)) { if (const LanaiMCExpr *SymbolRefExpr = dyn_cast(BinaryExpr->getLHS())) return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None; if (const MCSymbolRefExpr *SymbolRefExpr = dyn_cast(BinaryExpr->getLHS())) return SymbolRefExpr->getKind() == MCSymbolRefExpr::VK_None; } return false; } bool isImm10() { if (!isImm()) return false; const MCConstantExpr *ConstExpr = dyn_cast(Imm.Value); if (!ConstExpr) return false; int64_t Value = ConstExpr->getValue(); return isInt<10>(Value); } bool isCondCode() { if (!isImm()) return false; const MCConstantExpr *ConstExpr = dyn_cast(Imm.Value); if (!ConstExpr) return false; uint64_t Value = ConstExpr->getValue(); // The condition codes are between 0 (ICC_T) and 15 (ICC_LE). If the // unsigned value of the immediate is less than LPCC::UNKNOWN (16) then // value corresponds to a valid condition code. return Value < LPCC::UNKNOWN; } void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediates where possible. Null MCExpr = 0 if (Expr == nullptr) Inst.addOperand(MCOperand::createImm(0)); else if (const MCConstantExpr *ConstExpr = dyn_cast(Expr)) Inst.addOperand( MCOperand::createImm(static_cast(ConstExpr->getValue()))); else Inst.addOperand(MCOperand::createExpr(Expr)); } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getReg())); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addBrTargetOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addCallTargetOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addCondCodeOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addMemImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); const MCExpr *Expr = getMemOffset(); addExpr(Inst, Expr); } void addMemRegImmOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getMemBaseReg())); const MCExpr *Expr = getMemOffset(); addExpr(Inst, Expr); Inst.addOperand(MCOperand::createImm(getMemOp())); } void addMemRegRegOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands!"); Inst.addOperand(MCOperand::createReg(getMemBaseReg())); assert(getMemOffsetReg() != 0 && "Invalid offset"); Inst.addOperand(MCOperand::createReg(getMemOffsetReg())); Inst.addOperand(MCOperand::createImm(getMemOp())); } void addMemSplsOperands(MCInst &Inst, unsigned N) const { if (isMemRegImm()) addMemRegImmOperands(Inst, N); if (isMemRegReg()) addMemRegRegOperands(Inst, N); } void addImmShiftOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addImm10Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addLoImm16Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); if (const MCConstantExpr *ConstExpr = dyn_cast(getImm())) Inst.addOperand( MCOperand::createImm(static_cast(ConstExpr->getValue()))); else if (isa(getImm())) { #ifndef NDEBUG const LanaiMCExpr *SymbolRefExpr = dyn_cast(getImm()); assert(SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO); #endif Inst.addOperand(MCOperand::createExpr(getImm())); } else if (isa(getImm())) { #ifndef NDEBUG const MCBinaryExpr *BinaryExpr = dyn_cast(getImm()); assert(dyn_cast(BinaryExpr->getLHS()) && dyn_cast(BinaryExpr->getLHS())->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO); #endif Inst.addOperand(MCOperand::createExpr(getImm())); } else assert(false && "Operand type not supported."); } void addLoImm16AndOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); if (const MCConstantExpr *ConstExpr = dyn_cast(getImm())) Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() & 0xffff)); else assert(false && "Operand type not supported."); } void addHiImm16Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); if (const MCConstantExpr *ConstExpr = dyn_cast(getImm())) Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() >> 16)); else if (isa(getImm())) { #ifndef NDEBUG const LanaiMCExpr *SymbolRefExpr = dyn_cast(getImm()); assert(SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_HI); #endif Inst.addOperand(MCOperand::createExpr(getImm())); } else if (isa(getImm())) { #ifndef NDEBUG const MCBinaryExpr *BinaryExpr = dyn_cast(getImm()); assert(dyn_cast(BinaryExpr->getLHS()) && dyn_cast(BinaryExpr->getLHS())->getKind() == LanaiMCExpr::VK_Lanai_ABS_HI); #endif Inst.addOperand(MCOperand::createExpr(getImm())); } else assert(false && "Operand type not supported."); } void addHiImm16AndOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); if (const MCConstantExpr *ConstExpr = dyn_cast(getImm())) Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() >> 16)); else assert(false && "Operand type not supported."); } void addLoImm21Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); if (const MCConstantExpr *ConstExpr = dyn_cast(getImm())) Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() & 0x1fffff)); else if (isa(getImm())) { #ifndef NDEBUG const LanaiMCExpr *SymbolRefExpr = dyn_cast(getImm()); assert(SymbolRefExpr && SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None); #endif Inst.addOperand(MCOperand::createExpr(getImm())); } else if (isa(getImm())) { #ifndef NDEBUG const MCSymbolRefExpr *SymbolRefExpr = dyn_cast(getImm()); assert(SymbolRefExpr && SymbolRefExpr->getKind() == MCSymbolRefExpr::VK_None); #endif Inst.addOperand(MCOperand::createExpr(getImm())); } else if (isa(getImm())) { #ifndef NDEBUG const MCBinaryExpr *BinaryExpr = dyn_cast(getImm()); const LanaiMCExpr *SymbolRefExpr = dyn_cast(BinaryExpr->getLHS()); assert(SymbolRefExpr && SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None); #endif Inst.addOperand(MCOperand::createExpr(getImm())); } else assert(false && "Operand type not supported."); } void print(raw_ostream &OS) const override { switch (Kind) { case IMMEDIATE: OS << "Imm: " << getImm() << "\n"; break; case TOKEN: OS << "Token: " << getToken() << "\n"; break; case REGISTER: OS << "Reg: %r" << getReg() << "\n"; break; case MEMORY_IMM: OS << "MemImm: " << *getMemOffset() << "\n"; break; case MEMORY_REG_IMM: OS << "MemRegImm: " << getMemBaseReg() << "+" << *getMemOffset() << "\n"; break; case MEMORY_REG_REG: assert(getMemOffset() == nullptr); OS << "MemRegReg: " << getMemBaseReg() << "+" << "%r" << getMemOffsetReg() << "\n"; break; } } static std::unique_ptr CreateToken(StringRef Str, SMLoc Start) { auto Op = make_unique(TOKEN); Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->StartLoc = Start; Op->EndLoc = Start; return Op; } static std::unique_ptr createReg(unsigned RegNum, SMLoc Start, SMLoc End) { auto Op = make_unique(REGISTER); Op->Reg.RegNum = RegNum; Op->StartLoc = Start; Op->EndLoc = End; return Op; } static std::unique_ptr createImm(const MCExpr *Value, SMLoc Start, SMLoc End) { auto Op = make_unique(IMMEDIATE); Op->Imm.Value = Value; Op->StartLoc = Start; Op->EndLoc = End; return Op; } static std::unique_ptr MorphToMemImm(std::unique_ptr Op) { const MCExpr *Imm = Op->getImm(); Op->Kind = MEMORY_IMM; Op->Mem.BaseReg = 0; Op->Mem.AluOp = LPAC::ADD; Op->Mem.OffsetReg = 0; Op->Mem.Offset = Imm; return Op; } static std::unique_ptr MorphToMemRegReg(unsigned BaseReg, std::unique_ptr Op, unsigned AluOp) { unsigned OffsetReg = Op->getReg(); Op->Kind = MEMORY_REG_REG; Op->Mem.BaseReg = BaseReg; Op->Mem.AluOp = AluOp; Op->Mem.OffsetReg = OffsetReg; Op->Mem.Offset = nullptr; return Op; } static std::unique_ptr MorphToMemRegImm(unsigned BaseReg, std::unique_ptr Op, unsigned AluOp) { const MCExpr *Imm = Op->getImm(); Op->Kind = MEMORY_REG_IMM; Op->Mem.BaseReg = BaseReg; Op->Mem.AluOp = AluOp; Op->Mem.OffsetReg = 0; Op->Mem.Offset = Imm; return Op; } }; bool LanaiAsmParser::ParseDirective(AsmToken DirectiveId) { return true; } bool LanaiAsmParser::MatchAndEmitInstruction(SMLoc IdLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm) { MCInst Inst; SMLoc ErrorLoc; switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) { case Match_Success: Out.EmitInstruction(Inst, SubtargetInfo); return false; case Match_MissingFeature: return Error(IdLoc, "Instruction use requires option to be enabled"); case Match_MnemonicFail: return Error(IdLoc, "Unrecognized instruction mnemonic"); case Match_InvalidOperand: { ErrorLoc = IdLoc; if (ErrorInfo != ~0U) { if (ErrorInfo >= Operands.size()) return Error(IdLoc, "Too few operands for instruction"); ErrorLoc = ((LanaiOperand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IdLoc; } return Error(ErrorLoc, "Invalid operand for instruction"); } default: break; } llvm_unreachable("Unknown match type detected!"); } // Both '%rN' and 'rN' are parsed as valid registers. This was done to remain // backwards compatible with GCC and the different ways inline assembly is // handled. // TODO: see if there isn't a better way to do this. std::unique_ptr LanaiAsmParser::parseRegister() { SMLoc Start = Parser.getTok().getLoc(); SMLoc End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); unsigned RegNum; // Eat the '%'. if (Lexer.getKind() == AsmToken::Percent) Parser.Lex(); if (Lexer.getKind() == AsmToken::Identifier) { RegNum = MatchRegisterName(Lexer.getTok().getIdentifier()); if (RegNum == 0) return 0; Parser.Lex(); // Eat identifier token return LanaiOperand::createReg(RegNum, Start, End); } return 0; } bool LanaiAsmParser::ParseRegister(unsigned &RegNum, SMLoc &StartLoc, SMLoc &EndLoc) { std::unique_ptr Op = parseRegister(); if (Op != 0) RegNum = Op->getReg(); return (Op == 0); } std::unique_ptr LanaiAsmParser::parseIdentifier() { SMLoc Start = Parser.getTok().getLoc(); SMLoc End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); const MCExpr *Res, *RHS = 0; LanaiMCExpr::VariantKind Kind = LanaiMCExpr::VK_Lanai_None; if (Lexer.getKind() != AsmToken::Identifier) return 0; StringRef Identifier; if (Parser.parseIdentifier(Identifier)) return 0; // Check if identifier has a modifier if (Identifier.equals_lower("hi")) Kind = LanaiMCExpr::VK_Lanai_ABS_HI; else if (Identifier.equals_lower("lo")) Kind = LanaiMCExpr::VK_Lanai_ABS_LO; // If the identifier corresponds to a variant then extract the real // identifier. if (Kind != LanaiMCExpr::VK_Lanai_None) { if (Lexer.getKind() != AsmToken::LParen) { Error(Lexer.getLoc(), "Expected '('"); return 0; } Lexer.Lex(); // lex '(' // Parse identifier if (Parser.parseIdentifier(Identifier)) return 0; } // If addition parse the RHS. if (Lexer.getKind() == AsmToken::Plus && Parser.parseExpression(RHS)) return 0; // For variants parse the final ')' if (Kind != LanaiMCExpr::VK_Lanai_None) { if (Lexer.getKind() != AsmToken::RParen) { Error(Lexer.getLoc(), "Expected ')'"); return 0; } Lexer.Lex(); // lex ')' } End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier); const MCExpr *Expr = MCSymbolRefExpr::create(Sym, getContext()); Res = LanaiMCExpr::create(Kind, Expr, getContext()); // Nest if this was an addition if (RHS) Res = MCBinaryExpr::createAdd(Res, RHS, getContext()); return LanaiOperand::createImm(Res, Start, End); } std::unique_ptr LanaiAsmParser::parseImmediate() { SMLoc Start = Parser.getTok().getLoc(); SMLoc End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); const MCExpr *ExprVal; switch (Lexer.getKind()) { case AsmToken::Identifier: return parseIdentifier(); case AsmToken::Plus: case AsmToken::Minus: case AsmToken::Integer: case AsmToken::Dot: if (!Parser.parseExpression(ExprVal)) return LanaiOperand::createImm(ExprVal, Start, End); default: return 0; } } static unsigned AluWithPrePost(unsigned AluCode, bool PreOp, bool PostOp) { if (PreOp) return LPAC::makePreOp(AluCode); if (PostOp) return LPAC::makePostOp(AluCode); return AluCode; } unsigned LanaiAsmParser::parseAluOperator(bool PreOp, bool PostOp) { StringRef IdString; Parser.parseIdentifier(IdString); unsigned AluCode = LPAC::stringToLanaiAluCode(IdString); if (AluCode == LPAC::UNKNOWN) { Error(Parser.getTok().getLoc(), "Can't parse ALU operator"); return 0; } return AluCode; } static int SizeForSuffix(StringRef T) { return StringSwitch(T).EndsWith(".h", 2).EndsWith(".b", 1).Default(4); } bool LanaiAsmParser::parsePrePost(StringRef Type, int *OffsetValue) { bool PreOrPost = false; if (Lexer.getKind() == Lexer.peekTok(true).getKind()) { PreOrPost = true; if (Lexer.is(AsmToken::Minus)) *OffsetValue = -SizeForSuffix(Type); else if (Lexer.is(AsmToken::Plus)) *OffsetValue = SizeForSuffix(Type); else return false; // Eat the '-' '-' or '+' '+' Parser.Lex(); Parser.Lex(); } else if (Lexer.is(AsmToken::Star)) { Parser.Lex(); // Eat the '*' PreOrPost = true; } return PreOrPost; } bool shouldBeSls(const LanaiOperand &Op) { // The instruction should be encoded as an SLS if the constant is word // aligned and will fit in 21 bits if (const MCConstantExpr *ConstExpr = dyn_cast(Op.getImm())) { int64_t Value = ConstExpr->getValue(); return (Value % 4 == 0) && (Value >= 0) && (Value <= 0x1fffff); } // The instruction should be encoded as an SLS if the operand is a symbolic // reference with no variant. if (const LanaiMCExpr *SymbolRefExpr = dyn_cast(Op.getImm())) return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None; // The instruction should be encoded as an SLS if the operand is a binary // expression with the left-hand side being a symbolic reference with no // variant. if (const MCBinaryExpr *BinaryExpr = dyn_cast(Op.getImm())) { const LanaiMCExpr *LHSSymbolRefExpr = dyn_cast(BinaryExpr->getLHS()); return (LHSSymbolRefExpr && LHSSymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None); } return false; } // Matches memory operand. Returns true if error encountered. LanaiAsmParser::OperandMatchResultTy LanaiAsmParser::parseMemoryOperand(OperandVector &Operands) { // Try to match a memory operand. // The memory operands are of the form: // (1) Register|Immediate|'' '[' '*'? Register '*'? ']' or // ^ // (2) '[' '*'? Register '*'? AluOperator Register ']' // ^ // (3) '[' '--'|'++' Register '--'|'++' ']' // // (4) '[' Immediate ']' (for SLS) // Store the type for use in parsing pre/post increment/decrement operators StringRef Type; if (Operands[0]->isToken()) Type = static_cast(Operands[0].get())->getToken(); // Use 0 if no offset given int OffsetValue = 0; unsigned BaseReg = 0; unsigned AluOp = LPAC::ADD; bool PostOp = false, PreOp = false; // Try to parse the offset std::unique_ptr Op = parseRegister(); if (!Op) Op = parseImmediate(); // Only continue if next token is '[' if (Lexer.isNot(AsmToken::LBrac)) { if (!Op) return MatchOperand_NoMatch; // The start of this custom parsing overlaps with register/immediate so // consider this as a successful match of an operand of that type as the // token stream can't be rewound to allow them to match separately. Operands.push_back(std::move(Op)); return MatchOperand_Success; } Parser.Lex(); // Eat the '['. std::unique_ptr Offset = nullptr; if (Op) Offset.swap(Op); // Determine if a pre operation PreOp = parsePrePost(Type, &OffsetValue); Op = parseRegister(); if (!Op) { if (!Offset) { if ((Op = parseImmediate()) && Lexer.is(AsmToken::RBrac)) { Parser.Lex(); // Eat the ']' // Memory address operations aligned to word boundary are encoded as // SLS, the rest as RM. if (shouldBeSls(*Op)) { Operands.push_back(LanaiOperand::MorphToMemImm(std::move(Op))); } else { if (!Op->isLoImm16Signed()) { Error(Parser.getTok().getLoc(), "Memory address is not word " "aligned and larger than class RM can handle"); return MatchOperand_ParseFail; } Operands.push_back(LanaiOperand::MorphToMemRegImm( Lanai::R0, std::move(Op), LPAC::ADD)); } return MatchOperand_Success; } } Error(Parser.getTok().getLoc(), "Unknown operand, expected register or immediate"); return MatchOperand_ParseFail; } BaseReg = Op->getReg(); // Determine if a post operation if (!PreOp) PostOp = parsePrePost(Type, &OffsetValue); // If ] match form (1) else match form (2) if (Lexer.is(AsmToken::RBrac)) { Parser.Lex(); // Eat the ']'. if (!Offset) { SMLoc Start = Parser.getTok().getLoc(); SMLoc End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); const MCConstantExpr *OffsetConstExpr = MCConstantExpr::create(OffsetValue, getContext()); Offset = LanaiOperand::createImm(OffsetConstExpr, Start, End); } } else { if (Offset || OffsetValue != 0) { Error(Parser.getTok().getLoc(), "Expected ']'"); return MatchOperand_ParseFail; } // Parse operator AluOp = parseAluOperator(PreOp, PostOp); // Second form requires offset register Offset = parseRegister(); if (!BaseReg || Lexer.isNot(AsmToken::RBrac)) { Error(Parser.getTok().getLoc(), "Expected ']'"); return MatchOperand_ParseFail; } Parser.Lex(); // Eat the ']'. } // First form has addition as operator. Add pre- or post-op indicator as // needed. AluOp = AluWithPrePost(AluOp, PreOp, PostOp); // Ensure immediate offset is not too large if (Offset->isImm() && !Offset->isLoImm16Signed()) { Error(Parser.getTok().getLoc(), "Memory address is not word " "aligned and larger than class RM can handle"); return MatchOperand_ParseFail; } Operands.push_back( Offset->isImm() ? LanaiOperand::MorphToMemRegImm(BaseReg, std::move(Offset), AluOp) : LanaiOperand::MorphToMemRegReg(BaseReg, std::move(Offset), AluOp)); return MatchOperand_Success; } // Looks at a token type and creates the relevant operand from this // information, adding to operands. // If operand was parsed, returns false, else true. LanaiAsmParser::OperandMatchResultTy LanaiAsmParser::parseOperand(OperandVector *Operands, StringRef Mnemonic) { // Check if the current operand has a custom associated parser, if so, try to // custom parse the operand, or fallback to the general approach. OperandMatchResultTy Result = MatchOperandParserImpl(*Operands, Mnemonic); if (Result == MatchOperand_Success) return Result; if (Result == MatchOperand_ParseFail) { Parser.eatToEndOfStatement(); return Result; } // Attempt to parse token as register std::unique_ptr Op = parseRegister(); // Attempt to parse token as immediate if (!Op) Op = parseImmediate(); // If the token could not be parsed then fail if (!Op) { Error(Parser.getTok().getLoc(), "Unknown operand"); Parser.eatToEndOfStatement(); return MatchOperand_ParseFail; } // Push back parsed operand into list of operands Operands->push_back(std::move(Op)); return MatchOperand_Success; } // Split the mnemonic into ASM operand, conditional code and instruction // qualifier (half-word, byte). StringRef LanaiAsmParser::splitMnemonic(StringRef Name, SMLoc NameLoc, OperandVector *Operands) { size_t Next = Name.find('.'); StringRef Mnemonic = Name; bool IsBRR = false; if (Name.endswith(".r")) { Mnemonic = Name.substr(0, Name.size() - 2); IsBRR = true; } // Match b?? and s?? (BR, BRR, and SCC instruction classes). if (Mnemonic[0] == 'b' || (Mnemonic[0] == 's' && !Mnemonic.startswith("sel") && !Mnemonic.startswith("st"))) { // Parse instructions with a conditional code. For example, 'bne' is // converted into two operands 'b' and 'ne'. LPCC::CondCode CondCode = LPCC::suffixToLanaiCondCode(Mnemonic.substr(1, Next)); if (CondCode != LPCC::UNKNOWN) { Mnemonic = Mnemonic.slice(0, 1); Operands->push_back(LanaiOperand::CreateToken(Mnemonic, NameLoc)); Operands->push_back(LanaiOperand::createImm( MCConstantExpr::create(CondCode, getContext()), NameLoc, NameLoc)); if (IsBRR) { Operands->push_back(LanaiOperand::CreateToken(".r", NameLoc)); } return Mnemonic; } } // Parse other instructions with condition codes (RR instructions). // We ignore .f here and assume they are flag-setting operations, not // conditional codes (except for select instructions where flag-setting // variants are not yet implemented). if (Mnemonic.startswith("sel") || (!Mnemonic.endswith(".f") && !Mnemonic.startswith("st"))) { LPCC::CondCode CondCode = LPCC::suffixToLanaiCondCode(Mnemonic); if (CondCode != LPCC::UNKNOWN) { size_t Next = Mnemonic.rfind('.', Name.size()); // 'sel' doesn't use a predicate operand whose printer adds the period, // but instead has the period as part of the identifier (i.e., 'sel.' is // expected by the generated matcher). If the mnemonic starts with 'sel' // then include the period as part of the mnemonic, else don't include it // as part of the mnemonic. if (Mnemonic.startswith("sel")) { Mnemonic = Mnemonic.substr(0, Next + 1); } else { Mnemonic = Mnemonic.substr(0, Next); } Operands->push_back(LanaiOperand::CreateToken(Mnemonic, NameLoc)); Operands->push_back(LanaiOperand::createImm( MCConstantExpr::create(CondCode, getContext()), NameLoc, NameLoc)); return Mnemonic; } } Operands->push_back(LanaiOperand::CreateToken(Mnemonic, NameLoc)); if (IsBRR) { Operands->push_back(LanaiOperand::CreateToken(".r", NameLoc)); } return Mnemonic; } bool IsMemoryAssignmentError(const OperandVector &Operands) { // Detects if a memory operation has an erroneous base register modification. // Memory operations are detected by matching the types of operands. // // TODO: This test is focussed on one specific instance (ld/st). // Extend it to handle more cases or be more robust. bool Modifies = false; int Offset = 0; if (Operands.size() < 5) return false; else if (Operands[0]->isToken() && Operands[1]->isReg() && Operands[2]->isImm() && Operands[3]->isImm() && Operands[4]->isReg()) Offset = 0; else if (Operands[0]->isToken() && Operands[1]->isToken() && Operands[2]->isReg() && Operands[3]->isImm() && Operands[4]->isImm() && Operands[5]->isReg()) Offset = 1; else return false; int PossibleAluOpIdx = Offset + 3; int PossibleBaseIdx = Offset + 1; int PossibleDestIdx = Offset + 4; if (LanaiOperand *PossibleAluOp = static_cast(Operands[PossibleAluOpIdx].get())) if (PossibleAluOp->isImm()) if (const MCConstantExpr *ConstExpr = dyn_cast(PossibleAluOp->getImm())) Modifies = LPAC::modifiesOp(ConstExpr->getValue()); return Modifies && Operands[PossibleBaseIdx]->isReg() && Operands[PossibleDestIdx]->isReg() && Operands[PossibleBaseIdx]->getReg() == Operands[PossibleDestIdx]->getReg(); } static bool IsRegister(const MCParsedAsmOperand &op) { return static_cast(op).isReg(); } static bool MaybePredicatedInst(const OperandVector &Operands) { if (Operands.size() < 4 || !IsRegister(*Operands[1]) || !IsRegister(*Operands[2])) return false; return StringSwitch( static_cast(*Operands[0]).getToken()) .StartsWith("addc", true) .StartsWith("add", true) .StartsWith("and", true) .StartsWith("sh", true) .StartsWith("subb", true) .StartsWith("sub", true) .StartsWith("or", true) .StartsWith("xor", true) .Default(false); } bool LanaiAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) { // First operand is token for instruction StringRef Mnemonic = splitMnemonic(Name, NameLoc, &Operands); // If there are no more operands, then finish if (Lexer.is(AsmToken::EndOfStatement)) return false; // Parse first operand if (parseOperand(&Operands, Mnemonic) != MatchOperand_Success) return true; // If it is a st instruction with one 1 operand then it is a "store true". // Transform <"st"> to <"s">, if (Lexer.is(AsmToken::EndOfStatement) && Name == "st" && Operands.size() == 2) { Operands.erase(Operands.begin(), Operands.begin() + 1); Operands.insert(Operands.begin(), LanaiOperand::CreateToken("s", NameLoc)); Operands.insert(Operands.begin() + 1, LanaiOperand::createImm( MCConstantExpr::create(LPCC::ICC_T, getContext()), NameLoc, NameLoc)); } // If the instruction is a bt instruction with 1 operand (in assembly) then it // is an unconditional branch instruction and the first two elements of // operands need to be merged. if (Lexer.is(AsmToken::EndOfStatement) && Name.startswith("bt") && Operands.size() == 3) { Operands.erase(Operands.begin(), Operands.begin() + 2); Operands.insert(Operands.begin(), LanaiOperand::CreateToken("bt", NameLoc)); } // Parse until end of statement, consuming commas between operands while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.is(AsmToken::Comma)) { // Consume comma token Lex(); // Parse next operand if (parseOperand(&Operands, Mnemonic) != MatchOperand_Success) return true; } if (IsMemoryAssignmentError(Operands)) { Error(Parser.getTok().getLoc(), "the destination register can't equal the base register in an " "instruction that modifies the base register."); return true; } // Insert always true operand for instruction that may be predicated but // are not. Currently the autogenerated parser always expects a predicate. if (MaybePredicatedInst(Operands)) { Operands.insert(Operands.begin() + 1, LanaiOperand::createImm( MCConstantExpr::create(LPCC::ICC_T, getContext()), NameLoc, NameLoc)); } return false; } #define GET_REGISTER_MATCHER #define GET_MATCHER_IMPLEMENTATION #include "LanaiGenAsmMatcher.inc" } // namespace extern "C" void LLVMInitializeLanaiAsmParser() { RegisterMCAsmParser x(TheLanaiTarget); } } // namespace llvm