//===-- MipsELFObjectWriter.cpp - Mips ELF Writer -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include #include #include "MCTargetDesc/MipsBaseInfo.h" #include "MCTargetDesc/MipsFixupKinds.h" #include "MCTargetDesc/MipsMCExpr.h" #include "MCTargetDesc/MipsMCTargetDesc.h" #include "llvm/ADT/STLExtras.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCELFObjectWriter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSymbolELF.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #define DEBUG_TYPE "mips-elf-object-writer" using namespace llvm; namespace { /// Holds additional information needed by the relocation ordering algorithm. struct MipsRelocationEntry { const ELFRelocationEntry R; ///< The relocation. bool Matched; ///< Is this relocation part of a match. MipsRelocationEntry(const ELFRelocationEntry &R) : R(R), Matched(false) {} void print(raw_ostream &Out) const { R.print(Out); Out << ", Matched=" << Matched; } }; #ifndef NDEBUG raw_ostream &operator<<(raw_ostream &OS, const MipsRelocationEntry &RHS) { RHS.print(OS); return OS; } #endif class MipsELFObjectWriter : public MCELFObjectTargetWriter { public: MipsELFObjectWriter(bool _is64Bit, uint8_t OSABI, bool _isN64, bool IsLittleEndian); ~MipsELFObjectWriter() override; unsigned getRelocType(MCContext &Ctx, const MCValue &Target, const MCFixup &Fixup, bool IsPCRel) const override; bool needsRelocateWithSymbol(const MCSymbol &Sym, unsigned Type) const override; virtual void sortRelocs(const MCAssembler &Asm, std::vector &Relocs) override; }; /// Copy elements in the range [First, Last) to d1 when the predicate is true or /// d2 when the predicate is false. This is essentially both std::copy_if and /// std::remove_copy_if combined into a single pass. template std::pair copy_if_else(InputIt First, InputIt Last, OutputIt1 d1, OutputIt2 d2, UnaryPredicate Predicate) { for (InputIt I = First; I != Last; ++I) { if (Predicate(*I)) { *d1 = *I; d1++; } else { *d2 = *I; d2++; } } return std::make_pair(d1, d2); } /// The possible results of the Predicate function used by find_best. enum FindBestPredicateResult { FindBest_NoMatch = 0, ///< The current element is not a match. FindBest_Match, ///< The current element is a match but better ones are /// possible. FindBest_PerfectMatch, ///< The current element is an unbeatable match. }; /// Find the best match in the range [First, Last). /// /// An element matches when Predicate(X) returns FindBest_Match or /// FindBest_PerfectMatch. A value of FindBest_PerfectMatch also terminates /// the search. BetterThan(A, B) is a comparator that returns true when A is a /// better match than B. The return value is the position of the best match. /// /// This is similar to std::find_if but finds the best of multiple possible /// matches. template InputIt find_best(InputIt First, InputIt Last, UnaryPredicate Predicate, Comparator BetterThan) { InputIt Best = Last; for (InputIt I = First; I != Last; ++I) { unsigned Matched = Predicate(*I); if (Matched != FindBest_NoMatch) { DEBUG(dbgs() << std::distance(First, I) << " is a match ("; I->print(dbgs()); dbgs() << ")\n"); if (Best == Last || BetterThan(*I, *Best)) { DEBUG(dbgs() << ".. and it beats the last one\n"); Best = I; } } if (Matched == FindBest_PerfectMatch) { DEBUG(dbgs() << ".. and it is unbeatable\n"); break; } } return Best; } /// Determine the low relocation that matches the given relocation. /// If the relocation does not need a low relocation then the return value /// is ELF::R_MIPS_NONE. /// /// The relocations that need a matching low part are /// R_(MIPS|MICROMIPS|MIPS16)_HI16 for all symbols and /// R_(MIPS|MICROMIPS|MIPS16)_GOT16 for local symbols only. static unsigned getMatchingLoType(const ELFRelocationEntry &Reloc) { unsigned Type = Reloc.Type; if (Type == ELF::R_MIPS_HI16) return ELF::R_MIPS_LO16; if (Type == ELF::R_MICROMIPS_HI16) return ELF::R_MICROMIPS_LO16; if (Type == ELF::R_MIPS16_HI16) return ELF::R_MIPS16_LO16; if (Reloc.OriginalSymbol->getBinding() != ELF::STB_LOCAL) return ELF::R_MIPS_NONE; if (Type == ELF::R_MIPS_GOT16) return ELF::R_MIPS_LO16; if (Type == ELF::R_MICROMIPS_GOT16) return ELF::R_MICROMIPS_LO16; if (Type == ELF::R_MIPS16_GOT16) return ELF::R_MIPS16_LO16; return ELF::R_MIPS_NONE; } /// Determine whether a relocation (X) matches the one given in R. /// /// A relocation matches if: /// - It's type matches that of a corresponding low part. This is provided in /// MatchingType for efficiency. /// - It's based on the same symbol. /// - It's offset of greater or equal to that of the one given in R. /// It should be noted that this rule assumes the programmer does not use /// offsets that exceed the alignment of the symbol. The carry-bit will be /// incorrect if this is not true. /// /// A matching relocation is unbeatable if: /// - It is not already involved in a match. /// - It's offset is exactly that of the one given in R. static FindBestPredicateResult isMatchingReloc(const MipsRelocationEntry &X, const ELFRelocationEntry &R, unsigned MatchingType) { if (X.R.Type == MatchingType && X.R.OriginalSymbol == R.OriginalSymbol) { if (!X.Matched && X.R.OriginalAddend == R.OriginalAddend) return FindBest_PerfectMatch; else if (X.R.OriginalAddend >= R.OriginalAddend) return FindBest_Match; } return FindBest_NoMatch; } /// Determine whether Candidate or PreviousBest is the better match. /// The return value is true if Candidate is the better match. /// /// A matching relocation is a better match if: /// - It has a smaller addend. /// - It is not already involved in a match. static bool compareMatchingRelocs(const MipsRelocationEntry &Candidate, const MipsRelocationEntry &PreviousBest) { if (Candidate.R.OriginalAddend != PreviousBest.R.OriginalAddend) return Candidate.R.OriginalAddend < PreviousBest.R.OriginalAddend; return PreviousBest.Matched && !Candidate.Matched; } #ifndef NDEBUG /// Print all the relocations. template static void dumpRelocs(const char *Prefix, const Container &Relocs) { for (const auto &R : Relocs) dbgs() << Prefix << R << "\n"; } #endif } // end anonymous namespace MipsELFObjectWriter::MipsELFObjectWriter(bool _is64Bit, uint8_t OSABI, bool _isN64, bool IsLittleEndian) : MCELFObjectTargetWriter(_is64Bit, OSABI, ELF::EM_MIPS, /*HasRelocationAddend*/ _isN64, /*IsN64*/ _isN64) {} MipsELFObjectWriter::~MipsELFObjectWriter() {} unsigned MipsELFObjectWriter::getRelocType(MCContext &Ctx, const MCValue &Target, const MCFixup &Fixup, bool IsPCRel) const { // Determine the type of the relocation. unsigned Kind = (unsigned)Fixup.getKind(); switch (Kind) { case Mips::fixup_Mips_NONE: return ELF::R_MIPS_NONE; case Mips::fixup_Mips_16: case FK_Data_2: return IsPCRel ? ELF::R_MIPS_PC16 : ELF::R_MIPS_16; case Mips::fixup_Mips_32: case FK_Data_4: return IsPCRel ? ELF::R_MIPS_PC32 : ELF::R_MIPS_32; } if (IsPCRel) { switch (Kind) { case Mips::fixup_Mips_Branch_PCRel: case Mips::fixup_Mips_PC16: return ELF::R_MIPS_PC16; case Mips::fixup_MICROMIPS_PC7_S1: return ELF::R_MICROMIPS_PC7_S1; case Mips::fixup_MICROMIPS_PC10_S1: return ELF::R_MICROMIPS_PC10_S1; case Mips::fixup_MICROMIPS_PC16_S1: return ELF::R_MICROMIPS_PC16_S1; case Mips::fixup_MICROMIPS_PC26_S1: return ELF::R_MICROMIPS_PC26_S1; case Mips::fixup_MICROMIPS_PC19_S2: return ELF::R_MICROMIPS_PC19_S2; case Mips::fixup_MICROMIPS_PC18_S3: return ELF::R_MICROMIPS_PC18_S3; case Mips::fixup_MICROMIPS_PC21_S1: return ELF::R_MICROMIPS_PC21_S1; case Mips::fixup_MIPS_PC19_S2: return ELF::R_MIPS_PC19_S2; case Mips::fixup_MIPS_PC18_S3: return ELF::R_MIPS_PC18_S3; case Mips::fixup_MIPS_PC21_S2: return ELF::R_MIPS_PC21_S2; case Mips::fixup_MIPS_PC26_S2: return ELF::R_MIPS_PC26_S2; case Mips::fixup_MIPS_PCHI16: return ELF::R_MIPS_PCHI16; case Mips::fixup_MIPS_PCLO16: return ELF::R_MIPS_PCLO16; } llvm_unreachable("invalid PC-relative fixup kind!"); } switch (Kind) { case Mips::fixup_Mips_64: case FK_Data_8: return ELF::R_MIPS_64; case FK_GPRel_4: if (isN64()) { unsigned Type = (unsigned)ELF::R_MIPS_NONE; Type = setRType((unsigned)ELF::R_MIPS_GPREL32, Type); Type = setRType2((unsigned)ELF::R_MIPS_64, Type); Type = setRType3((unsigned)ELF::R_MIPS_NONE, Type); return Type; } return ELF::R_MIPS_GPREL32; case Mips::fixup_Mips_GPREL16: return ELF::R_MIPS_GPREL16; case Mips::fixup_Mips_26: return ELF::R_MIPS_26; case Mips::fixup_Mips_CALL16: return ELF::R_MIPS_CALL16; case Mips::fixup_Mips_GOT: return ELF::R_MIPS_GOT16; case Mips::fixup_Mips_HI16: return ELF::R_MIPS_HI16; case Mips::fixup_Mips_LO16: return ELF::R_MIPS_LO16; case Mips::fixup_Mips_TLSGD: return ELF::R_MIPS_TLS_GD; case Mips::fixup_Mips_GOTTPREL: return ELF::R_MIPS_TLS_GOTTPREL; case Mips::fixup_Mips_TPREL_HI: return ELF::R_MIPS_TLS_TPREL_HI16; case Mips::fixup_Mips_TPREL_LO: return ELF::R_MIPS_TLS_TPREL_LO16; case Mips::fixup_Mips_TLSLDM: return ELF::R_MIPS_TLS_LDM; case Mips::fixup_Mips_DTPREL_HI: return ELF::R_MIPS_TLS_DTPREL_HI16; case Mips::fixup_Mips_DTPREL_LO: return ELF::R_MIPS_TLS_DTPREL_LO16; case Mips::fixup_Mips_GOT_PAGE: return ELF::R_MIPS_GOT_PAGE; case Mips::fixup_Mips_GOT_OFST: return ELF::R_MIPS_GOT_OFST; case Mips::fixup_Mips_GOT_DISP: return ELF::R_MIPS_GOT_DISP; case Mips::fixup_Mips_GPOFF_HI: { unsigned Type = (unsigned)ELF::R_MIPS_NONE; Type = setRType((unsigned)ELF::R_MIPS_GPREL16, Type); Type = setRType2((unsigned)ELF::R_MIPS_SUB, Type); Type = setRType3((unsigned)ELF::R_MIPS_HI16, Type); return Type; } case Mips::fixup_Mips_GPOFF_LO: { unsigned Type = (unsigned)ELF::R_MIPS_NONE; Type = setRType((unsigned)ELF::R_MIPS_GPREL16, Type); Type = setRType2((unsigned)ELF::R_MIPS_SUB, Type); Type = setRType3((unsigned)ELF::R_MIPS_LO16, Type); return Type; } case Mips::fixup_Mips_HIGHER: return ELF::R_MIPS_HIGHER; case Mips::fixup_Mips_HIGHEST: return ELF::R_MIPS_HIGHEST; case Mips::fixup_Mips_GOT_HI16: return ELF::R_MIPS_GOT_HI16; case Mips::fixup_Mips_GOT_LO16: return ELF::R_MIPS_GOT_LO16; case Mips::fixup_Mips_CALL_HI16: return ELF::R_MIPS_CALL_HI16; case Mips::fixup_Mips_CALL_LO16: return ELF::R_MIPS_CALL_LO16; case Mips::fixup_MICROMIPS_26_S1: return ELF::R_MICROMIPS_26_S1; case Mips::fixup_MICROMIPS_HI16: return ELF::R_MICROMIPS_HI16; case Mips::fixup_MICROMIPS_LO16: return ELF::R_MICROMIPS_LO16; case Mips::fixup_MICROMIPS_GOT16: return ELF::R_MICROMIPS_GOT16; case Mips::fixup_MICROMIPS_CALL16: return ELF::R_MICROMIPS_CALL16; case Mips::fixup_MICROMIPS_GOT_DISP: return ELF::R_MICROMIPS_GOT_DISP; case Mips::fixup_MICROMIPS_GOT_PAGE: return ELF::R_MICROMIPS_GOT_PAGE; case Mips::fixup_MICROMIPS_GOT_OFST: return ELF::R_MICROMIPS_GOT_OFST; case Mips::fixup_MICROMIPS_TLS_GD: return ELF::R_MICROMIPS_TLS_GD; case Mips::fixup_MICROMIPS_TLS_LDM: return ELF::R_MICROMIPS_TLS_LDM; case Mips::fixup_MICROMIPS_TLS_DTPREL_HI16: return ELF::R_MICROMIPS_TLS_DTPREL_HI16; case Mips::fixup_MICROMIPS_TLS_DTPREL_LO16: return ELF::R_MICROMIPS_TLS_DTPREL_LO16; case Mips::fixup_MICROMIPS_TLS_TPREL_HI16: return ELF::R_MICROMIPS_TLS_TPREL_HI16; case Mips::fixup_MICROMIPS_TLS_TPREL_LO16: return ELF::R_MICROMIPS_TLS_TPREL_LO16; } llvm_unreachable("invalid fixup kind!"); } /// Sort relocation table entries by offset except where another order is /// required by the MIPS ABI. /// /// MIPS has a few relocations that have an AHL component in the expression used /// to evaluate them. This AHL component is an addend with the same number of /// bits as a symbol value but not all of our ABI's are able to supply a /// sufficiently sized addend in a single relocation. /// /// The O32 ABI for example, uses REL relocations which store the addend in the /// section data. All the relocations with AHL components affect 16-bit fields /// so the addend for a single relocation is limited to 16-bit. This ABI /// resolves the limitation by linking relocations (e.g. R_MIPS_HI16 and /// R_MIPS_LO16) and distributing the addend between the linked relocations. The /// ABI mandates that such relocations must be next to each other in a /// particular order (e.g. R_MIPS_HI16 must be immediately followed by a /// matching R_MIPS_LO16) but the rule is less strict in practice. /// /// The de facto standard is lenient in the following ways: /// - 'Immediately following' does not refer to the next relocation entry but /// the next matching relocation. /// - There may be multiple high parts relocations for one low part relocation. /// - There may be multiple low part relocations for one high part relocation. /// - The AHL addend in each part does not have to be exactly equal as long as /// the difference does not affect the carry bit from bit 15 into 16. This is /// to allow, for example, the use of %lo(foo) and %lo(foo+4) when loading /// both halves of a long long. /// /// See getMatchingLoType() for a description of which high part relocations /// match which low part relocations. One particular thing to note is that /// R_MIPS_GOT16 and similar only have AHL addends if they refer to local /// symbols. /// /// It should also be noted that this function is not affected by whether /// the symbol was kept or rewritten into a section-relative equivalent. We /// always match using the expressions from the source. void MipsELFObjectWriter::sortRelocs(const MCAssembler &Asm, std::vector &Relocs) { if (Relocs.size() < 2) return; // Sort relocations by the address they are applied to. std::sort(Relocs.begin(), Relocs.end(), [](const ELFRelocationEntry &A, const ELFRelocationEntry &B) { return A.Offset < B.Offset; }); std::list Sorted; std::list Remainder; DEBUG(dumpRelocs("R: ", Relocs)); // Separate the movable relocations (AHL relocations using the high bits) from // the immobile relocations (everything else). This does not preserve high/low // matches that already existed in the input. copy_if_else(Relocs.begin(), Relocs.end(), std::back_inserter(Remainder), std::back_inserter(Sorted), [](const ELFRelocationEntry &Reloc) { return getMatchingLoType(Reloc) != ELF::R_MIPS_NONE; }); for (auto &R : Remainder) { DEBUG(dbgs() << "Matching: " << R << "\n"); unsigned MatchingType = getMatchingLoType(R); assert(MatchingType != ELF::R_MIPS_NONE && "Wrong list for reloc that doesn't need a match"); // Find the best matching relocation for the current high part. // See isMatchingReloc for a description of a matching relocation and // compareMatchingRelocs for a description of what 'best' means. auto InsertionPoint = find_best(Sorted.begin(), Sorted.end(), [&R, &MatchingType](const MipsRelocationEntry &X) { return isMatchingReloc(X, R, MatchingType); }, compareMatchingRelocs); // If we matched then insert the high part in front of the match and mark // both relocations as being involved in a match. We only mark the high // part for cosmetic reasons in the debug output. // // If we failed to find a match then the high part is orphaned. This is not // permitted since the relocation cannot be evaluated without knowing the // carry-in. We can sometimes handle this using a matching low part that is // already used in a match but we already cover that case in // isMatchingReloc and compareMatchingRelocs. For the remaining cases we // should insert the high part at the end of the list. This will cause the // linker to fail but the alternative is to cause the linker to bind the // high part to a semi-matching low part and silently calculate the wrong // value. Unfortunately we have no means to warn the user that we did this // so leave it up to the linker to complain about it. if (InsertionPoint != Sorted.end()) InsertionPoint->Matched = true; Sorted.insert(InsertionPoint, R)->Matched = true; } DEBUG(dumpRelocs("S: ", Sorted)); assert(Relocs.size() == Sorted.size() && "Some relocs were not consumed"); // Overwrite the original vector with the sorted elements. The caller expects // them in reverse order. unsigned CopyTo = 0; for (const auto &R : reverse(Sorted)) Relocs[CopyTo++] = R.R; } bool MipsELFObjectWriter::needsRelocateWithSymbol(const MCSymbol &Sym, unsigned Type) const { // If it's a compound relocation for N64 then we need the relocation if any // sub-relocation needs it. if (!isUInt<8>(Type)) return needsRelocateWithSymbol(Sym, Type & 0xff) || needsRelocateWithSymbol(Sym, (Type >> 8) & 0xff) || needsRelocateWithSymbol(Sym, (Type >> 16) & 0xff); switch (Type) { default: errs() << Type << "\n"; llvm_unreachable("Unexpected relocation"); return true; // This relocation doesn't affect the section data. case ELF::R_MIPS_NONE: return false; // On REL ABI's (e.g. O32), these relocations form pairs. The pairing is done // by the static linker by matching the symbol and offset. // We only see one relocation at a time but it's still safe to relocate with // the section so long as both relocations make the same decision. // // Some older linkers may require the symbol for particular cases. Such cases // are not supported yet but can be added as required. case ELF::R_MIPS_GOT16: case ELF::R_MIPS16_GOT16: case ELF::R_MICROMIPS_GOT16: case ELF::R_MIPS_HI16: case ELF::R_MIPS16_HI16: case ELF::R_MICROMIPS_HI16: case ELF::R_MIPS_LO16: case ELF::R_MIPS16_LO16: case ELF::R_MICROMIPS_LO16: // FIXME: It should be safe to return false for the STO_MIPS_MICROMIPS but // we neglect to handle the adjustment to the LSB of the addend that // it causes in applyFixup() and similar. if (cast(Sym).getOther() & ELF::STO_MIPS_MICROMIPS) return true; return false; case ELF::R_MIPS_16: case ELF::R_MIPS_32: case ELF::R_MIPS_GPREL32: if (cast(Sym).getOther() & ELF::STO_MIPS_MICROMIPS) return true; // fallthrough case ELF::R_MIPS_26: case ELF::R_MIPS_64: case ELF::R_MIPS_GPREL16: case ELF::R_MIPS_PC16: case ELF::R_MIPS_SUB: return false; // FIXME: Many of these relocations should probably return false but this // hasn't been confirmed to be safe yet. case ELF::R_MIPS_REL32: case ELF::R_MIPS_LITERAL: case ELF::R_MIPS_CALL16: case ELF::R_MIPS_SHIFT5: case ELF::R_MIPS_SHIFT6: case ELF::R_MIPS_GOT_DISP: case ELF::R_MIPS_GOT_PAGE: case ELF::R_MIPS_GOT_OFST: case ELF::R_MIPS_GOT_HI16: case ELF::R_MIPS_GOT_LO16: case ELF::R_MIPS_INSERT_A: case ELF::R_MIPS_INSERT_B: case ELF::R_MIPS_DELETE: case ELF::R_MIPS_HIGHER: case ELF::R_MIPS_HIGHEST: case ELF::R_MIPS_CALL_HI16: case ELF::R_MIPS_CALL_LO16: case ELF::R_MIPS_SCN_DISP: case ELF::R_MIPS_REL16: case ELF::R_MIPS_ADD_IMMEDIATE: case ELF::R_MIPS_PJUMP: case ELF::R_MIPS_RELGOT: case ELF::R_MIPS_JALR: case ELF::R_MIPS_TLS_DTPMOD32: case ELF::R_MIPS_TLS_DTPREL32: case ELF::R_MIPS_TLS_DTPMOD64: case ELF::R_MIPS_TLS_DTPREL64: case ELF::R_MIPS_TLS_GD: case ELF::R_MIPS_TLS_LDM: case ELF::R_MIPS_TLS_DTPREL_HI16: case ELF::R_MIPS_TLS_DTPREL_LO16: case ELF::R_MIPS_TLS_GOTTPREL: case ELF::R_MIPS_TLS_TPREL32: case ELF::R_MIPS_TLS_TPREL64: case ELF::R_MIPS_TLS_TPREL_HI16: case ELF::R_MIPS_TLS_TPREL_LO16: case ELF::R_MIPS_GLOB_DAT: case ELF::R_MIPS_PC21_S2: case ELF::R_MIPS_PC26_S2: case ELF::R_MIPS_PC18_S3: case ELF::R_MIPS_PC19_S2: case ELF::R_MIPS_PCHI16: case ELF::R_MIPS_PCLO16: case ELF::R_MIPS_COPY: case ELF::R_MIPS_JUMP_SLOT: case ELF::R_MIPS_NUM: case ELF::R_MIPS_PC32: case ELF::R_MIPS_EH: case ELF::R_MICROMIPS_26_S1: case ELF::R_MICROMIPS_GPREL16: case ELF::R_MICROMIPS_LITERAL: case ELF::R_MICROMIPS_PC7_S1: case ELF::R_MICROMIPS_PC10_S1: case ELF::R_MICROMIPS_PC16_S1: case ELF::R_MICROMIPS_CALL16: case ELF::R_MICROMIPS_GOT_DISP: case ELF::R_MICROMIPS_GOT_PAGE: case ELF::R_MICROMIPS_GOT_OFST: case ELF::R_MICROMIPS_GOT_HI16: case ELF::R_MICROMIPS_GOT_LO16: case ELF::R_MICROMIPS_SUB: case ELF::R_MICROMIPS_HIGHER: case ELF::R_MICROMIPS_HIGHEST: case ELF::R_MICROMIPS_CALL_HI16: case ELF::R_MICROMIPS_CALL_LO16: case ELF::R_MICROMIPS_SCN_DISP: case ELF::R_MICROMIPS_JALR: case ELF::R_MICROMIPS_HI0_LO16: case ELF::R_MICROMIPS_TLS_GD: case ELF::R_MICROMIPS_TLS_LDM: case ELF::R_MICROMIPS_TLS_DTPREL_HI16: case ELF::R_MICROMIPS_TLS_DTPREL_LO16: case ELF::R_MICROMIPS_TLS_GOTTPREL: case ELF::R_MICROMIPS_TLS_TPREL_HI16: case ELF::R_MICROMIPS_TLS_TPREL_LO16: case ELF::R_MICROMIPS_GPREL7_S2: case ELF::R_MICROMIPS_PC23_S2: case ELF::R_MICROMIPS_PC21_S1: case ELF::R_MICROMIPS_PC26_S1: case ELF::R_MICROMIPS_PC18_S3: case ELF::R_MICROMIPS_PC19_S2: return true; // FIXME: Many of these should probably return false but MIPS16 isn't // supported by the integrated assembler. case ELF::R_MIPS16_26: case ELF::R_MIPS16_GPREL: case ELF::R_MIPS16_CALL16: case ELF::R_MIPS16_TLS_GD: case ELF::R_MIPS16_TLS_LDM: case ELF::R_MIPS16_TLS_DTPREL_HI16: case ELF::R_MIPS16_TLS_DTPREL_LO16: case ELF::R_MIPS16_TLS_GOTTPREL: case ELF::R_MIPS16_TLS_TPREL_HI16: case ELF::R_MIPS16_TLS_TPREL_LO16: llvm_unreachable("Unsupported MIPS16 relocation"); return true; } } MCObjectWriter *llvm::createMipsELFObjectWriter(raw_pwrite_stream &OS, uint8_t OSABI, bool IsLittleEndian, bool Is64Bit) { MCELFObjectTargetWriter *MOTW = new MipsELFObjectWriter(Is64Bit, OSABI, Is64Bit, IsLittleEndian); return createELFObjectWriter(MOTW, OS, IsLittleEndian); }