//==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Move instructions //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Register move. def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>; def VLR32 : UnaryAliasVRR; def VLR64 : UnaryAliasVRR; // Load GR from VR element. def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>; def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>; def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>; def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>; // Load VR element from GR. def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert, v128b, v128b, GR32, 0>; def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert, v128h, v128h, GR32, 1>; def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert, v128f, v128f, GR32, 2>; def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert, v128g, v128g, GR64, 3>; // Load VR from GRs disjoint. def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>; def VLVGP32 : BinaryAliasVRRf; } // Extractions always assign to the full GR64, even if the element would // fit in the lower 32 bits. Sub-i64 extracts therefore need to take a // subreg of the result. class VectorExtractSubreg : Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)), (EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>; def : VectorExtractSubreg; def : VectorExtractSubreg; def : VectorExtractSubreg; //===----------------------------------------------------------------------===// // Immediate instructions //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Generate byte mask. def VZERO : InherentVRIa<"vzero", 0xE744, 0>; def VONE : InherentVRIa<"vone", 0xE744, 0xffff>; def VGBM : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16>; // Generate mask. def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>; def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>; def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>; def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>; // Load element immediate. // // We want these instructions to be used ahead of VLVG* where possible. // However, VLVG* takes a variable BD-format index whereas VLEI takes // a plain immediate index. This means that VLVG* has an extra "base" // register operand and is 3 units more complex. Bumping the complexity // of the VLEI* instructions by 4 means that they are strictly better // than VLVG* in cases where both forms match. let AddedComplexity = 4 in { def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert, v128b, v128b, imm32sx16trunc, imm32zx4>; def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert, v128h, v128h, imm32sx16trunc, imm32zx3>; def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert, v128f, v128f, imm32sx16, imm32zx2>; def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert, v128g, v128g, imm64sx16, imm32zx1>; } // Replicate immediate. def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16, 0>; def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16, 1>; def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16, 2>; def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16, 3>; } //===----------------------------------------------------------------------===// // Loads //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Load. def VL : UnaryVRX<"vl", 0xE706, null_frag, v128any, 16>; // Load to block boundary. The number of loaded bytes is only known // at run time. The instruction is really polymorphic, but v128b matches // the return type of the associated intrinsic. def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>; // Load count to block boundary. let Defs = [CC] in def LCBB : InstRXE<0xE727, (outs GR32:$R1), (ins bdxaddr12only:$XBD2, imm32zx4:$M3), "lcbb\t$R1, $XBD2, $M3", [(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2, imm32zx4:$M3))]>; // Load with length. The number of loaded bytes is only known at run time. def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>; // Load multiple. def VLM : LoadMultipleVRSa<"vlm", 0xE736>; // Load and replicate def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8, v128b, 1, 0>; def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>; def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>; def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>; def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)), (VLREPF bdxaddr12only:$addr)>; def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)), (VLREPG bdxaddr12only:$addr)>; // Use VLREP to load subvectors. These patterns use "12pair" because // LEY and LDY offer full 20-bit displacement fields. It's often better // to use those instructions rather than force a 20-bit displacement // into a GPR temporary. def VL32 : UnaryAliasVRX; def VL64 : UnaryAliasVRX; // Load logical element and zero. def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8, v128b, 1, 0>; def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>; def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>; def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>; def : Pat<(v4f32 (z_vllezf32 bdxaddr12only:$addr)), (VLLEZF bdxaddr12only:$addr)>; def : Pat<(v2f64 (z_vllezf64 bdxaddr12only:$addr)), (VLLEZG bdxaddr12only:$addr)>; // Load element. def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8, v128b, v128b, 1, imm32zx4>; def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>; def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>; def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>; def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index), (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>; def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index), (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>; // Gather element. def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>; def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>; } // Use replicating loads if we're inserting a single element into an // undefined vector. This avoids a false dependency on the previous // register contents. multiclass ReplicatePeephole { def : Pat<(vectype (z_vector_insert (undef), (scalartype (load bdxaddr12only:$addr)), 0)), (vlrep bdxaddr12only:$addr)>; def : Pat<(vectype (scalar_to_vector (scalartype (load bdxaddr12only:$addr)))), (vlrep bdxaddr12only:$addr)>; } defm : ReplicatePeephole; defm : ReplicatePeephole; defm : ReplicatePeephole; defm : ReplicatePeephole; defm : ReplicatePeephole; defm : ReplicatePeephole; //===----------------------------------------------------------------------===// // Stores //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Store. def VST : StoreVRX<"vst", 0xE70E, null_frag, v128any, 16>; // Store with length. The number of stored bytes is only known at run time. def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>; // Store multiple. def VSTM : StoreMultipleVRSa<"vstm", 0xE73E>; // Store element. def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8, v128b, 1, imm32zx4>; def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>; def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>; def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>; def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index), (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>; def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index), (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>; // Use VSTE to store subvectors. These patterns use "12pair" because // STEY and STDY offer full 20-bit displacement fields. It's often better // to use those instructions rather than force a 20-bit displacement // into a GPR temporary. def VST32 : StoreAliasVRX; def VST64 : StoreAliasVRX; // Scatter element. def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>; def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>; } //===----------------------------------------------------------------------===// // Selects and permutes //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Merge high. def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>; def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>; def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>; def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>; def : BinaryRRWithType; def : BinaryRRWithType; // Merge low. def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>; def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>; def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>; def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>; def : BinaryRRWithType; def : BinaryRRWithType; // Permute. def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>; // Permute doubleword immediate. def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>; // Replicate. def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>; def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>; def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>; def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>; def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16:$index)), (VREPF VR128:$vec, imm32zx16:$index)>; def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16:$index)), (VREPG VR128:$vec, imm32zx16:$index)>; // Select. def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>; } //===----------------------------------------------------------------------===// // Widening and narrowing //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Pack def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>; def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>; def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>; // Pack saturate. defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc, v128b, v128h, 1>; defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc, v128h, v128f, 2>; defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc, v128f, v128g, 3>; // Pack saturate logical. defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc, v128b, v128h, 1>; defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc, v128h, v128f, 2>; defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc, v128f, v128g, 3>; // Sign-extend to doubleword. def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8, v128g, v128g, 0>; def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>; def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>; def : Pat<(z_vsei8_by_parts (v16i8 VR128:$src)), (VSEGB VR128:$src)>; def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>; def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>; // Unpack high. def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>; def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>; def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>; // Unpack logical high. def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>; def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>; def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>; // Unpack low. def VUPLB : UnaryVRRa<"vuplb", 0xE7D6, z_unpack_low, v128h, v128b, 0>; def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>; def VUPLF : UnaryVRRa<"vuplf", 0xE7D6, z_unpack_low, v128g, v128f, 2>; // Unpack logical low. def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>; def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>; def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>; } //===----------------------------------------------------------------------===// // Instantiating generic operations for specific types. //===----------------------------------------------------------------------===// multiclass GenericVectorOps { let Predicates = [FeatureVector] in { def : Pat<(type (load bdxaddr12only:$addr)), (VL bdxaddr12only:$addr)>; def : Pat<(store (type VR128:$src), bdxaddr12only:$addr), (VST VR128:$src, bdxaddr12only:$addr)>; def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)), (VSEL VR128:$y, VR128:$z, VR128:$x)>; def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)), (VSEL VR128:$z, VR128:$y, VR128:$x)>; } } defm : GenericVectorOps; defm : GenericVectorOps; defm : GenericVectorOps; defm : GenericVectorOps; defm : GenericVectorOps; defm : GenericVectorOps; //===----------------------------------------------------------------------===// // Integer arithmetic //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Add. def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>; def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>; def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>; def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>; def VAQ : BinaryVRRc<"vaq", 0xE7F3, int_s390_vaq, v128q, v128q, 4>; // Add compute carry. def VACCB : BinaryVRRc<"vaccb", 0xE7F1, int_s390_vaccb, v128b, v128b, 0>; def VACCH : BinaryVRRc<"vacch", 0xE7F1, int_s390_vacch, v128h, v128h, 1>; def VACCF : BinaryVRRc<"vaccf", 0xE7F1, int_s390_vaccf, v128f, v128f, 2>; def VACCG : BinaryVRRc<"vaccg", 0xE7F1, int_s390_vaccg, v128g, v128g, 3>; def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, int_s390_vaccq, v128q, v128q, 4>; // Add with carry. def VACQ : TernaryVRRd<"vacq", 0xE7BB, int_s390_vacq, v128q, v128q, 4>; // Add with carry compute carry. def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, int_s390_vacccq, v128q, v128q, 4>; // And. def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>; // And with complement. def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>; // Average. def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>; def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>; def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>; def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>; // Average logical. def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>; def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>; def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>; def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>; // Checksum. def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>; // Count leading zeros. def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>; def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>; def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>; def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>; // Count trailing zeros. def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>; def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>; def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>; def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>; // Exclusive or. def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>; // Galois field multiply sum. def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>; def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>; def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>; def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>; // Galois field multiply sum and accumulate. def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>; def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>; def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>; def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>; // Load complement. def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>; def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>; def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>; def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>; // Load positive. def VLPB : UnaryVRRa<"vlpb", 0xE7DF, z_viabs8, v128b, v128b, 0>; def VLPH : UnaryVRRa<"vlph", 0xE7DF, z_viabs16, v128h, v128h, 1>; def VLPF : UnaryVRRa<"vlpf", 0xE7DF, z_viabs32, v128f, v128f, 2>; def VLPG : UnaryVRRa<"vlpg", 0xE7DF, z_viabs64, v128g, v128g, 3>; // Maximum. def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>; def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>; def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>; def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>; // Maximum logical. def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>; def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>; def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>; def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>; // Minimum. def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>; def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>; def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>; def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>; // Minimum logical. def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>; def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>; def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>; def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>; // Multiply and add low. def VMALB : TernaryVRRd<"vmalb", 0xE7AA, z_muladd, v128b, v128b, 0>; def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>; def VMALF : TernaryVRRd<"vmalf", 0xE7AA, z_muladd, v128f, v128f, 2>; // Multiply and add high. def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>; def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>; def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>; // Multiply and add logical high. def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>; def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>; def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>; // Multiply and add even. def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>; def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>; def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>; // Multiply and add logical even. def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>; def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>; def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>; // Multiply and add odd. def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>; def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>; def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>; // Multiply and add logical odd. def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>; def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>; def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>; // Multiply high. def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>; def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>; def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>; // Multiply logical high. def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>; def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>; def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>; // Multiply low. def VMLB : BinaryVRRc<"vmlb", 0xE7A2, mul, v128b, v128b, 0>; def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>; def VMLF : BinaryVRRc<"vmlf", 0xE7A2, mul, v128f, v128f, 2>; // Multiply even. def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>; def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>; def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>; // Multiply logical even. def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>; def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>; def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>; // Multiply odd. def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>; def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>; def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>; // Multiply logical odd. def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>; def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>; def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>; // Nor. def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>; // Or. def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>; // Population count. def VPOPCT : BinaryVRRa<"vpopct", 0xE750>; def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>; // Element rotate left logical (with vector shift amount). def VERLLVB : BinaryVRRc<"verllvb", 0xE773, int_s390_verllvb, v128b, v128b, 0>; def VERLLVH : BinaryVRRc<"verllvh", 0xE773, int_s390_verllvh, v128h, v128h, 1>; def VERLLVF : BinaryVRRc<"verllvf", 0xE773, int_s390_verllvf, v128f, v128f, 2>; def VERLLVG : BinaryVRRc<"verllvg", 0xE773, int_s390_verllvg, v128g, v128g, 3>; // Element rotate left logical (with scalar shift amount). def VERLLB : BinaryVRSa<"verllb", 0xE733, int_s390_verllb, v128b, v128b, 0>; def VERLLH : BinaryVRSa<"verllh", 0xE733, int_s390_verllh, v128h, v128h, 1>; def VERLLF : BinaryVRSa<"verllf", 0xE733, int_s390_verllf, v128f, v128f, 2>; def VERLLG : BinaryVRSa<"verllg", 0xE733, int_s390_verllg, v128g, v128g, 3>; // Element rotate and insert under mask. def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>; def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>; def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>; def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>; // Element shift left (with vector shift amount). def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>; def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>; def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>; def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>; // Element shift left (with scalar shift amount). def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>; def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>; def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>; def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>; // Element shift right arithmetic (with vector shift amount). def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>; def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>; def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>; def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>; // Element shift right arithmetic (with scalar shift amount). def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>; def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>; def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>; def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>; // Element shift right logical (with vector shift amount). def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>; def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>; def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>; def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>; // Element shift right logical (with scalar shift amount). def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>; def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>; def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>; def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>; // Shift left. def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>; // Shift left by byte. def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>; // Shift left double by byte. def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>; def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8:$z), (VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>; // Shift right arithmetic. def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>; // Shift right arithmetic by byte. def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>; // Shift right logical. def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>; // Shift right logical by byte. def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>; // Subtract. def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>; def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>; def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>; def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>; def VSQ : BinaryVRRc<"vsq", 0xE7F7, int_s390_vsq, v128q, v128q, 4>; // Subtract compute borrow indication. def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, int_s390_vscbib, v128b, v128b, 0>; def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, int_s390_vscbih, v128h, v128h, 1>; def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, int_s390_vscbif, v128f, v128f, 2>; def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, int_s390_vscbig, v128g, v128g, 3>; def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, int_s390_vscbiq, v128q, v128q, 4>; // Subtract with borrow indication. def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, int_s390_vsbiq, v128q, v128q, 4>; // Subtract with borrow compute borrow indication. def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, int_s390_vsbcbiq, v128q, v128q, 4>; // Sum across doubleword. def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>; def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>; // Sum across quadword. def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>; def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>; // Sum across word. def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>; def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>; } // Instantiate the bitwise ops for type TYPE. multiclass BitwiseVectorOps { let Predicates = [FeatureVector] in { def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>; def : Pat<(type (and VR128:$x, (z_vnot VR128:$y))), (VNC VR128:$x, VR128:$y)>; def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>; def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>; def : Pat<(type (or (and VR128:$x, VR128:$z), (and VR128:$y, (z_vnot VR128:$z)))), (VSEL VR128:$x, VR128:$y, VR128:$z)>; def : Pat<(type (z_vnot (or VR128:$x, VR128:$y))), (VNO VR128:$x, VR128:$y)>; def : Pat<(type (z_vnot VR128:$x)), (VNO VR128:$x, VR128:$x)>; } } defm : BitwiseVectorOps; defm : BitwiseVectorOps; defm : BitwiseVectorOps; defm : BitwiseVectorOps; // Instantiate additional patterns for absolute-related expressions on // type TYPE. LC is the negate instruction for TYPE and LP is the absolute // instruction. multiclass IntegerAbsoluteVectorOps { let Predicates = [FeatureVector] in { def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)), (z_vneg VR128:$x), VR128:$x)), (lc (lp VR128:$x))>; def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))), VR128:$x, (z_vneg VR128:$x))), (lc (lp VR128:$x))>; def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)), VR128:$x, (z_vneg VR128:$x))), (lc (lp VR128:$x))>; def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))), (z_vneg VR128:$x), VR128:$x)), (lc (lp VR128:$x))>; def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)), (z_vneg VR128:$x)), (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))), VR128:$x))), (lp VR128:$x)>; def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)), VR128:$x), (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))), (z_vneg VR128:$x)))), (lc (lp VR128:$x))>; } } defm : IntegerAbsoluteVectorOps; defm : IntegerAbsoluteVectorOps; defm : IntegerAbsoluteVectorOps; defm : IntegerAbsoluteVectorOps; // Instantiate minimum- and maximum-related patterns for TYPE. CMPH is the // signed or unsigned "set if greater than" comparison instruction and // MIN and MAX are the associated minimum and maximum instructions. multiclass IntegerMinMaxVectorOps { let Predicates = [FeatureVector] in { def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)), (max VR128:$x, VR128:$y)>; def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)), (min VR128:$x, VR128:$y)>; def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)), VR128:$x, VR128:$y)), (min VR128:$x, VR128:$y)>; def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)), VR128:$y, VR128:$x)), (max VR128:$x, VR128:$y)>; } } // Signed min/max. defm : IntegerMinMaxVectorOps; defm : IntegerMinMaxVectorOps; defm : IntegerMinMaxVectorOps; defm : IntegerMinMaxVectorOps; // Unsigned min/max. defm : IntegerMinMaxVectorOps; defm : IntegerMinMaxVectorOps; defm : IntegerMinMaxVectorOps; defm : IntegerMinMaxVectorOps; //===----------------------------------------------------------------------===// // Integer comparison //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Element compare. let Defs = [CC] in { def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>; def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>; def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>; def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>; } // Element compare logical. let Defs = [CC] in { def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>; def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>; def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>; def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>; } // Compare equal. defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes, v128b, v128b, 0>; defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes, v128h, v128h, 1>; defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes, v128f, v128f, 2>; defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes, v128g, v128g, 3>; // Compare high. defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs, v128b, v128b, 0>; defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs, v128h, v128h, 1>; defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs, v128f, v128f, 2>; defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs, v128g, v128g, 3>; // Compare high logical. defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls, v128b, v128b, 0>; defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls, v128h, v128h, 1>; defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls, v128f, v128f, 2>; defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls, v128g, v128g, 3>; // Test under mask. let Defs = [CC] in def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>; } //===----------------------------------------------------------------------===// // Floating-point arithmetic //===----------------------------------------------------------------------===// // See comments in SystemZInstrFP.td for the suppression flags and // rounding modes. multiclass VectorRounding { def : FPConversion; def : FPConversion; def : FPConversion; def : FPConversion; def : FPConversion; def : FPConversion; } let Predicates = [FeatureVector] in { // Add. def VFADB : BinaryVRRc<"vfadb", 0xE7E3, fadd, v128db, v128db, 3, 0>; def WFADB : BinaryVRRc<"wfadb", 0xE7E3, fadd, v64db, v64db, 3, 8>; // Convert from fixed 64-bit. def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>; def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>; def : FPConversion; // Convert from logical 64-bit. def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>; def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>; def : FPConversion; // Convert to fixed 64-bit. def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>; def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>; // Rounding mode should agree with SystemZInstrFP.td. def : FPConversion; // Convert to logical 64-bit. def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>; def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>; // Rounding mode should agree with SystemZInstrFP.td. def : FPConversion; // Divide. def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, fdiv, v128db, v128db, 3, 0>; def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, fdiv, v64db, v64db, 3, 8>; // Load FP integer. def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>; def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>; defm : VectorRounding; defm : VectorRounding; // Load lengthened. def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_vextend, v128db, v128eb, 2, 0>; def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, fextend, v64db, v32eb, 2, 8>; // Load rounded, def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128eb, v128db, 3, 0>; def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32eb, v64db, 3, 8>; def : Pat<(v4f32 (z_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>; def : FPConversion; // Multiply. def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, fmul, v128db, v128db, 3, 0>; def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, fmul, v64db, v64db, 3, 8>; // Multiply and add. def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, fma, v128db, v128db, 0, 3>; def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, fma, v64db, v64db, 8, 3>; // Multiply and subtract. def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, fms, v128db, v128db, 0, 3>; def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, fms, v64db, v64db, 8, 3>; // Load complement, def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>; def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>; // Load negative. def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>; def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>; // Load positive. def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>; def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>; // Square root. def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, fsqrt, v128db, v128db, 3, 0>; def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, fsqrt, v64db, v64db, 3, 8>; // Subtract. def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, fsub, v128db, v128db, 3, 0>; def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, fsub, v64db, v64db, 3, 8>; // Test data class immediate. let Defs = [CC] in { def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>; def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>; } } //===----------------------------------------------------------------------===// // Floating-point comparison //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { // Compare scalar. let Defs = [CC] in def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_fcmp, v64db, 3>; // Compare and signal scalar. let Defs = [CC] in def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, null_frag, v64db, 3>; // Compare equal. defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_vfcmpe, z_vfcmpes, v128g, v128db, 3, 0>; defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag, v64g, v64db, 3, 8>; // Compare high. defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_vfcmph, z_vfcmphs, v128g, v128db, 3, 0>; defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag, v64g, v64db, 3, 8>; // Compare high or equal. defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_vfcmphe, z_vfcmphes, v128g, v128db, 3, 0>; defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag, v64g, v64db, 3, 8>; } //===----------------------------------------------------------------------===// // Conversions //===----------------------------------------------------------------------===// def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>; //===----------------------------------------------------------------------===// // Replicating scalars //===----------------------------------------------------------------------===// // Define patterns for replicating a scalar GR32 into a vector of type TYPE. // INDEX is 8 minus the element size in bytes. class VectorReplicateScalar index> : Pat<(type (z_replicate GR32:$scalar)), (insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>; def : VectorReplicateScalar; def : VectorReplicateScalar; def : VectorReplicateScalar; // i64 replications are just a single isntruction. def : Pat<(v2i64 (z_replicate GR64:$scalar)), (VLVGP GR64:$scalar, GR64:$scalar)>; //===----------------------------------------------------------------------===// // Floating-point insertion and extraction //===----------------------------------------------------------------------===// // Moving 32-bit values between GPRs and FPRs can be done using VLVGF // and VLGVF. def LEFR : UnaryAliasVRS; def LFER : UnaryAliasVRS; def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>; def : Pat<(i32 (bitconvert (f32 VR32:$src))), (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>; // Floating-point values are stored in element 0 of the corresponding // vector register. Scalar to vector conversion is just a subreg and // scalar replication can just replicate element 0 of the vector register. multiclass ScalarToVectorFP { def : Pat<(vt (scalar_to_vector cls:$scalar)), (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>; def : Pat<(vt (z_replicate cls:$scalar)), (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg), 0)>; } defm : ScalarToVectorFP; defm : ScalarToVectorFP; // Match v2f64 insertions. The AddedComplexity counters the 3 added by // TableGen for the base register operand in VLVG-based integer insertions // and ensures that this version is strictly better. let AddedComplexity = 4 in { def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0), (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt, subreg_r64), VR128:$vec, 1)>; def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1), (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt, subreg_r64), 0)>; } // We extract floating-point element X by replicating (for elements other // than 0) and then taking a high subreg. The AddedComplexity counters the // 3 added by TableGen for the base register operand in VLGV-based integer // extractions and ensures that this version is strictly better. let AddedComplexity = 4 in { def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)), (EXTRACT_SUBREG VR128:$vec, subreg_r32)>; def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)), (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_r32)>; def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)), (EXTRACT_SUBREG VR128:$vec, subreg_r64)>; def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)), (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_r64)>; } //===----------------------------------------------------------------------===// // String instructions //===----------------------------------------------------------------------===// let Predicates = [FeatureVector] in { defm VFAEB : TernaryVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb, z_vfae_cc, v128b, v128b, 0, 0>; defm VFAEH : TernaryVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh, z_vfae_cc, v128h, v128h, 1, 0>; defm VFAEF : TernaryVRRbSPair<"vfaef", 0xE782, int_s390_vfaef, z_vfae_cc, v128f, v128f, 2, 0>; defm VFAEZB : TernaryVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb, z_vfaez_cc, v128b, v128b, 0, 2>; defm VFAEZH : TernaryVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh, z_vfaez_cc, v128h, v128h, 1, 2>; defm VFAEZF : TernaryVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf, z_vfaez_cc, v128f, v128f, 2, 2>; defm VFEEB : BinaryVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb, z_vfee_cc, v128b, v128b, 0, 0, 1>; defm VFEEH : BinaryVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh, z_vfee_cc, v128h, v128h, 1, 0, 1>; defm VFEEF : BinaryVRRbSPair<"vfeef", 0xE780, int_s390_vfeef, z_vfee_cc, v128f, v128f, 2, 0, 1>; defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb, z_vfeez_cc, v128b, v128b, 0, 2, 3>; defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh, z_vfeez_cc, v128h, v128h, 1, 2, 3>; defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf, z_vfeez_cc, v128f, v128f, 2, 2, 3>; defm VFENEB : BinaryVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb, z_vfene_cc, v128b, v128b, 0, 0, 1>; defm VFENEH : BinaryVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh, z_vfene_cc, v128h, v128h, 1, 0, 1>; defm VFENEF : BinaryVRRbSPair<"vfenef", 0xE781, int_s390_vfenef, z_vfene_cc, v128f, v128f, 2, 0, 1>; defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb, z_vfenez_cc, v128b, v128b, 0, 2, 3>; defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh, z_vfenez_cc, v128h, v128h, 1, 2, 3>; defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf, z_vfenez_cc, v128f, v128f, 2, 2, 3>; defm VISTRB : UnaryVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb, z_vistr_cc, v128b, v128b, 0>; defm VISTRH : UnaryVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh, z_vistr_cc, v128h, v128h, 1>; defm VISTRF : UnaryVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf, z_vistr_cc, v128f, v128f, 2>; defm VSTRCB : QuaternaryVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb, z_vstrc_cc, v128b, v128b, 0, 0>; defm VSTRCH : QuaternaryVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch, z_vstrc_cc, v128h, v128h, 1, 0>; defm VSTRCF : QuaternaryVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf, z_vstrc_cc, v128f, v128f, 2, 0>; defm VSTRCZB : QuaternaryVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb, z_vstrcz_cc, v128b, v128b, 0, 2>; defm VSTRCZH : QuaternaryVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh, z_vstrcz_cc, v128h, v128h, 1, 2>; defm VSTRCZF : QuaternaryVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf, z_vstrcz_cc, v128f, v128f, 2, 2>; }