//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops // and generates target-independent LLVM-IR. // The vectorizer uses the TargetTransformInfo analysis to estimate the costs // of instructions in order to estimate the profitability of vectorization. // // The loop vectorizer combines consecutive loop iterations into a single // 'wide' iteration. After this transformation the index is incremented // by the SIMD vector width, and not by one. // // This pass has three parts: // 1. The main loop pass that drives the different parts. // 2. LoopVectorizationLegality - A unit that checks for the legality // of the vectorization. // 3. InnerLoopVectorizer - A unit that performs the actual // widening of instructions. // 4. LoopVectorizationCostModel - A unit that checks for the profitability // of vectorization. It decides on the optimal vector width, which // can be one, if vectorization is not profitable. // //===----------------------------------------------------------------------===// // // The reduction-variable vectorization is based on the paper: // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. // // Variable uniformity checks are inspired by: // Karrenberg, R. and Hack, S. Whole Function Vectorization. // // The interleaved access vectorization is based on the paper: // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved // Data for SIMD // // Other ideas/concepts are from: // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. // // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of // Vectorizing Compilers. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Vectorize/LoopVectorize.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/Verifier.h" #include "llvm/Pass.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/LoopVersioning.h" #include "llvm/Transforms/Vectorize.h" #include #include #include using namespace llvm; using namespace llvm::PatternMatch; #define LV_NAME "loop-vectorize" #define DEBUG_TYPE LV_NAME STATISTIC(LoopsVectorized, "Number of loops vectorized"); STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); static cl::opt EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, cl::desc("Enable if-conversion during vectorization.")); /// We don't vectorize loops with a known constant trip count below this number. static cl::opt TinyTripCountVectorThreshold( "vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Don't vectorize loops with a constant " "trip count that is smaller than this " "value.")); static cl::opt MaximizeBandwidth( "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop.")); static cl::opt EnableInterleavedMemAccesses( "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop")); /// Maximum factor for an interleaved memory access. static cl::opt MaxInterleaveGroupFactor( "max-interleave-group-factor", cl::Hidden, cl::desc("Maximum factor for an interleaved access group (default = 8)"), cl::init(8)); /// We don't interleave loops with a known constant trip count below this /// number. static const unsigned TinyTripCountInterleaveThreshold = 128; static cl::opt ForceTargetNumScalarRegs( "force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers.")); static cl::opt ForceTargetNumVectorRegs( "force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers.")); /// Maximum vectorization interleave count. static const unsigned MaxInterleaveFactor = 16; static cl::opt ForceTargetMaxScalarInterleaveFactor( "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops.")); static cl::opt ForceTargetMaxVectorInterleaveFactor( "force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops.")); static cl::opt ForceTargetInstructionCost( "force-target-instruction-cost", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's expected cost for " "an instruction to a single constant value. Mostly " "useful for getting consistent testing.")); static cl::opt SmallLoopCost( "small-loop-cost", cl::init(20), cl::Hidden, cl::desc( "The cost of a loop that is considered 'small' by the interleaver.")); static cl::opt LoopVectorizeWithBlockFrequency( "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions.")); // Runtime interleave loops for load/store throughput. static cl::opt EnableLoadStoreRuntimeInterleave( "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc( "Enable runtime interleaving until load/store ports are saturated")); /// The number of stores in a loop that are allowed to need predication. static cl::opt NumberOfStoresToPredicate( "vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if.")); static cl::opt EnableIndVarRegisterHeur( "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving")); static cl::opt EnableCondStoresVectorization( "enable-cond-stores-vec", cl::init(false), cl::Hidden, cl::desc("Enable if predication of stores during vectorization.")); static cl::opt MaxNestedScalarReductionIC( "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop.")); static cl::opt PragmaVectorizeMemoryCheckThreshold( "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks with a " "vectorize(enable) pragma.")); static cl::opt VectorizeSCEVCheckThreshold( "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, cl::desc("The maximum number of SCEV checks allowed.")); static cl::opt PragmaVectorizeSCEVCheckThreshold( "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum number of SCEV checks allowed with a " "vectorize(enable) pragma")); namespace { // Forward declarations. class LoopVectorizeHints; class LoopVectorizationLegality; class LoopVectorizationCostModel; class LoopVectorizationRequirements; /// \brief This modifies LoopAccessReport to initialize message with /// loop-vectorizer-specific part. class VectorizationReport : public LoopAccessReport { public: VectorizationReport(Instruction *I = nullptr) : LoopAccessReport("loop not vectorized: ", I) {} /// \brief This allows promotion of the loop-access analysis report into the /// loop-vectorizer report. It modifies the message to add the /// loop-vectorizer-specific part of the message. explicit VectorizationReport(const LoopAccessReport &R) : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), R.getInstr()) {} }; /// A helper function for converting Scalar types to vector types. /// If the incoming type is void, we return void. If the VF is 1, we return /// the scalar type. static Type *ToVectorTy(Type *Scalar, unsigned VF) { if (Scalar->isVoidTy() || VF == 1) return Scalar; return VectorType::get(Scalar, VF); } /// A helper function that returns GEP instruction and knows to skip a /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination /// pointee types of the 'bitcast' have the same size. /// For example: /// bitcast double** %var to i64* - can be skipped /// bitcast double** %var to i8* - can not static GetElementPtrInst *getGEPInstruction(Value *Ptr) { if (isa(Ptr)) return cast(Ptr); if (isa(Ptr) && isa(cast(Ptr)->getOperand(0))) { Type *BitcastTy = Ptr->getType(); Type *GEPTy = cast(Ptr)->getSrcTy(); if (!isa(BitcastTy) || !isa(GEPTy)) return nullptr; Type *Pointee1Ty = cast(BitcastTy)->getPointerElementType(); Type *Pointee2Ty = cast(GEPTy)->getPointerElementType(); const DataLayout &DL = cast(Ptr)->getModule()->getDataLayout(); if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) return cast(cast(Ptr)->getOperand(0)); } return nullptr; } /// InnerLoopVectorizer vectorizes loops which contain only one basic /// block to a specified vectorization factor (VF). /// This class performs the widening of scalars into vectors, or multiple /// scalars. This class also implements the following features: /// * It inserts an epilogue loop for handling loops that don't have iteration /// counts that are known to be a multiple of the vectorization factor. /// * It handles the code generation for reduction variables. /// * Scalarization (implementation using scalars) of un-vectorizable /// instructions. /// InnerLoopVectorizer does not perform any vectorization-legality /// checks, and relies on the caller to check for the different legality /// aspects. The InnerLoopVectorizer relies on the /// LoopVectorizationLegality class to provide information about the induction /// and reduction variables that were found to a given vectorization factor. class InnerLoopVectorizer { public: InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, unsigned VecWidth, unsigned UnrollFactor) : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), AC(AC), VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()), Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr), VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {} // Perform the actual loop widening (vectorization). // MinimumBitWidths maps scalar integer values to the smallest bitwidth they // can be validly truncated to. The cost model has assumed this truncation // will happen when vectorizing. VecValuesToIgnore contains scalar values // that the cost model has chosen to ignore because they will not be // vectorized. void vectorize(LoopVectorizationLegality *L, const MapVector &MinimumBitWidths, SmallPtrSetImpl &VecValuesToIgnore) { MinBWs = &MinimumBitWidths; ValuesNotWidened = &VecValuesToIgnore; Legal = L; // Create a new empty loop. Unlink the old loop and connect the new one. createEmptyLoop(); // Widen each instruction in the old loop to a new one in the new loop. // Use the Legality module to find the induction and reduction variables. vectorizeLoop(); } // Return true if any runtime check is added. bool areSafetyChecksAdded() { return AddedSafetyChecks; } virtual ~InnerLoopVectorizer() {} protected: /// A small list of PHINodes. typedef SmallVector PhiVector; /// When we unroll loops we have multiple vector values for each scalar. /// This data structure holds the unrolled and vectorized values that /// originated from one scalar instruction. typedef SmallVector VectorParts; // When we if-convert we need to create edge masks. We have to cache values // so that we don't end up with exponential recursion/IR. typedef DenseMap, VectorParts> EdgeMaskCache; /// Create an empty loop, based on the loop ranges of the old loop. void createEmptyLoop(); /// Set up the values of the IVs correctly when exiting the vector loop. void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, Value *CountRoundDown, Value *EndValue, BasicBlock *MiddleBlock); /// Create a new induction variable inside L. PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, Value *Step, Instruction *DL); /// Copy and widen the instructions from the old loop. virtual void vectorizeLoop(); /// Fix a first-order recurrence. This is the second phase of vectorizing /// this phi node. void fixFirstOrderRecurrence(PHINode *Phi); /// \brief The Loop exit block may have single value PHI nodes where the /// incoming value is 'Undef'. While vectorizing we only handled real values /// that were defined inside the loop. Here we fix the 'undef case'. /// See PR14725. void fixLCSSAPHIs(); /// Shrinks vector element sizes based on information in "MinBWs". void truncateToMinimalBitwidths(); /// A helper function that computes the predicate of the block BB, assuming /// that the header block of the loop is set to True. It returns the *entry* /// mask for the block BB. VectorParts createBlockInMask(BasicBlock *BB); /// A helper function that computes the predicate of the edge between SRC /// and DST. VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); /// A helper function to vectorize a single BB within the innermost loop. void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); /// Vectorize a single PHINode in a block. This method handles the induction /// variable canonicalization. It supports both VF = 1 for unrolled loops and /// arbitrary length vectors. void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF, unsigned VF, PhiVector *PV); /// Insert the new loop to the loop hierarchy and pass manager /// and update the analysis passes. void updateAnalysis(); /// This instruction is un-vectorizable. Implement it as a sequence /// of scalars. If \p IfPredicateStore is true we need to 'hide' each /// scalarized instruction behind an if block predicated on the control /// dependence of the instruction. virtual void scalarizeInstruction(Instruction *Instr, bool IfPredicateStore = false); /// Vectorize Load and Store instructions, virtual void vectorizeMemoryInstruction(Instruction *Instr); /// Create a broadcast instruction. This method generates a broadcast /// instruction (shuffle) for loop invariant values and for the induction /// value. If this is the induction variable then we extend it to N, N+1, ... /// this is needed because each iteration in the loop corresponds to a SIMD /// element. virtual Value *getBroadcastInstrs(Value *V); /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) /// to each vector element of Val. The sequence starts at StartIndex. virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); /// Compute scalar induction steps. \p ScalarIV is the scalar induction /// variable on which to base the steps, \p Step is the size of the step, and /// \p EntryVal is the value from the original loop that maps to the steps. /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it /// can be a truncate instruction). void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal); /// Create a vector induction phi node based on an existing scalar one. This /// currently only works for integer induction variables with a constant /// step. If \p TruncType is non-null, instead of widening the original IV, /// we widen a version of the IV truncated to \p TruncType. void createVectorIntInductionPHI(const InductionDescriptor &II, VectorParts &Entry, IntegerType *TruncType); /// Widen an integer induction variable \p IV. If \p Trunc is provided, the /// induction variable will first be truncated to the corresponding type. The /// widened values are placed in \p Entry. void widenIntInduction(PHINode *IV, VectorParts &Entry, TruncInst *Trunc = nullptr); /// When we go over instructions in the basic block we rely on previous /// values within the current basic block or on loop invariant values. /// When we widen (vectorize) values we place them in the map. If the values /// are not within the map, they have to be loop invariant, so we simply /// broadcast them into a vector. VectorParts &getVectorValue(Value *V); /// Try to vectorize the interleaved access group that \p Instr belongs to. void vectorizeInterleaveGroup(Instruction *Instr); /// Generate a shuffle sequence that will reverse the vector Vec. virtual Value *reverseVector(Value *Vec); /// Returns (and creates if needed) the original loop trip count. Value *getOrCreateTripCount(Loop *NewLoop); /// Returns (and creates if needed) the trip count of the widened loop. Value *getOrCreateVectorTripCount(Loop *NewLoop); /// Emit a bypass check to see if the trip count would overflow, or we /// wouldn't have enough iterations to execute one vector loop. void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); /// Emit a bypass check to see if the vector trip count is nonzero. void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); /// Emit a bypass check to see if all of the SCEV assumptions we've /// had to make are correct. void emitSCEVChecks(Loop *L, BasicBlock *Bypass); /// Emit bypass checks to check any memory assumptions we may have made. void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); /// Add additional metadata to \p To that was not present on \p Orig. /// /// Currently this is used to add the noalias annotations based on the /// inserted memchecks. Use this for instructions that are *cloned* into the /// vector loop. void addNewMetadata(Instruction *To, const Instruction *Orig); /// Add metadata from one instruction to another. /// /// This includes both the original MDs from \p From and additional ones (\see /// addNewMetadata). Use this for *newly created* instructions in the vector /// loop. void addMetadata(Instruction *To, Instruction *From); /// \brief Similar to the previous function but it adds the metadata to a /// vector of instructions. void addMetadata(ArrayRef To, Instruction *From); /// This is a helper class that holds the vectorizer state. It maps scalar /// instructions to vector instructions. When the code is 'unrolled' then /// then a single scalar value is mapped to multiple vector parts. The parts /// are stored in the VectorPart type. struct ValueMap { /// C'tor. UnrollFactor controls the number of vectors ('parts') that /// are mapped. ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} /// \return True if 'Key' is saved in the Value Map. bool has(Value *Key) const { return MapStorage.count(Key); } /// Initializes a new entry in the map. Sets all of the vector parts to the /// save value in 'Val'. /// \return A reference to a vector with splat values. VectorParts &splat(Value *Key, Value *Val) { VectorParts &Entry = MapStorage[Key]; Entry.assign(UF, Val); return Entry; } ///\return A reference to the value that is stored at 'Key'. VectorParts &get(Value *Key) { VectorParts &Entry = MapStorage[Key]; if (Entry.empty()) Entry.resize(UF); assert(Entry.size() == UF); return Entry; } private: /// The unroll factor. Each entry in the map stores this number of vector /// elements. unsigned UF; /// Map storage. We use std::map and not DenseMap because insertions to a /// dense map invalidates its iterators. std::map MapStorage; }; /// The original loop. Loop *OrigLoop; /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies /// dynamic knowledge to simplify SCEV expressions and converts them to a /// more usable form. PredicatedScalarEvolution &PSE; /// Loop Info. LoopInfo *LI; /// Dominator Tree. DominatorTree *DT; /// Alias Analysis. AliasAnalysis *AA; /// Target Library Info. const TargetLibraryInfo *TLI; /// Target Transform Info. const TargetTransformInfo *TTI; /// Assumption Cache. AssumptionCache *AC; /// \brief LoopVersioning. It's only set up (non-null) if memchecks were /// used. /// /// This is currently only used to add no-alias metadata based on the /// memchecks. The actually versioning is performed manually. std::unique_ptr LVer; /// The vectorization SIMD factor to use. Each vector will have this many /// vector elements. unsigned VF; protected: /// The vectorization unroll factor to use. Each scalar is vectorized to this /// many different vector instructions. unsigned UF; /// The builder that we use IRBuilder<> Builder; // --- Vectorization state --- /// The vector-loop preheader. BasicBlock *LoopVectorPreHeader; /// The scalar-loop preheader. BasicBlock *LoopScalarPreHeader; /// Middle Block between the vector and the scalar. BasicBlock *LoopMiddleBlock; /// The ExitBlock of the scalar loop. BasicBlock *LoopExitBlock; /// The vector loop body. BasicBlock *LoopVectorBody; /// The scalar loop body. BasicBlock *LoopScalarBody; /// A list of all bypass blocks. The first block is the entry of the loop. SmallVector LoopBypassBlocks; /// The new Induction variable which was added to the new block. PHINode *Induction; /// The induction variable of the old basic block. PHINode *OldInduction; /// Maps scalars to widened vectors. ValueMap WidenMap; /// A map of induction variables from the original loop to their /// corresponding VF * UF scalarized values in the vectorized loop. The /// purpose of ScalarIVMap is similar to that of WidenMap. Whereas WidenMap /// maps original loop values to their vector versions in the new loop, /// ScalarIVMap maps induction variables from the original loop that are not /// vectorized to their scalar equivalents in the vector loop. Maintaining a /// separate map for scalarized induction variables allows us to avoid /// unnecessary scalar-to-vector-to-scalar conversions. DenseMap> ScalarIVMap; /// Store instructions that should be predicated, as a pair /// SmallVector, 4> PredicatedStores; EdgeMaskCache MaskCache; /// Trip count of the original loop. Value *TripCount; /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) Value *VectorTripCount; /// Map of scalar integer values to the smallest bitwidth they can be legally /// represented as. The vector equivalents of these values should be truncated /// to this type. const MapVector *MinBWs; /// A set of values that should not be widened. This is taken from /// VecValuesToIgnore in the cost model. SmallPtrSetImpl *ValuesNotWidened; LoopVectorizationLegality *Legal; // Record whether runtime checks are added. bool AddedSafetyChecks; }; class InnerLoopUnroller : public InnerLoopVectorizer { public: InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, unsigned UnrollFactor) : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1, UnrollFactor) {} private: void scalarizeInstruction(Instruction *Instr, bool IfPredicateStore = false) override; void vectorizeMemoryInstruction(Instruction *Instr) override; Value *getBroadcastInstrs(Value *V) override; Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; Value *reverseVector(Value *Vec) override; }; /// \brief Look for a meaningful debug location on the instruction or it's /// operands. static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { if (!I) return I; DebugLoc Empty; if (I->getDebugLoc() != Empty) return I; for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { if (Instruction *OpInst = dyn_cast(*OI)) if (OpInst->getDebugLoc() != Empty) return OpInst; } return I; } /// \brief Set the debug location in the builder using the debug location in the /// instruction. static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { if (const Instruction *Inst = dyn_cast_or_null(Ptr)) B.SetCurrentDebugLocation(Inst->getDebugLoc()); else B.SetCurrentDebugLocation(DebugLoc()); } #ifndef NDEBUG /// \return string containing a file name and a line # for the given loop. static std::string getDebugLocString(const Loop *L) { std::string Result; if (L) { raw_string_ostream OS(Result); if (const DebugLoc LoopDbgLoc = L->getStartLoc()) LoopDbgLoc.print(OS); else // Just print the module name. OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); OS.flush(); } return Result; } #endif void InnerLoopVectorizer::addNewMetadata(Instruction *To, const Instruction *Orig) { // If the loop was versioned with memchecks, add the corresponding no-alias // metadata. if (LVer && (isa(Orig) || isa(Orig))) LVer->annotateInstWithNoAlias(To, Orig); } void InnerLoopVectorizer::addMetadata(Instruction *To, Instruction *From) { propagateMetadata(To, From); addNewMetadata(To, From); } void InnerLoopVectorizer::addMetadata(ArrayRef To, Instruction *From) { for (Value *V : To) { if (Instruction *I = dyn_cast(V)) addMetadata(I, From); } } /// \brief The group of interleaved loads/stores sharing the same stride and /// close to each other. /// /// Each member in this group has an index starting from 0, and the largest /// index should be less than interleaved factor, which is equal to the absolute /// value of the access's stride. /// /// E.g. An interleaved load group of factor 4: /// for (unsigned i = 0; i < 1024; i+=4) { /// a = A[i]; // Member of index 0 /// b = A[i+1]; // Member of index 1 /// d = A[i+3]; // Member of index 3 /// ... /// } /// /// An interleaved store group of factor 4: /// for (unsigned i = 0; i < 1024; i+=4) { /// ... /// A[i] = a; // Member of index 0 /// A[i+1] = b; // Member of index 1 /// A[i+2] = c; // Member of index 2 /// A[i+3] = d; // Member of index 3 /// } /// /// Note: the interleaved load group could have gaps (missing members), but /// the interleaved store group doesn't allow gaps. class InterleaveGroup { public: InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { assert(Align && "The alignment should be non-zero"); Factor = std::abs(Stride); assert(Factor > 1 && "Invalid interleave factor"); Reverse = Stride < 0; Members[0] = Instr; } bool isReverse() const { return Reverse; } unsigned getFactor() const { return Factor; } unsigned getAlignment() const { return Align; } unsigned getNumMembers() const { return Members.size(); } /// \brief Try to insert a new member \p Instr with index \p Index and /// alignment \p NewAlign. The index is related to the leader and it could be /// negative if it is the new leader. /// /// \returns false if the instruction doesn't belong to the group. bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { assert(NewAlign && "The new member's alignment should be non-zero"); int Key = Index + SmallestKey; // Skip if there is already a member with the same index. if (Members.count(Key)) return false; if (Key > LargestKey) { // The largest index is always less than the interleave factor. if (Index >= static_cast(Factor)) return false; LargestKey = Key; } else if (Key < SmallestKey) { // The largest index is always less than the interleave factor. if (LargestKey - Key >= static_cast(Factor)) return false; SmallestKey = Key; } // It's always safe to select the minimum alignment. Align = std::min(Align, NewAlign); Members[Key] = Instr; return true; } /// \brief Get the member with the given index \p Index /// /// \returns nullptr if contains no such member. Instruction *getMember(unsigned Index) const { int Key = SmallestKey + Index; if (!Members.count(Key)) return nullptr; return Members.find(Key)->second; } /// \brief Get the index for the given member. Unlike the key in the member /// map, the index starts from 0. unsigned getIndex(Instruction *Instr) const { for (auto I : Members) if (I.second == Instr) return I.first - SmallestKey; llvm_unreachable("InterleaveGroup contains no such member"); } Instruction *getInsertPos() const { return InsertPos; } void setInsertPos(Instruction *Inst) { InsertPos = Inst; } private: unsigned Factor; // Interleave Factor. bool Reverse; unsigned Align; DenseMap Members; int SmallestKey; int LargestKey; // To avoid breaking dependences, vectorized instructions of an interleave // group should be inserted at either the first load or the last store in // program order. // // E.g. %even = load i32 // Insert Position // %add = add i32 %even // Use of %even // %odd = load i32 // // store i32 %even // %odd = add i32 // Def of %odd // store i32 %odd // Insert Position Instruction *InsertPos; }; /// \brief Drive the analysis of interleaved memory accesses in the loop. /// /// Use this class to analyze interleaved accesses only when we can vectorize /// a loop. Otherwise it's meaningless to do analysis as the vectorization /// on interleaved accesses is unsafe. /// /// The analysis collects interleave groups and records the relationships /// between the member and the group in a map. class InterleavedAccessInfo { public: InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, DominatorTree *DT, LoopInfo *LI) : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), RequiresScalarEpilogue(false) {} ~InterleavedAccessInfo() { SmallSet DelSet; // Avoid releasing a pointer twice. for (auto &I : InterleaveGroupMap) DelSet.insert(I.second); for (auto *Ptr : DelSet) delete Ptr; } /// \brief Analyze the interleaved accesses and collect them in interleave /// groups. Substitute symbolic strides using \p Strides. void analyzeInterleaving(const ValueToValueMap &Strides); /// \brief Check if \p Instr belongs to any interleave group. bool isInterleaved(Instruction *Instr) const { return InterleaveGroupMap.count(Instr); } /// \brief Return the maximum interleave factor of all interleaved groups. unsigned getMaxInterleaveFactor() const { unsigned MaxFactor = 1; for (auto &Entry : InterleaveGroupMap) MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); return MaxFactor; } /// \brief Get the interleave group that \p Instr belongs to. /// /// \returns nullptr if doesn't have such group. InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { if (InterleaveGroupMap.count(Instr)) return InterleaveGroupMap.find(Instr)->second; return nullptr; } /// \brief Returns true if an interleaved group that may access memory /// out-of-bounds requires a scalar epilogue iteration for correctness. bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } /// \brief Initialize the LoopAccessInfo used for dependence checking. void setLAI(const LoopAccessInfo *Info) { LAI = Info; } private: /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. /// Simplifies SCEV expressions in the context of existing SCEV assumptions. /// The interleaved access analysis can also add new predicates (for example /// by versioning strides of pointers). PredicatedScalarEvolution &PSE; Loop *TheLoop; DominatorTree *DT; LoopInfo *LI; const LoopAccessInfo *LAI; /// True if the loop may contain non-reversed interleaved groups with /// out-of-bounds accesses. We ensure we don't speculatively access memory /// out-of-bounds by executing at least one scalar epilogue iteration. bool RequiresScalarEpilogue; /// Holds the relationships between the members and the interleave group. DenseMap InterleaveGroupMap; /// Holds dependences among the memory accesses in the loop. It maps a source /// access to a set of dependent sink accesses. DenseMap> Dependences; /// \brief The descriptor for a strided memory access. struct StrideDescriptor { StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, unsigned Align) : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} StrideDescriptor() = default; // The access's stride. It is negative for a reverse access. int64_t Stride = 0; const SCEV *Scev = nullptr; // The scalar expression of this access uint64_t Size = 0; // The size of the memory object. unsigned Align = 0; // The alignment of this access. }; /// \brief A type for holding instructions and their stride descriptors. typedef std::pair StrideEntry; /// \brief Create a new interleave group with the given instruction \p Instr, /// stride \p Stride and alignment \p Align. /// /// \returns the newly created interleave group. InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, unsigned Align) { assert(!InterleaveGroupMap.count(Instr) && "Already in an interleaved access group"); InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); return InterleaveGroupMap[Instr]; } /// \brief Release the group and remove all the relationships. void releaseGroup(InterleaveGroup *Group) { for (unsigned i = 0; i < Group->getFactor(); i++) if (Instruction *Member = Group->getMember(i)) InterleaveGroupMap.erase(Member); delete Group; } /// \brief Collect all the accesses with a constant stride in program order. void collectConstStrideAccesses( MapVector &AccessStrideInfo, const ValueToValueMap &Strides); /// \brief Returns true if \p Stride is allowed in an interleaved group. static bool isStrided(int Stride) { unsigned Factor = std::abs(Stride); return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; } /// \brief Returns true if \p BB is a predicated block. bool isPredicated(BasicBlock *BB) const { return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); } /// \brief Returns true if LoopAccessInfo can be used for dependence queries. bool areDependencesValid() const { return LAI && LAI->getDepChecker().getDependences(); } /// \brief Returns true if memory accesses \p B and \p A can be reordered, if /// necessary, when constructing interleaved groups. /// /// \p B must precede \p A in program order. We return false if reordering is /// not necessary or is prevented because \p B and \p A may be dependent. bool canReorderMemAccessesForInterleavedGroups(StrideEntry *B, StrideEntry *A) const { // Code motion for interleaved accesses can potentially hoist strided loads // and sink strided stores. The code below checks the legality of the // following two conditions: // // 1. Potentially moving a strided load (A) before any store (B) that // precedes A, or // // 2. Potentially moving a strided store (B) after any load or store (A) // that B precedes. // // It's legal to reorder B and A if we know there isn't a dependence from B // to A. Note that this determination is conservative since some // dependences could potentially be reordered safely. // B is potentially the source of a dependence. auto *Src = B->first; auto SrcDes = B->second; // A is potentially the sink of a dependence. auto *Sink = A->first; auto SinkDes = A->second; // Code motion for interleaved accesses can't violate WAR dependences. // Thus, reordering is legal if the source isn't a write. if (!Src->mayWriteToMemory()) return true; // At least one of the accesses must be strided. if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) return true; // If dependence information is not available from LoopAccessInfo, // conservatively assume the instructions can't be reordered. if (!areDependencesValid()) return false; // If we know there is a dependence from source to sink, assume the // instructions can't be reordered. Otherwise, reordering is legal. return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); } /// \brief Collect the dependences from LoopAccessInfo. /// /// We process the dependences once during the interleaved access analysis to /// enable constant-time dependence queries. void collectDependences() { if (!areDependencesValid()) return; auto *Deps = LAI->getDepChecker().getDependences(); for (auto Dep : *Deps) Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); } }; /// Utility class for getting and setting loop vectorizer hints in the form /// of loop metadata. /// This class keeps a number of loop annotations locally (as member variables) /// and can, upon request, write them back as metadata on the loop. It will /// initially scan the loop for existing metadata, and will update the local /// values based on information in the loop. /// We cannot write all values to metadata, as the mere presence of some info, /// for example 'force', means a decision has been made. So, we need to be /// careful NOT to add them if the user hasn't specifically asked so. class LoopVectorizeHints { enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; /// Hint - associates name and validation with the hint value. struct Hint { const char *Name; unsigned Value; // This may have to change for non-numeric values. HintKind Kind; Hint(const char *Name, unsigned Value, HintKind Kind) : Name(Name), Value(Value), Kind(Kind) {} bool validate(unsigned Val) { switch (Kind) { case HK_WIDTH: return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; case HK_UNROLL: return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; case HK_FORCE: return (Val <= 1); } return false; } }; /// Vectorization width. Hint Width; /// Vectorization interleave factor. Hint Interleave; /// Vectorization forced Hint Force; /// Return the loop metadata prefix. static StringRef Prefix() { return "llvm.loop."; } /// True if there is any unsafe math in the loop. bool PotentiallyUnsafe; public: enum ForceKind { FK_Undefined = -1, ///< Not selected. FK_Disabled = 0, ///< Forcing disabled. FK_Enabled = 1, ///< Forcing enabled. }; LoopVectorizeHints(const Loop *L, bool DisableInterleaving) : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), Interleave("interleave.count", DisableInterleaving, HK_UNROLL), Force("vectorize.enable", FK_Undefined, HK_FORCE), PotentiallyUnsafe(false), TheLoop(L) { // Populate values with existing loop metadata. getHintsFromMetadata(); // force-vector-interleave overrides DisableInterleaving. if (VectorizerParams::isInterleaveForced()) Interleave.Value = VectorizerParams::VectorizationInterleave; DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() << "LV: Interleaving disabled by the pass manager\n"); } /// Mark the loop L as already vectorized by setting the width to 1. void setAlreadyVectorized() { Width.Value = Interleave.Value = 1; Hint Hints[] = {Width, Interleave}; writeHintsToMetadata(Hints); } bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { if (getForce() == LoopVectorizeHints::FK_Disabled) { DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); emitOptimizationRemarkAnalysis(F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), emitRemark()); return false; } if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); emitOptimizationRemarkAnalysis(F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), emitRemark()); return false; } if (getWidth() == 1 && getInterleave() == 1) { // FIXME: Add a separate metadata to indicate when the loop has already // been vectorized instead of setting width and count to 1. DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); // FIXME: Add interleave.disable metadata. This will allow // vectorize.disable to be used without disabling the pass and errors // to differentiate between disabled vectorization and a width of 1. emitOptimizationRemarkAnalysis( F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), "loop not vectorized: vectorization and interleaving are explicitly " "disabled, or vectorize width and interleave count are both set to " "1"); return false; } return true; } /// Dumps all the hint information. std::string emitRemark() const { VectorizationReport R; if (Force.Value == LoopVectorizeHints::FK_Disabled) R << "vectorization is explicitly disabled"; else { R << "use -Rpass-analysis=loop-vectorize for more info"; if (Force.Value == LoopVectorizeHints::FK_Enabled) { R << " (Force=true"; if (Width.Value != 0) R << ", Vector Width=" << Width.Value; if (Interleave.Value != 0) R << ", Interleave Count=" << Interleave.Value; R << ")"; } } return R.str(); } unsigned getWidth() const { return Width.Value; } unsigned getInterleave() const { return Interleave.Value; } enum ForceKind getForce() const { return (ForceKind)Force.Value; } /// \brief If hints are provided that force vectorization, use the AlwaysPrint /// pass name to force the frontend to print the diagnostic. const char *vectorizeAnalysisPassName() const { if (getWidth() == 1) return LV_NAME; if (getForce() == LoopVectorizeHints::FK_Disabled) return LV_NAME; if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) return LV_NAME; return DiagnosticInfoOptimizationRemarkAnalysis::AlwaysPrint; } bool allowReordering() const { // When enabling loop hints are provided we allow the vectorizer to change // the order of operations that is given by the scalar loop. This is not // enabled by default because can be unsafe or inefficient. For example, // reordering floating-point operations will change the way round-off // error accumulates in the loop. return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; } bool isPotentiallyUnsafe() const { // Avoid FP vectorization if the target is unsure about proper support. // This may be related to the SIMD unit in the target not handling // IEEE 754 FP ops properly, or bad single-to-double promotions. // Otherwise, a sequence of vectorized loops, even without reduction, // could lead to different end results on the destination vectors. return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; } void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } private: /// Find hints specified in the loop metadata and update local values. void getHintsFromMetadata() { MDNode *LoopID = TheLoop->getLoopID(); if (!LoopID) return; // First operand should refer to the loop id itself. assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { const MDString *S = nullptr; SmallVector Args; // The expected hint is either a MDString or a MDNode with the first // operand a MDString. if (const MDNode *MD = dyn_cast(LoopID->getOperand(i))) { if (!MD || MD->getNumOperands() == 0) continue; S = dyn_cast(MD->getOperand(0)); for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) Args.push_back(MD->getOperand(i)); } else { S = dyn_cast(LoopID->getOperand(i)); assert(Args.size() == 0 && "too many arguments for MDString"); } if (!S) continue; // Check if the hint starts with the loop metadata prefix. StringRef Name = S->getString(); if (Args.size() == 1) setHint(Name, Args[0]); } } /// Checks string hint with one operand and set value if valid. void setHint(StringRef Name, Metadata *Arg) { if (!Name.startswith(Prefix())) return; Name = Name.substr(Prefix().size(), StringRef::npos); const ConstantInt *C = mdconst::dyn_extract(Arg); if (!C) return; unsigned Val = C->getZExtValue(); Hint *Hints[] = {&Width, &Interleave, &Force}; for (auto H : Hints) { if (Name == H->Name) { if (H->validate(Val)) H->Value = Val; else DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); break; } } } /// Create a new hint from name / value pair. MDNode *createHintMetadata(StringRef Name, unsigned V) const { LLVMContext &Context = TheLoop->getHeader()->getContext(); Metadata *MDs[] = {MDString::get(Context, Name), ConstantAsMetadata::get( ConstantInt::get(Type::getInt32Ty(Context), V))}; return MDNode::get(Context, MDs); } /// Matches metadata with hint name. bool matchesHintMetadataName(MDNode *Node, ArrayRef HintTypes) { MDString *Name = dyn_cast(Node->getOperand(0)); if (!Name) return false; for (auto H : HintTypes) if (Name->getString().endswith(H.Name)) return true; return false; } /// Sets current hints into loop metadata, keeping other values intact. void writeHintsToMetadata(ArrayRef HintTypes) { if (HintTypes.size() == 0) return; // Reserve the first element to LoopID (see below). SmallVector MDs(1); // If the loop already has metadata, then ignore the existing operands. MDNode *LoopID = TheLoop->getLoopID(); if (LoopID) { for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { MDNode *Node = cast(LoopID->getOperand(i)); // If node in update list, ignore old value. if (!matchesHintMetadataName(Node, HintTypes)) MDs.push_back(Node); } } // Now, add the missing hints. for (auto H : HintTypes) MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); // Replace current metadata node with new one. LLVMContext &Context = TheLoop->getHeader()->getContext(); MDNode *NewLoopID = MDNode::get(Context, MDs); // Set operand 0 to refer to the loop id itself. NewLoopID->replaceOperandWith(0, NewLoopID); TheLoop->setLoopID(NewLoopID); } /// The loop these hints belong to. const Loop *TheLoop; }; static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, const LoopVectorizeHints &Hints, const LoopAccessReport &Message) { const char *Name = Hints.vectorizeAnalysisPassName(); LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); } static void emitMissedWarning(Function *F, Loop *L, const LoopVectorizeHints &LH) { emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), LH.emitRemark()); if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { if (LH.getWidth() != 1) emitLoopVectorizeWarning( F->getContext(), *F, L->getStartLoc(), "failed explicitly specified loop vectorization"); else if (LH.getInterleave() != 1) emitLoopInterleaveWarning( F->getContext(), *F, L->getStartLoc(), "failed explicitly specified loop interleaving"); } } /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and /// to what vectorization factor. /// This class does not look at the profitability of vectorization, only the /// legality. This class has two main kinds of checks: /// * Memory checks - The code in canVectorizeMemory checks if vectorization /// will change the order of memory accesses in a way that will change the /// correctness of the program. /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory /// checks for a number of different conditions, such as the availability of a /// single induction variable, that all types are supported and vectorize-able, /// etc. This code reflects the capabilities of InnerLoopVectorizer. /// This class is also used by InnerLoopVectorizer for identifying /// induction variable and the different reduction variables. class LoopVectorizationLegality { public: LoopVectorizationLegality( Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, const TargetTransformInfo *TTI, std::function *GetLAA, LoopInfo *LI, LoopVectorizationRequirements *R, LoopVectorizeHints *H) : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), TTI(TTI), DT(DT), GetLAA(GetLAA), LAI(nullptr), InterleaveInfo(PSE, L, DT, LI), Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), Requirements(R), Hints(H) {} /// ReductionList contains the reduction descriptors for all /// of the reductions that were found in the loop. typedef DenseMap ReductionList; /// InductionList saves induction variables and maps them to the /// induction descriptor. typedef MapVector InductionList; /// RecurrenceSet contains the phi nodes that are recurrences other than /// inductions and reductions. typedef SmallPtrSet RecurrenceSet; /// Returns true if it is legal to vectorize this loop. /// This does not mean that it is profitable to vectorize this /// loop, only that it is legal to do so. bool canVectorize(); /// Returns the Induction variable. PHINode *getInduction() { return Induction; } /// Returns the reduction variables found in the loop. ReductionList *getReductionVars() { return &Reductions; } /// Returns the induction variables found in the loop. InductionList *getInductionVars() { return &Inductions; } /// Return the first-order recurrences found in the loop. RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } /// Returns the widest induction type. Type *getWidestInductionType() { return WidestIndTy; } /// Returns True if V is an induction variable in this loop. bool isInductionVariable(const Value *V); /// Returns True if PN is a reduction variable in this loop. bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } /// Returns True if Phi is a first-order recurrence in this loop. bool isFirstOrderRecurrence(const PHINode *Phi); /// Return true if the block BB needs to be predicated in order for the loop /// to be vectorized. bool blockNeedsPredication(BasicBlock *BB); /// Check if this pointer is consecutive when vectorizing. This happens /// when the last index of the GEP is the induction variable, or that the /// pointer itself is an induction variable. /// This check allows us to vectorize A[idx] into a wide load/store. /// Returns: /// 0 - Stride is unknown or non-consecutive. /// 1 - Address is consecutive. /// -1 - Address is consecutive, and decreasing. int isConsecutivePtr(Value *Ptr); /// Returns true if the value V is uniform within the loop. bool isUniform(Value *V); /// Returns true if this instruction will remain scalar after vectorization. bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } /// Returns the information that we collected about runtime memory check. const RuntimePointerChecking *getRuntimePointerChecking() const { return LAI->getRuntimePointerChecking(); } const LoopAccessInfo *getLAI() const { return LAI; } /// \brief Check if \p Instr belongs to any interleaved access group. bool isAccessInterleaved(Instruction *Instr) { return InterleaveInfo.isInterleaved(Instr); } /// \brief Return the maximum interleave factor of all interleaved groups. unsigned getMaxInterleaveFactor() const { return InterleaveInfo.getMaxInterleaveFactor(); } /// \brief Get the interleaved access group that \p Instr belongs to. const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { return InterleaveInfo.getInterleaveGroup(Instr); } /// \brief Returns true if an interleaved group requires a scalar iteration /// to handle accesses with gaps. bool requiresScalarEpilogue() const { return InterleaveInfo.requiresScalarEpilogue(); } unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } bool hasStride(Value *V) { return LAI->hasStride(V); } /// Returns true if the target machine supports masked store operation /// for the given \p DataType and kind of access to \p Ptr. bool isLegalMaskedStore(Type *DataType, Value *Ptr) { return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); } /// Returns true if the target machine supports masked load operation /// for the given \p DataType and kind of access to \p Ptr. bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); } /// Returns true if the target machine supports masked scatter operation /// for the given \p DataType. bool isLegalMaskedScatter(Type *DataType) { return TTI->isLegalMaskedScatter(DataType); } /// Returns true if the target machine supports masked gather operation /// for the given \p DataType. bool isLegalMaskedGather(Type *DataType) { return TTI->isLegalMaskedGather(DataType); } /// Returns true if vector representation of the instruction \p I /// requires mask. bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } unsigned getNumStores() const { return LAI->getNumStores(); } unsigned getNumLoads() const { return LAI->getNumLoads(); } unsigned getNumPredStores() const { return NumPredStores; } private: /// Check if a single basic block loop is vectorizable. /// At this point we know that this is a loop with a constant trip count /// and we only need to check individual instructions. bool canVectorizeInstrs(); /// When we vectorize loops we may change the order in which /// we read and write from memory. This method checks if it is /// legal to vectorize the code, considering only memory constrains. /// Returns true if the loop is vectorizable bool canVectorizeMemory(); /// Return true if we can vectorize this loop using the IF-conversion /// transformation. bool canVectorizeWithIfConvert(); /// Collect the variables that need to stay uniform after vectorization. void collectLoopUniforms(); /// Return true if all of the instructions in the block can be speculatively /// executed. \p SafePtrs is a list of addresses that are known to be legal /// and we know that we can read from them without segfault. bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl &SafePtrs); /// Updates the vectorization state by adding \p Phi to the inductions list. /// This can set \p Phi as the main induction of the loop if \p Phi is a /// better choice for the main induction than the existing one. void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, SmallPtrSetImpl &AllowedExit); /// Report an analysis message to assist the user in diagnosing loops that are /// not vectorized. These are handled as LoopAccessReport rather than /// VectorizationReport because the << operator of VectorizationReport returns /// LoopAccessReport. void emitAnalysis(const LoopAccessReport &Message) const { emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); } /// \brief If an access has a symbolic strides, this maps the pointer value to /// the stride symbol. const ValueToValueMap *getSymbolicStrides() { // FIXME: Currently, the set of symbolic strides is sometimes queried before // it's collected. This happens from canVectorizeWithIfConvert, when the // pointer is checked to reference consecutive elements suitable for a // masked access. return LAI ? &LAI->getSymbolicStrides() : nullptr; } unsigned NumPredStores; /// The loop that we evaluate. Loop *TheLoop; /// A wrapper around ScalarEvolution used to add runtime SCEV checks. /// Applies dynamic knowledge to simplify SCEV expressions in the context /// of existing SCEV assumptions. The analysis will also add a minimal set /// of new predicates if this is required to enable vectorization and /// unrolling. PredicatedScalarEvolution &PSE; /// Target Library Info. TargetLibraryInfo *TLI; /// Parent function Function *TheFunction; /// Target Transform Info const TargetTransformInfo *TTI; /// Dominator Tree. DominatorTree *DT; // LoopAccess analysis. std::function *GetLAA; // And the loop-accesses info corresponding to this loop. This pointer is // null until canVectorizeMemory sets it up. const LoopAccessInfo *LAI; /// The interleave access information contains groups of interleaved accesses /// with the same stride and close to each other. InterleavedAccessInfo InterleaveInfo; // --- vectorization state --- // /// Holds the integer induction variable. This is the counter of the /// loop. PHINode *Induction; /// Holds the reduction variables. ReductionList Reductions; /// Holds all of the induction variables that we found in the loop. /// Notice that inductions don't need to start at zero and that induction /// variables can be pointers. InductionList Inductions; /// Holds the phi nodes that are first-order recurrences. RecurrenceSet FirstOrderRecurrences; /// Holds the widest induction type encountered. Type *WidestIndTy; /// Allowed outside users. This holds the induction and reduction /// vars which can be accessed from outside the loop. SmallPtrSet AllowedExit; /// This set holds the variables which are known to be uniform after /// vectorization. SmallPtrSet Uniforms; /// Can we assume the absence of NaNs. bool HasFunNoNaNAttr; /// Vectorization requirements that will go through late-evaluation. LoopVectorizationRequirements *Requirements; /// Used to emit an analysis of any legality issues. LoopVectorizeHints *Hints; /// While vectorizing these instructions we have to generate a /// call to the appropriate masked intrinsic SmallPtrSet MaskedOp; }; /// LoopVectorizationCostModel - estimates the expected speedups due to /// vectorization. /// In many cases vectorization is not profitable. This can happen because of /// a number of reasons. In this class we mainly attempt to predict the /// expected speedup/slowdowns due to the supported instruction set. We use the /// TargetTransformInfo to query the different backends for the cost of /// different operations. class LoopVectorizationCostModel { public: LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, const Function *F, const LoopVectorizeHints *Hints) : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), AC(AC), TheFunction(F), Hints(Hints) {} /// Information about vectorization costs struct VectorizationFactor { unsigned Width; // Vector width with best cost unsigned Cost; // Cost of the loop with that width }; /// \return The most profitable vectorization factor and the cost of that VF. /// This method checks every power of two up to VF. If UserVF is not ZERO /// then this vectorization factor will be selected if vectorization is /// possible. VectorizationFactor selectVectorizationFactor(bool OptForSize); /// \return The size (in bits) of the smallest and widest types in the code /// that needs to be vectorized. We ignore values that remain scalar such as /// 64 bit loop indices. std::pair getSmallestAndWidestTypes(); /// \return The desired interleave count. /// If interleave count has been specified by metadata it will be returned. /// Otherwise, the interleave count is computed and returned. VF and LoopCost /// are the selected vectorization factor and the cost of the selected VF. unsigned selectInterleaveCount(bool OptForSize, unsigned VF, unsigned LoopCost); /// \return The most profitable unroll factor. /// This method finds the best unroll-factor based on register pressure and /// other parameters. VF and LoopCost are the selected vectorization factor /// and the cost of the selected VF. unsigned computeInterleaveCount(bool OptForSize, unsigned VF, unsigned LoopCost); /// \brief A struct that represents some properties of the register usage /// of a loop. struct RegisterUsage { /// Holds the number of loop invariant values that are used in the loop. unsigned LoopInvariantRegs; /// Holds the maximum number of concurrent live intervals in the loop. unsigned MaxLocalUsers; /// Holds the number of instructions in the loop. unsigned NumInstructions; }; /// \return Returns information about the register usages of the loop for the /// given vectorization factors. SmallVector calculateRegisterUsage(ArrayRef VFs); /// Collect values we want to ignore in the cost model. void collectValuesToIgnore(); private: /// The vectorization cost is a combination of the cost itself and a boolean /// indicating whether any of the contributing operations will actually /// operate on /// vector values after type legalization in the backend. If this latter value /// is /// false, then all operations will be scalarized (i.e. no vectorization has /// actually taken place). typedef std::pair VectorizationCostTy; /// Returns the expected execution cost. The unit of the cost does /// not matter because we use the 'cost' units to compare different /// vector widths. The cost that is returned is *not* normalized by /// the factor width. VectorizationCostTy expectedCost(unsigned VF); /// Returns the execution time cost of an instruction for a given vector /// width. Vector width of one means scalar. VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); /// The cost-computation logic from getInstructionCost which provides /// the vector type as an output parameter. unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); /// Returns whether the instruction is a load or store and will be a emitted /// as a vector operation. bool isConsecutiveLoadOrStore(Instruction *I); /// Report an analysis message to assist the user in diagnosing loops that are /// not vectorized. These are handled as LoopAccessReport rather than /// VectorizationReport because the << operator of VectorizationReport returns /// LoopAccessReport. void emitAnalysis(const LoopAccessReport &Message) const { emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); } public: /// Map of scalar integer values to the smallest bitwidth they can be legally /// represented as. The vector equivalents of these values should be truncated /// to this type. MapVector MinBWs; /// The loop that we evaluate. Loop *TheLoop; /// Predicated scalar evolution analysis. PredicatedScalarEvolution &PSE; /// Loop Info analysis. LoopInfo *LI; /// Vectorization legality. LoopVectorizationLegality *Legal; /// Vector target information. const TargetTransformInfo &TTI; /// Target Library Info. const TargetLibraryInfo *TLI; /// Demanded bits analysis. DemandedBits *DB; /// Assumption cache. AssumptionCache *AC; const Function *TheFunction; /// Loop Vectorize Hint. const LoopVectorizeHints *Hints; /// Values to ignore in the cost model. SmallPtrSet ValuesToIgnore; /// Values to ignore in the cost model when VF > 1. SmallPtrSet VecValuesToIgnore; }; /// \brief This holds vectorization requirements that must be verified late in /// the process. The requirements are set by legalize and costmodel. Once /// vectorization has been determined to be possible and profitable the /// requirements can be verified by looking for metadata or compiler options. /// For example, some loops require FP commutativity which is only allowed if /// vectorization is explicitly specified or if the fast-math compiler option /// has been provided. /// Late evaluation of these requirements allows helpful diagnostics to be /// composed that tells the user what need to be done to vectorize the loop. For /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late /// evaluation should be used only when diagnostics can generated that can be /// followed by a non-expert user. class LoopVectorizationRequirements { public: LoopVectorizationRequirements() : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} void addUnsafeAlgebraInst(Instruction *I) { // First unsafe algebra instruction. if (!UnsafeAlgebraInst) UnsafeAlgebraInst = I; } void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { const char *Name = Hints.vectorizeAnalysisPassName(); bool Failed = false; if (UnsafeAlgebraInst && !Hints.allowReordering()) { emitOptimizationRemarkAnalysisFPCommute( F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), VectorizationReport() << "cannot prove it is safe to reorder " "floating-point operations"); Failed = true; } // Test if runtime memcheck thresholds are exceeded. bool PragmaThresholdReached = NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; bool ThresholdReached = NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; if ((ThresholdReached && !Hints.allowReordering()) || PragmaThresholdReached) { emitOptimizationRemarkAnalysisAliasing( F->getContext(), Name, *F, L->getStartLoc(), VectorizationReport() << "cannot prove it is safe to reorder memory operations"); DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); Failed = true; } return Failed; } private: unsigned NumRuntimePointerChecks; Instruction *UnsafeAlgebraInst; }; static void addInnerLoop(Loop &L, SmallVectorImpl &V) { if (L.empty()) return V.push_back(&L); for (Loop *InnerL : L) addInnerLoop(*InnerL, V); } /// The LoopVectorize Pass. struct LoopVectorize : public FunctionPass { /// Pass identification, replacement for typeid static char ID; explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) : FunctionPass(ID) { Impl.DisableUnrolling = NoUnrolling; Impl.AlwaysVectorize = AlwaysVectorize; initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); } LoopVectorizePass Impl; bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto *SE = &getAnalysis().getSE(); auto *LI = &getAnalysis().getLoopInfo(); auto *TTI = &getAnalysis().getTTI(F); auto *DT = &getAnalysis().getDomTree(); auto *BFI = &getAnalysis().getBFI(); auto *TLIP = getAnalysisIfAvailable(); auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; auto *AA = &getAnalysis().getAAResults(); auto *AC = &getAnalysis().getAssumptionCache(F); auto *LAA = &getAnalysis(); auto *DB = &getAnalysis().getDemandedBits(); std::function GetLAA = [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, GetLAA); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); } }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and // LoopVectorizationCostModel. //===----------------------------------------------------------------------===// Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { // We need to place the broadcast of invariant variables outside the loop. Instruction *Instr = dyn_cast(V); bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; // Place the code for broadcasting invariant variables in the new preheader. IRBuilder<>::InsertPointGuard Guard(Builder); if (Invariant) Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); // Broadcast the scalar into all locations in the vector. Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); return Shuf; } void InnerLoopVectorizer::createVectorIntInductionPHI( const InductionDescriptor &II, VectorParts &Entry, IntegerType *TruncType) { Value *Start = II.getStartValue(); ConstantInt *Step = II.getConstIntStepValue(); assert(Step && "Can not widen an IV with a non-constant step"); // Construct the initial value of the vector IV in the vector loop preheader auto CurrIP = Builder.saveIP(); Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); if (TruncType) { Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); } Value *SplatStart = Builder.CreateVectorSplat(VF, Start); Value *SteppedStart = getStepVector(SplatStart, 0, Step); Builder.restoreIP(CurrIP); Value *SplatVF = ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), VF * Step->getSExtValue())); // We may need to add the step a number of times, depending on the unroll // factor. The last of those goes into the PHI. PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", &*LoopVectorBody->getFirstInsertionPt()); Value *LastInduction = VecInd; for (unsigned Part = 0; Part < UF; ++Part) { Entry[Part] = LastInduction; LastInduction = Builder.CreateAdd(LastInduction, SplatVF, "step.add"); } VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); VecInd->addIncoming(LastInduction, LoopVectorBody); } void InnerLoopVectorizer::widenIntInduction(PHINode *IV, VectorParts &Entry, TruncInst *Trunc) { auto II = Legal->getInductionVars()->find(IV); assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); auto ID = II->second; assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); // If a truncate instruction was provided, get the smaller type. auto *TruncType = Trunc ? cast(Trunc->getType()) : nullptr; // The step of the induction. Value *Step = nullptr; // If the induction variable has a constant integer step value, go ahead and // get it now. if (ID.getConstIntStepValue()) Step = ID.getConstIntStepValue(); // Try to create a new independent vector induction variable. If we can't // create the phi node, we will splat the scalar induction variable in each // loop iteration. if (VF > 1 && IV->getType() == Induction->getType() && Step && !ValuesNotWidened->count(IV)) return createVectorIntInductionPHI(ID, Entry, TruncType); // The scalar value to broadcast. This will be derived from the canonical // induction variable. Value *ScalarIV = nullptr; // Define the scalar induction variable and step values. If we were given a // truncation type, truncate the canonical induction variable and constant // step. Otherwise, derive these values from the induction descriptor. if (TruncType) { assert(Step && "Truncation requires constant integer step"); auto StepInt = cast(Step)->getSExtValue(); ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType); Step = ConstantInt::getSigned(TruncType, StepInt); } else { ScalarIV = Induction; auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); if (IV != OldInduction) { ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType()); ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); ScalarIV->setName("offset.idx"); } if (!Step) { SCEVExpander Exp(*PSE.getSE(), DL, "induction"); Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), &*Builder.GetInsertPoint()); } } // Splat the scalar induction variable, and build the necessary step vectors. Value *Broadcasted = getBroadcastInstrs(ScalarIV); for (unsigned Part = 0; Part < UF; ++Part) Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); // If an induction variable is only used for counting loop iterations or // calculating addresses, it doesn't need to be widened. Create scalar steps // that can be used by instructions we will later scalarize. Note that the // addition of the scalar steps will not increase the number of instructions // in the loop in the common case prior to InstCombine. We will be trading // one vector extract for each scalar step. if (VF > 1 && ValuesNotWidened->count(IV)) { auto *EntryVal = Trunc ? cast(Trunc) : IV; buildScalarSteps(ScalarIV, Step, EntryVal); } } Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step) { assert(Val->getType()->isVectorTy() && "Must be a vector"); assert(Val->getType()->getScalarType()->isIntegerTy() && "Elem must be an integer"); assert(Step->getType() == Val->getType()->getScalarType() && "Step has wrong type"); // Create the types. Type *ITy = Val->getType()->getScalarType(); VectorType *Ty = cast(Val->getType()); int VLen = Ty->getNumElements(); SmallVector Indices; // Create a vector of consecutive numbers from zero to VF. for (int i = 0; i < VLen; ++i) Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); // Add the consecutive indices to the vector value. Constant *Cv = ConstantVector::get(Indices); assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); Step = Builder.CreateVectorSplat(VLen, Step); assert(Step->getType() == Val->getType() && "Invalid step vec"); // FIXME: The newly created binary instructions should contain nsw/nuw flags, // which can be found from the original scalar operations. Step = Builder.CreateMul(Cv, Step); return Builder.CreateAdd(Val, Step, "induction"); } void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal) { // We shouldn't have to build scalar steps if we aren't vectorizing. assert(VF > 1 && "VF should be greater than one"); // Get the value type and ensure it and the step have the same integer type. Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() && "Val and Step should have the same integer type"); // Compute the scalar steps and save the results in ScalarIVMap. for (unsigned Part = 0; Part < UF; ++Part) for (unsigned I = 0; I < VF; ++I) { auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + I); auto *Mul = Builder.CreateMul(StartIdx, Step); auto *Add = Builder.CreateAdd(ScalarIV, Mul); ScalarIVMap[EntryVal].push_back(Add); } } int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); auto *SE = PSE.getSE(); // Make sure that the pointer does not point to structs. if (Ptr->getType()->getPointerElementType()->isAggregateType()) return 0; // If this value is a pointer induction variable, we know it is consecutive. PHINode *Phi = dyn_cast_or_null(Ptr); if (Phi && Inductions.count(Phi)) { InductionDescriptor II = Inductions[Phi]; return II.getConsecutiveDirection(); } GetElementPtrInst *Gep = getGEPInstruction(Ptr); if (!Gep) return 0; unsigned NumOperands = Gep->getNumOperands(); Value *GpPtr = Gep->getPointerOperand(); // If this GEP value is a consecutive pointer induction variable and all of // the indices are constant, then we know it is consecutive. Phi = dyn_cast(GpPtr); if (Phi && Inductions.count(Phi)) { // Make sure that the pointer does not point to structs. PointerType *GepPtrType = cast(GpPtr->getType()); if (GepPtrType->getElementType()->isAggregateType()) return 0; // Make sure that all of the index operands are loop invariant. for (unsigned i = 1; i < NumOperands; ++i) if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) return 0; InductionDescriptor II = Inductions[Phi]; return II.getConsecutiveDirection(); } unsigned InductionOperand = getGEPInductionOperand(Gep); // Check that all of the gep indices are uniform except for our induction // operand. for (unsigned i = 0; i != NumOperands; ++i) if (i != InductionOperand && !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) return 0; // We can emit wide load/stores only if the last non-zero index is the // induction variable. const SCEV *Last = nullptr; if (!getSymbolicStrides() || !getSymbolicStrides()->count(Gep)) Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); else { // Because of the multiplication by a stride we can have a s/zext cast. // We are going to replace this stride by 1 so the cast is safe to ignore. // // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] // %0 = trunc i64 %indvars.iv to i32 // %mul = mul i32 %0, %Stride1 // %idxprom = zext i32 %mul to i64 << Safe cast. // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom // Last = replaceSymbolicStrideSCEV(PSE, *getSymbolicStrides(), Gep->getOperand(InductionOperand), Gep); if (const SCEVCastExpr *C = dyn_cast(Last)) Last = (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) ? C->getOperand() : Last; } if (const SCEVAddRecExpr *AR = dyn_cast(Last)) { const SCEV *Step = AR->getStepRecurrence(*SE); // The memory is consecutive because the last index is consecutive // and all other indices are loop invariant. if (Step->isOne()) return 1; if (Step->isAllOnesValue()) return -1; } return 0; } bool LoopVectorizationLegality::isUniform(Value *V) { return LAI->isUniform(V); } InnerLoopVectorizer::VectorParts & InnerLoopVectorizer::getVectorValue(Value *V) { assert(V != Induction && "The new induction variable should not be used."); assert(!V->getType()->isVectorTy() && "Can't widen a vector"); // If we have a stride that is replaced by one, do it here. if (Legal->hasStride(V)) V = ConstantInt::get(V->getType(), 1); // If we have this scalar in the map, return it. if (WidenMap.has(V)) return WidenMap.get(V); // If this scalar is unknown, assume that it is a constant or that it is // loop invariant. Broadcast V and save the value for future uses. Value *B = getBroadcastInstrs(V); return WidenMap.splat(V, B); } Value *InnerLoopVectorizer::reverseVector(Value *Vec) { assert(Vec->getType()->isVectorTy() && "Invalid type"); SmallVector ShuffleMask; for (unsigned i = 0; i < VF; ++i) ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), ConstantVector::get(ShuffleMask), "reverse"); } // Get a mask to interleave \p NumVec vectors into a wide vector. // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> // E.g. For 2 interleaved vectors, if VF is 4, the mask is: // <0, 4, 1, 5, 2, 6, 3, 7> static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, unsigned NumVec) { SmallVector Mask; for (unsigned i = 0; i < VF; i++) for (unsigned j = 0; j < NumVec; j++) Mask.push_back(Builder.getInt32(j * VF + i)); return ConstantVector::get(Mask); } // Get the strided mask starting from index \p Start. // I.e. static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, unsigned Stride, unsigned VF) { SmallVector Mask; for (unsigned i = 0; i < VF; i++) Mask.push_back(Builder.getInt32(Start + i * Stride)); return ConstantVector::get(Mask); } // Get a mask of two parts: The first part consists of sequential integers // starting from 0, The second part consists of UNDEFs. // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, unsigned NumUndef) { SmallVector Mask; for (unsigned i = 0; i < NumInt; i++) Mask.push_back(Builder.getInt32(i)); Constant *Undef = UndefValue::get(Builder.getInt32Ty()); for (unsigned i = 0; i < NumUndef; i++) Mask.push_back(Undef); return ConstantVector::get(Mask); } // Concatenate two vectors with the same element type. The 2nd vector should // not have more elements than the 1st vector. If the 2nd vector has less // elements, extend it with UNDEFs. static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, Value *V2) { VectorType *VecTy1 = dyn_cast(V1->getType()); VectorType *VecTy2 = dyn_cast(V2->getType()); assert(VecTy1 && VecTy2 && VecTy1->getScalarType() == VecTy2->getScalarType() && "Expect two vectors with the same element type"); unsigned NumElts1 = VecTy1->getNumElements(); unsigned NumElts2 = VecTy2->getNumElements(); assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); if (NumElts1 > NumElts2) { // Extend with UNDEFs. Constant *ExtMask = getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); } Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); return Builder.CreateShuffleVector(V1, V2, Mask); } // Concatenate vectors in the given list. All vectors have the same type. static Value *ConcatenateVectors(IRBuilder<> &Builder, ArrayRef InputList) { unsigned NumVec = InputList.size(); assert(NumVec > 1 && "Should be at least two vectors"); SmallVector ResList; ResList.append(InputList.begin(), InputList.end()); do { SmallVector TmpList; for (unsigned i = 0; i < NumVec - 1; i += 2) { Value *V0 = ResList[i], *V1 = ResList[i + 1]; assert((V0->getType() == V1->getType() || i == NumVec - 2) && "Only the last vector may have a different type"); TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); } // Push the last vector if the total number of vectors is odd. if (NumVec % 2 != 0) TmpList.push_back(ResList[NumVec - 1]); ResList = TmpList; NumVec = ResList.size(); } while (NumVec > 1); return ResList[0]; } // Try to vectorize the interleave group that \p Instr belongs to. // // E.g. Translate following interleaved load group (factor = 3): // for (i = 0; i < N; i+=3) { // R = Pic[i]; // Member of index 0 // G = Pic[i+1]; // Member of index 1 // B = Pic[i+2]; // Member of index 2 // ... // do something to R, G, B // } // To: // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements // // Or translate following interleaved store group (factor = 3): // for (i = 0; i < N; i+=3) { // ... do something to R, G, B // Pic[i] = R; // Member of index 0 // Pic[i+1] = G; // Member of index 1 // Pic[i+2] = B; // Member of index 2 // } // To: // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); assert(Group && "Fail to get an interleaved access group."); // Skip if current instruction is not the insert position. if (Instr != Group->getInsertPos()) return; LoadInst *LI = dyn_cast(Instr); StoreInst *SI = dyn_cast(Instr); Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); // Prepare for the vector type of the interleaved load/store. Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); unsigned InterleaveFactor = Group->getFactor(); Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); // Prepare for the new pointers. setDebugLocFromInst(Builder, Ptr); VectorParts &PtrParts = getVectorValue(Ptr); SmallVector NewPtrs; unsigned Index = Group->getIndex(Instr); for (unsigned Part = 0; Part < UF; Part++) { // Extract the pointer for current instruction from the pointer vector. A // reverse access uses the pointer in the last lane. Value *NewPtr = Builder.CreateExtractElement( PtrParts[Part], Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); // Notice current instruction could be any index. Need to adjust the address // to the member of index 0. // // E.g. a = A[i+1]; // Member of index 1 (Current instruction) // b = A[i]; // Member of index 0 // Current pointer is pointed to A[i+1], adjust it to A[i]. // // E.g. A[i+1] = a; // Member of index 1 // A[i] = b; // Member of index 0 // A[i+2] = c; // Member of index 2 (Current instruction) // Current pointer is pointed to A[i+2], adjust it to A[i]. NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); // Cast to the vector pointer type. NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); } setDebugLocFromInst(Builder, Instr); Value *UndefVec = UndefValue::get(VecTy); // Vectorize the interleaved load group. if (LI) { for (unsigned Part = 0; Part < UF; Part++) { Instruction *NewLoadInstr = Builder.CreateAlignedLoad( NewPtrs[Part], Group->getAlignment(), "wide.vec"); for (unsigned i = 0; i < InterleaveFactor; i++) { Instruction *Member = Group->getMember(i); // Skip the gaps in the group. if (!Member) continue; Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); Value *StridedVec = Builder.CreateShuffleVector( NewLoadInstr, UndefVec, StrideMask, "strided.vec"); // If this member has different type, cast the result type. if (Member->getType() != ScalarTy) { VectorType *OtherVTy = VectorType::get(Member->getType(), VF); StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); } VectorParts &Entry = WidenMap.get(Member); Entry[Part] = Group->isReverse() ? reverseVector(StridedVec) : StridedVec; } addMetadata(NewLoadInstr, Instr); } return; } // The sub vector type for current instruction. VectorType *SubVT = VectorType::get(ScalarTy, VF); // Vectorize the interleaved store group. for (unsigned Part = 0; Part < UF; Part++) { // Collect the stored vector from each member. SmallVector StoredVecs; for (unsigned i = 0; i < InterleaveFactor; i++) { // Interleaved store group doesn't allow a gap, so each index has a member Instruction *Member = Group->getMember(i); assert(Member && "Fail to get a member from an interleaved store group"); Value *StoredVec = getVectorValue(cast(Member)->getValueOperand())[Part]; if (Group->isReverse()) StoredVec = reverseVector(StoredVec); // If this member has different type, cast it to an unified type. if (StoredVec->getType() != SubVT) StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); StoredVecs.push_back(StoredVec); } // Concatenate all vectors into a wide vector. Value *WideVec = ConcatenateVectors(Builder, StoredVecs); // Interleave the elements in the wide vector. Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, "interleaved.vec"); Instruction *NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); addMetadata(NewStoreInstr, Instr); } } void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { // Attempt to issue a wide load. LoadInst *LI = dyn_cast(Instr); StoreInst *SI = dyn_cast(Instr); assert((LI || SI) && "Invalid Load/Store instruction"); // Try to vectorize the interleave group if this access is interleaved. if (Legal->isAccessInterleaved(Instr)) return vectorizeInterleaveGroup(Instr); Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); Type *DataTy = VectorType::get(ScalarDataTy, VF); Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); // An alignment of 0 means target abi alignment. We need to use the scalar's // target abi alignment in such a case. const DataLayout &DL = Instr->getModule()->getDataLayout(); if (!Alignment) Alignment = DL.getABITypeAlignment(ScalarDataTy); unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); uint64_t VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; if (SI && Legal->blockNeedsPredication(SI->getParent()) && !Legal->isMaskRequired(SI)) return scalarizeInstruction(Instr, true); if (ScalarAllocatedSize != VectorElementSize) return scalarizeInstruction(Instr); // If the pointer is loop invariant scalarize the load. if (LI && Legal->isUniform(Ptr)) return scalarizeInstruction(Instr); // If the pointer is non-consecutive and gather/scatter is not supported // scalarize the instruction. int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); bool Reverse = ConsecutiveStride < 0; bool CreateGatherScatter = !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); if (!ConsecutiveStride && !CreateGatherScatter) return scalarizeInstruction(Instr); Constant *Zero = Builder.getInt32(0); VectorParts &Entry = WidenMap.get(Instr); VectorParts VectorGep; // Handle consecutive loads/stores. GetElementPtrInst *Gep = getGEPInstruction(Ptr); if (ConsecutiveStride) { if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { setDebugLocFromInst(Builder, Gep); Value *PtrOperand = Gep->getPointerOperand(); Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); // Create the new GEP with the new induction variable. GetElementPtrInst *Gep2 = cast(Gep->clone()); Gep2->setOperand(0, FirstBasePtr); Gep2->setName("gep.indvar.base"); Ptr = Builder.Insert(Gep2); } else if (Gep) { setDebugLocFromInst(Builder, Gep); assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), OrigLoop) && "Base ptr must be invariant"); // The last index does not have to be the induction. It can be // consecutive and be a function of the index. For example A[I+1]; unsigned NumOperands = Gep->getNumOperands(); unsigned InductionOperand = getGEPInductionOperand(Gep); // Create the new GEP with the new induction variable. GetElementPtrInst *Gep2 = cast(Gep->clone()); for (unsigned i = 0; i < NumOperands; ++i) { Value *GepOperand = Gep->getOperand(i); Instruction *GepOperandInst = dyn_cast(GepOperand); // Update last index or loop invariant instruction anchored in loop. if (i == InductionOperand || (GepOperandInst && OrigLoop->contains(GepOperandInst))) { assert((i == InductionOperand || PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), OrigLoop)) && "Must be last index or loop invariant"); VectorParts &GEPParts = getVectorValue(GepOperand); // If GepOperand is an induction variable, and there's a scalarized // version of it available, use it. Otherwise, we will need to create // an extractelement instruction. Value *Index = ScalarIVMap.count(GepOperand) ? ScalarIVMap[GepOperand][0] : Builder.CreateExtractElement(GEPParts[0], Zero); Gep2->setOperand(i, Index); Gep2->setName("gep.indvar.idx"); } } Ptr = Builder.Insert(Gep2); } else { // No GEP // Use the induction element ptr. assert(isa(Ptr) && "Invalid induction ptr"); setDebugLocFromInst(Builder, Ptr); VectorParts &PtrVal = getVectorValue(Ptr); Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); } } else { // At this point we should vector version of GEP for Gather or Scatter assert(CreateGatherScatter && "The instruction should be scalarized"); if (Gep) { // Vectorizing GEP, across UF parts. We want to get a vector value for base // and each index that's defined inside the loop, even if it is // loop-invariant but wasn't hoisted out. Otherwise we want to keep them // scalar. SmallVector OpsV; for (Value *Op : Gep->operands()) { Instruction *SrcInst = dyn_cast(Op); if (SrcInst && OrigLoop->contains(SrcInst)) OpsV.push_back(getVectorValue(Op)); else OpsV.push_back(VectorParts(UF, Op)); } for (unsigned Part = 0; Part < UF; ++Part) { SmallVector Ops; Value *GEPBasePtr = OpsV[0][Part]; for (unsigned i = 1; i < Gep->getNumOperands(); i++) Ops.push_back(OpsV[i][Part]); Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep"); cast(NewGep)->setIsInBounds(Gep->isInBounds()); assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); NewGep = Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); VectorGep.push_back(NewGep); } } else VectorGep = getVectorValue(Ptr); } VectorParts Mask = createBlockInMask(Instr->getParent()); // Handle Stores: if (SI) { assert(!Legal->isUniform(SI->getPointerOperand()) && "We do not allow storing to uniform addresses"); setDebugLocFromInst(Builder, SI); // We don't want to update the value in the map as it might be used in // another expression. So don't use a reference type for "StoredVal". VectorParts StoredVal = getVectorValue(SI->getValueOperand()); for (unsigned Part = 0; Part < UF; ++Part) { Instruction *NewSI = nullptr; if (CreateGatherScatter) { Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], Alignment, MaskPart); } else { // Calculate the pointer for the specific unroll-part. Value *PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); if (Reverse) { // If we store to reverse consecutive memory locations, then we need // to reverse the order of elements in the stored value. StoredVal[Part] = reverseVector(StoredVal[Part]); // If the address is consecutive but reversed, then the // wide store needs to start at the last vector element. PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); Mask[Part] = reverseVector(Mask[Part]); } Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); if (Legal->isMaskRequired(SI)) NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, Mask[Part]); else NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); } addMetadata(NewSI, SI); } return; } // Handle loads. assert(LI && "Must have a load instruction"); setDebugLocFromInst(Builder, LI); for (unsigned Part = 0; Part < UF; ++Part) { Instruction *NewLI; if (CreateGatherScatter) { Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 0, "wide.masked.gather"); Entry[Part] = NewLI; } else { // Calculate the pointer for the specific unroll-part. Value *PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); if (Reverse) { // If the address is consecutive but reversed, then the // wide load needs to start at the last vector element. PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); Mask[Part] = reverseVector(Mask[Part]); } Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); if (Legal->isMaskRequired(LI)) NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], UndefValue::get(DataTy), "wide.masked.load"); else NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; } addMetadata(NewLI, LI); } } void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); // Holds vector parameters or scalars, in case of uniform vals. SmallVector Params; setDebugLocFromInst(Builder, Instr); // Find all of the vectorized parameters. for (Value *SrcOp : Instr->operands()) { // If we are accessing the old induction variable, use the new one. if (SrcOp == OldInduction) { Params.push_back(getVectorValue(SrcOp)); continue; } // Try using previously calculated values. auto *SrcInst = dyn_cast(SrcOp); // If the src is an instruction that appeared earlier in the basic block, // then it should already be vectorized. if (SrcInst && OrigLoop->contains(SrcInst)) { assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); // The parameter is a vector value from earlier. Params.push_back(WidenMap.get(SrcInst)); } else { // The parameter is a scalar from outside the loop. Maybe even a constant. VectorParts Scalars; Scalars.append(UF, SrcOp); Params.push_back(Scalars); } } assert(Params.size() == Instr->getNumOperands() && "Invalid number of operands"); // Does this instruction return a value ? bool IsVoidRetTy = Instr->getType()->isVoidTy(); Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(VectorType::get(Instr->getType(), VF)); // Create a new entry in the WidenMap and initialize it to Undef or Null. VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); VectorParts Cond; if (IfPredicateStore) { assert(Instr->getParent()->getSinglePredecessor() && "Only support single predecessor blocks"); Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), Instr->getParent()); } // For each vector unroll 'part': for (unsigned Part = 0; Part < UF; ++Part) { // For each scalar that we create: for (unsigned Width = 0; Width < VF; ++Width) { // Start if-block. Value *Cmp = nullptr; if (IfPredicateStore) { Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); } Instruction *Cloned = Instr->clone(); if (!IsVoidRetTy) Cloned->setName(Instr->getName() + ".cloned"); // Replace the operands of the cloned instructions with extracted scalars. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { // If the operand is an induction variable, and there's a scalarized // version of it available, use it. Otherwise, we will need to create // an extractelement instruction if vectorizing. auto *NewOp = Params[op][Part]; auto *ScalarOp = Instr->getOperand(op); if (ScalarIVMap.count(ScalarOp)) NewOp = ScalarIVMap[ScalarOp][VF * Part + Width]; else if (NewOp->getType()->isVectorTy()) NewOp = Builder.CreateExtractElement(NewOp, Builder.getInt32(Width)); Cloned->setOperand(op, NewOp); } addNewMetadata(Cloned, Instr); // Place the cloned scalar in the new loop. Builder.Insert(Cloned); // If we just cloned a new assumption, add it the assumption cache. if (auto *II = dyn_cast(Cloned)) if (II->getIntrinsicID() == Intrinsic::assume) AC->registerAssumption(II); // If the original scalar returns a value we need to place it in a vector // so that future users will be able to use it. if (!IsVoidRetTy) VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, Builder.getInt32(Width)); // End if-block. if (IfPredicateStore) PredicatedStores.push_back( std::make_pair(cast(Cloned), Cmp)); } } } PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, Value *End, Value *Step, Instruction *DL) { BasicBlock *Header = L->getHeader(); BasicBlock *Latch = L->getLoopLatch(); // As we're just creating this loop, it's possible no latch exists // yet. If so, use the header as this will be a single block loop. if (!Latch) Latch = Header; IRBuilder<> Builder(&*Header->getFirstInsertionPt()); setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); Builder.SetInsertPoint(Latch->getTerminator()); // Create i+1 and fill the PHINode. Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); Induction->addIncoming(Start, L->getLoopPreheader()); Induction->addIncoming(Next, Latch); // Create the compare. Value *ICmp = Builder.CreateICmpEQ(Next, End); Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); // Now we have two terminators. Remove the old one from the block. Latch->getTerminator()->eraseFromParent(); return Induction; } Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { if (TripCount) return TripCount; IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); // Find the loop boundaries. ScalarEvolution *SE = PSE.getSE(); const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); assert(BackedgeTakenCount != SE->getCouldNotCompute() && "Invalid loop count"); Type *IdxTy = Legal->getWidestInductionType(); // The exit count might have the type of i64 while the phi is i32. This can // happen if we have an induction variable that is sign extended before the // compare. The only way that we get a backedge taken count is that the // induction variable was signed and as such will not overflow. In such a case // truncation is legal. if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > IdxTy->getPrimitiveSizeInBits()) BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); // Get the total trip count from the count by adding 1. const SCEV *ExitCount = SE->getAddExpr( BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); // Expand the trip count and place the new instructions in the preheader. // Notice that the pre-header does not change, only the loop body. SCEVExpander Exp(*SE, DL, "induction"); // Count holds the overall loop count (N). TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), L->getLoopPreheader()->getTerminator()); if (TripCount->getType()->isPointerTy()) TripCount = CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", L->getLoopPreheader()->getTerminator()); return TripCount; } Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { if (VectorTripCount) return VectorTripCount; Value *TC = getOrCreateTripCount(L); IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); // Now we need to generate the expression for the part of the loop that the // vectorized body will execute. This is equal to N - (N % Step) if scalar // iterations are not required for correctness, or N - Step, otherwise. Step // is equal to the vectorization factor (number of SIMD elements) times the // unroll factor (number of SIMD instructions). Constant *Step = ConstantInt::get(TC->getType(), VF * UF); Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); // If there is a non-reversed interleaved group that may speculatively access // memory out-of-bounds, we need to ensure that there will be at least one // iteration of the scalar epilogue loop. Thus, if the step evenly divides // the trip count, we set the remainder to be equal to the step. If the step // does not evenly divide the trip count, no adjustment is necessary since // there will already be scalar iterations. Note that the minimum iterations // check ensures that N >= Step. if (VF > 1 && Legal->requiresScalarEpilogue()) { auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); R = Builder.CreateSelect(IsZero, Step, R); } VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); return VectorTripCount; } void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass) { Value *Count = getOrCreateTripCount(L); BasicBlock *BB = L->getLoopPreheader(); IRBuilder<> Builder(BB->getTerminator()); // Generate code to check that the loop's trip count that we computed by // adding one to the backedge-taken count will not overflow. Value *CheckMinIters = Builder.CreateICmpULT( Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); // Update dominator tree immediately if the generated block is a // LoopBypassBlock because SCEV expansions to generate loop bypass // checks may query it before the current function is finished. DT->addNewBlock(NewBB, BB); if (L->getParentLoop()) L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); ReplaceInstWithInst(BB->getTerminator(), BranchInst::Create(Bypass, NewBB, CheckMinIters)); LoopBypassBlocks.push_back(BB); } void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass) { Value *TC = getOrCreateVectorTripCount(L); BasicBlock *BB = L->getLoopPreheader(); IRBuilder<> Builder(BB->getTerminator()); // Now, compare the new count to zero. If it is zero skip the vector loop and // jump to the scalar loop. Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), "cmp.zero"); // Generate code to check that the loop's trip count that we computed by // adding one to the backedge-taken count will not overflow. BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); // Update dominator tree immediately if the generated block is a // LoopBypassBlock because SCEV expansions to generate loop bypass // checks may query it before the current function is finished. DT->addNewBlock(NewBB, BB); if (L->getParentLoop()) L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); ReplaceInstWithInst(BB->getTerminator(), BranchInst::Create(Bypass, NewBB, Cmp)); LoopBypassBlocks.push_back(BB); } void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { BasicBlock *BB = L->getLoopPreheader(); // Generate the code to check that the SCEV assumptions that we made. // We want the new basic block to start at the first instruction in a // sequence of instructions that form a check. SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), "scev.check"); Value *SCEVCheck = Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); if (auto *C = dyn_cast(SCEVCheck)) if (C->isZero()) return; // Create a new block containing the stride check. BB->setName("vector.scevcheck"); auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); // Update dominator tree immediately if the generated block is a // LoopBypassBlock because SCEV expansions to generate loop bypass // checks may query it before the current function is finished. DT->addNewBlock(NewBB, BB); if (L->getParentLoop()) L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); ReplaceInstWithInst(BB->getTerminator(), BranchInst::Create(Bypass, NewBB, SCEVCheck)); LoopBypassBlocks.push_back(BB); AddedSafetyChecks = true; } void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { BasicBlock *BB = L->getLoopPreheader(); // Generate the code that checks in runtime if arrays overlap. We put the // checks into a separate block to make the more common case of few elements // faster. Instruction *FirstCheckInst; Instruction *MemRuntimeCheck; std::tie(FirstCheckInst, MemRuntimeCheck) = Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); if (!MemRuntimeCheck) return; // Create a new block containing the memory check. BB->setName("vector.memcheck"); auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); // Update dominator tree immediately if the generated block is a // LoopBypassBlock because SCEV expansions to generate loop bypass // checks may query it before the current function is finished. DT->addNewBlock(NewBB, BB); if (L->getParentLoop()) L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); ReplaceInstWithInst(BB->getTerminator(), BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); LoopBypassBlocks.push_back(BB); AddedSafetyChecks = true; // We currently don't use LoopVersioning for the actual loop cloning but we // still use it to add the noalias metadata. LVer = llvm::make_unique(*Legal->getLAI(), OrigLoop, LI, DT, PSE.getSE()); LVer->prepareNoAliasMetadata(); } void InnerLoopVectorizer::createEmptyLoop() { /* In this function we generate a new loop. The new loop will contain the vectorized instructions while the old loop will continue to run the scalar remainder. [ ] <-- loop iteration number check. / | / v | [ ] <-- vector loop bypass (may consist of multiple blocks). | / | | / v || [ ] <-- vector pre header. |/ | | v | [ ] \ | [ ]_| <-- vector loop. | | | v | -[ ] <--- middle-block. | / | | / v -|- >[ ] <--- new preheader. | | | v | [ ] \ | [ ]_| <-- old scalar loop to handle remainder. \ | \ v >[ ] <-- exit block. ... */ BasicBlock *OldBasicBlock = OrigLoop->getHeader(); BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); BasicBlock *ExitBlock = OrigLoop->getExitBlock(); assert(VectorPH && "Invalid loop structure"); assert(ExitBlock && "Must have an exit block"); // Some loops have a single integer induction variable, while other loops // don't. One example is c++ iterators that often have multiple pointer // induction variables. In the code below we also support a case where we // don't have a single induction variable. // // We try to obtain an induction variable from the original loop as hard // as possible. However if we don't find one that: // - is an integer // - counts from zero, stepping by one // - is the size of the widest induction variable type // then we create a new one. OldInduction = Legal->getInduction(); Type *IdxTy = Legal->getWidestInductionType(); // Split the single block loop into the two loop structure described above. BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); BasicBlock *ScalarPH = MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); // Create and register the new vector loop. Loop *Lp = new Loop(); Loop *ParentLoop = OrigLoop->getParentLoop(); // Insert the new loop into the loop nest and register the new basic blocks // before calling any utilities such as SCEV that require valid LoopInfo. if (ParentLoop) { ParentLoop->addChildLoop(Lp); ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); } else { LI->addTopLevelLoop(Lp); } Lp->addBasicBlockToLoop(VecBody, *LI); // Find the loop boundaries. Value *Count = getOrCreateTripCount(Lp); Value *StartIdx = ConstantInt::get(IdxTy, 0); // We need to test whether the backedge-taken count is uint##_max. Adding one // to it will cause overflow and an incorrect loop trip count in the vector // body. In case of overflow we want to directly jump to the scalar remainder // loop. emitMinimumIterationCountCheck(Lp, ScalarPH); // Now, compare the new count to zero. If it is zero skip the vector loop and // jump to the scalar loop. emitVectorLoopEnteredCheck(Lp, ScalarPH); // Generate the code to check any assumptions that we've made for SCEV // expressions. emitSCEVChecks(Lp, ScalarPH); // Generate the code that checks in runtime if arrays overlap. We put the // checks into a separate block to make the more common case of few elements // faster. emitMemRuntimeChecks(Lp, ScalarPH); // Generate the induction variable. // The loop step is equal to the vectorization factor (num of SIMD elements) // times the unroll factor (num of SIMD instructions). Value *CountRoundDown = getOrCreateVectorTripCount(Lp); Constant *Step = ConstantInt::get(IdxTy, VF * UF); Induction = createInductionVariable(Lp, StartIdx, CountRoundDown, Step, getDebugLocFromInstOrOperands(OldInduction)); // We are going to resume the execution of the scalar loop. // Go over all of the induction variables that we found and fix the // PHIs that are left in the scalar version of the loop. // The starting values of PHI nodes depend on the counter of the last // iteration in the vectorized loop. // If we come from a bypass edge then we need to start from the original // start value. // This variable saves the new starting index for the scalar loop. It is used // to test if there are any tail iterations left once the vector loop has // completed. LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); for (auto &InductionEntry : *List) { PHINode *OrigPhi = InductionEntry.first; InductionDescriptor II = InductionEntry.second; // Create phi nodes to merge from the backedge-taken check block. PHINode *BCResumeVal = PHINode::Create( OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); Value *EndValue; if (OrigPhi == OldInduction) { // We know what the end value is. EndValue = CountRoundDown; } else { IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, II.getStep()->getType(), "cast.crd"); const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); EndValue = II.transform(B, CRD, PSE.getSE(), DL); EndValue->setName("ind.end"); } // The new PHI merges the original incoming value, in case of a bypass, // or the value at the end of the vectorized loop. BCResumeVal->addIncoming(EndValue, MiddleBlock); // Fix up external users of the induction variable. fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock); // Fix the scalar body counter (PHI node). unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); // The old induction's phi node in the scalar body needs the truncated // value. for (BasicBlock *BB : LoopBypassBlocks) BCResumeVal->addIncoming(II.getStartValue(), BB); OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); } // Add a check in the middle block to see if we have completed // all of the iterations in the first vector loop. // If (N - N%VF) == N, then we *don't* need to run the remainder. Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); ReplaceInstWithInst(MiddleBlock->getTerminator(), BranchInst::Create(ExitBlock, ScalarPH, CmpN)); // Get ready to start creating new instructions into the vectorized body. Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); // Save the state. LoopVectorPreHeader = Lp->getLoopPreheader(); LoopScalarPreHeader = ScalarPH; LoopMiddleBlock = MiddleBlock; LoopExitBlock = ExitBlock; LoopVectorBody = VecBody; LoopScalarBody = OldBasicBlock; // Keep all loop hints from the original loop on the vector loop (we'll // replace the vectorizer-specific hints below). if (MDNode *LID = OrigLoop->getLoopID()) Lp->setLoopID(LID); LoopVectorizeHints Hints(Lp, true); Hints.setAlreadyVectorized(); } // Fix up external users of the induction variable. At this point, we are // in LCSSA form, with all external PHIs that use the IV having one input value, // coming from the remainder loop. We need those PHIs to also have a correct // value for the IV when arriving directly from the middle block. void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, Value *CountRoundDown, Value *EndValue, BasicBlock *MiddleBlock) { // There are two kinds of external IV usages - those that use the value // computed in the last iteration (the PHI) and those that use the penultimate // value (the value that feeds into the phi from the loop latch). // We allow both, but they, obviously, have different values. assert(OrigLoop->getExitBlock() && "Expected a single exit block"); DenseMap MissingVals; // An external user of the last iteration's value should see the value that // the remainder loop uses to initialize its own IV. Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); for (User *U : PostInc->users()) { Instruction *UI = cast(U); if (!OrigLoop->contains(UI)) { assert(isa(UI) && "Expected LCSSA form"); MissingVals[UI] = EndValue; } } // An external user of the penultimate value need to see EndValue - Step. // The simplest way to get this is to recompute it from the constituent SCEVs, // that is Start + (Step * (CRD - 1)). for (User *U : OrigPhi->users()) { auto *UI = cast(U); if (!OrigLoop->contains(UI)) { const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); assert(isa(UI) && "Expected LCSSA form"); IRBuilder<> B(MiddleBlock->getTerminator()); Value *CountMinusOne = B.CreateSub( CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), "cast.cmo"); Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); Escape->setName("ind.escape"); MissingVals[UI] = Escape; } } for (auto &I : MissingVals) { PHINode *PHI = cast(I.first); // One corner case we have to handle is two IVs "chasing" each-other, // that is %IV2 = phi [...], [ %IV1, %latch ] // In this case, if IV1 has an external use, we need to avoid adding both // "last value of IV1" and "penultimate value of IV2". So, verify that we // don't already have an incoming value for the middle block. if (PHI->getBasicBlockIndex(MiddleBlock) == -1) PHI->addIncoming(I.second, MiddleBlock); } } namespace { struct CSEDenseMapInfo { static bool canHandle(Instruction *I) { return isa(I) || isa(I) || isa(I) || isa(I); } static inline Instruction *getEmptyKey() { return DenseMapInfo::getEmptyKey(); } static inline Instruction *getTombstoneKey() { return DenseMapInfo::getTombstoneKey(); } static unsigned getHashValue(Instruction *I) { assert(canHandle(I) && "Unknown instruction!"); return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), I->value_op_end())); } static bool isEqual(Instruction *LHS, Instruction *RHS) { if (LHS == getEmptyKey() || RHS == getEmptyKey() || LHS == getTombstoneKey() || RHS == getTombstoneKey()) return LHS == RHS; return LHS->isIdenticalTo(RHS); } }; } ///\brief Perform cse of induction variable instructions. static void cse(BasicBlock *BB) { // Perform simple cse. SmallDenseMap CSEMap; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { Instruction *In = &*I++; if (!CSEDenseMapInfo::canHandle(In)) continue; // Check if we can replace this instruction with any of the // visited instructions. if (Instruction *V = CSEMap.lookup(In)) { In->replaceAllUsesWith(V); In->eraseFromParent(); continue; } CSEMap[In] = In; } } /// \brief Adds a 'fast' flag to floating point operations. static Value *addFastMathFlag(Value *V) { if (isa(V)) { FastMathFlags Flags; Flags.setUnsafeAlgebra(); cast(V)->setFastMathFlags(Flags); } return V; } /// Estimate the overhead of scalarizing a value. Insert and Extract are set if /// the result needs to be inserted and/or extracted from vectors. static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, const TargetTransformInfo &TTI) { if (Ty->isVoidTy()) return 0; assert(Ty->isVectorTy() && "Can only scalarize vectors"); unsigned Cost = 0; for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) { if (Insert) Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I); if (Extract) Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I); } return Cost; } // Estimate cost of a call instruction CI if it were vectorized with factor VF. // Return the cost of the instruction, including scalarization overhead if it's // needed. The flag NeedToScalarize shows if the call needs to be scalarized - // i.e. either vector version isn't available, or is too expensive. static unsigned getVectorCallCost(CallInst *CI, unsigned VF, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, bool &NeedToScalarize) { Function *F = CI->getCalledFunction(); StringRef FnName = CI->getCalledFunction()->getName(); Type *ScalarRetTy = CI->getType(); SmallVector Tys, ScalarTys; for (auto &ArgOp : CI->arg_operands()) ScalarTys.push_back(ArgOp->getType()); // Estimate cost of scalarized vector call. The source operands are assumed // to be vectors, so we need to extract individual elements from there, // execute VF scalar calls, and then gather the result into the vector return // value. unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); if (VF == 1) return ScalarCallCost; // Compute corresponding vector type for return value and arguments. Type *RetTy = ToVectorTy(ScalarRetTy, VF); for (Type *ScalarTy : ScalarTys) Tys.push_back(ToVectorTy(ScalarTy, VF)); // Compute costs of unpacking argument values for the scalar calls and // packing the return values to a vector. unsigned ScalarizationCost = getScalarizationOverhead(RetTy, true, false, TTI); for (Type *Ty : Tys) ScalarizationCost += getScalarizationOverhead(Ty, false, true, TTI); unsigned Cost = ScalarCallCost * VF + ScalarizationCost; // If we can't emit a vector call for this function, then the currently found // cost is the cost we need to return. NeedToScalarize = true; if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) return Cost; // If the corresponding vector cost is cheaper, return its cost. unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); if (VectorCallCost < Cost) { NeedToScalarize = false; return VectorCallCost; } return Cost; } // Estimate cost of an intrinsic call instruction CI if it were vectorized with // factor VF. Return the cost of the instruction, including scalarization // overhead if it's needed. static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI) { Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); assert(ID && "Expected intrinsic call!"); Type *RetTy = ToVectorTy(CI->getType(), VF); SmallVector Tys; for (Value *ArgOperand : CI->arg_operands()) Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); FastMathFlags FMF; if (auto *FPMO = dyn_cast(CI)) FMF = FPMO->getFastMathFlags(); return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); } static Type *smallestIntegerVectorType(Type *T1, Type *T2) { auto *I1 = cast(T1->getVectorElementType()); auto *I2 = cast(T2->getVectorElementType()); return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; } static Type *largestIntegerVectorType(Type *T1, Type *T2) { auto *I1 = cast(T1->getVectorElementType()); auto *I2 = cast(T2->getVectorElementType()); return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; } void InnerLoopVectorizer::truncateToMinimalBitwidths() { // For every instruction `I` in MinBWs, truncate the operands, create a // truncated version of `I` and reextend its result. InstCombine runs // later and will remove any ext/trunc pairs. // SmallPtrSet Erased; for (const auto &KV : *MinBWs) { VectorParts &Parts = WidenMap.get(KV.first); for (Value *&I : Parts) { if (Erased.count(I) || I->use_empty() || !isa(I)) continue; Type *OriginalTy = I->getType(); Type *ScalarTruncatedTy = IntegerType::get(OriginalTy->getContext(), KV.second); Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, OriginalTy->getVectorNumElements()); if (TruncatedTy == OriginalTy) continue; IRBuilder<> B(cast(I)); auto ShrinkOperand = [&](Value *V) -> Value * { if (auto *ZI = dyn_cast(V)) if (ZI->getSrcTy() == TruncatedTy) return ZI->getOperand(0); return B.CreateZExtOrTrunc(V, TruncatedTy); }; // The actual instruction modification depends on the instruction type, // unfortunately. Value *NewI = nullptr; if (auto *BO = dyn_cast(I)) { NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), ShrinkOperand(BO->getOperand(1))); cast(NewI)->copyIRFlags(I); } else if (auto *CI = dyn_cast(I)) { NewI = B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), ShrinkOperand(CI->getOperand(1))); } else if (auto *SI = dyn_cast(I)) { NewI = B.CreateSelect(SI->getCondition(), ShrinkOperand(SI->getTrueValue()), ShrinkOperand(SI->getFalseValue())); } else if (auto *CI = dyn_cast(I)) { switch (CI->getOpcode()) { default: llvm_unreachable("Unhandled cast!"); case Instruction::Trunc: NewI = ShrinkOperand(CI->getOperand(0)); break; case Instruction::SExt: NewI = B.CreateSExtOrTrunc( CI->getOperand(0), smallestIntegerVectorType(OriginalTy, TruncatedTy)); break; case Instruction::ZExt: NewI = B.CreateZExtOrTrunc( CI->getOperand(0), smallestIntegerVectorType(OriginalTy, TruncatedTy)); break; } } else if (auto *SI = dyn_cast(I)) { auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); auto *O0 = B.CreateZExtOrTrunc( SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); auto *O1 = B.CreateZExtOrTrunc( SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); } else if (isa(I)) { // Don't do anything with the operands, just extend the result. continue; } else if (auto *IE = dyn_cast(I)) { auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); auto *O0 = B.CreateZExtOrTrunc( IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); } else if (auto *EE = dyn_cast(I)) { auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); auto *O0 = B.CreateZExtOrTrunc( EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); NewI = B.CreateExtractElement(O0, EE->getOperand(2)); } else { llvm_unreachable("Unhandled instruction type!"); } // Lastly, extend the result. NewI->takeName(cast(I)); Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); I->replaceAllUsesWith(Res); cast(I)->eraseFromParent(); Erased.insert(I); I = Res; } } // We'll have created a bunch of ZExts that are now parentless. Clean up. for (const auto &KV : *MinBWs) { VectorParts &Parts = WidenMap.get(KV.first); for (Value *&I : Parts) { ZExtInst *Inst = dyn_cast(I); if (Inst && Inst->use_empty()) { Value *NewI = Inst->getOperand(0); Inst->eraseFromParent(); I = NewI; } } } } void InnerLoopVectorizer::vectorizeLoop() { //===------------------------------------------------===// // // Notice: any optimization or new instruction that go // into the code below should be also be implemented in // the cost-model. // //===------------------------------------------------===// Constant *Zero = Builder.getInt32(0); // In order to support recurrences we need to be able to vectorize Phi nodes. // Phi nodes have cycles, so we need to vectorize them in two stages. First, // we create a new vector PHI node with no incoming edges. We use this value // when we vectorize all of the instructions that use the PHI. Next, after // all of the instructions in the block are complete we add the new incoming // edges to the PHI. At this point all of the instructions in the basic block // are vectorized, so we can use them to construct the PHI. PhiVector PHIsToFix; // Scan the loop in a topological order to ensure that defs are vectorized // before users. LoopBlocksDFS DFS(OrigLoop); DFS.perform(LI); // Vectorize all of the blocks in the original loop. for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) vectorizeBlockInLoop(BB, &PHIsToFix); // Insert truncates and extends for any truncated instructions as hints to // InstCombine. if (VF > 1) truncateToMinimalBitwidths(); // At this point every instruction in the original loop is widened to a // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI // nodes are currently empty because we did not want to introduce cycles. // This is the second stage of vectorizing recurrences. for (PHINode *Phi : PHIsToFix) { assert(Phi && "Unable to recover vectorized PHI"); // Handle first-order recurrences that need to be fixed. if (Legal->isFirstOrderRecurrence(Phi)) { fixFirstOrderRecurrence(Phi); continue; } // If the phi node is not a first-order recurrence, it must be a reduction. // Get it's reduction variable descriptor. assert(Legal->isReductionVariable(Phi) && "Unable to find the reduction variable"); RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); TrackingVH ReductionStartValue = RdxDesc.getRecurrenceStartValue(); Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = RdxDesc.getMinMaxRecurrenceKind(); setDebugLocFromInst(Builder, ReductionStartValue); // We need to generate a reduction vector from the incoming scalar. // To do so, we need to generate the 'identity' vector and override // one of the elements with the incoming scalar reduction. We need // to do it in the vector-loop preheader. Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); // This is the vector-clone of the value that leaves the loop. VectorParts &VectorExit = getVectorValue(LoopExitInst); Type *VecTy = VectorExit[0]->getType(); // Find the reduction identity variable. Zero for addition, or, xor, // one for multiplication, -1 for And. Value *Identity; Value *VectorStart; if (RK == RecurrenceDescriptor::RK_IntegerMinMax || RK == RecurrenceDescriptor::RK_FloatMinMax) { // MinMax reduction have the start value as their identify. if (VF == 1) { VectorStart = Identity = ReductionStartValue; } else { VectorStart = Identity = Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); } } else { // Handle other reduction kinds: Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( RK, VecTy->getScalarType()); if (VF == 1) { Identity = Iden; // This vector is the Identity vector where the first element is the // incoming scalar reduction. VectorStart = ReductionStartValue; } else { Identity = ConstantVector::getSplat(VF, Iden); // This vector is the Identity vector where the first element is the // incoming scalar reduction. VectorStart = Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); } } // Fix the vector-loop phi. // Reductions do not have to start at zero. They can start with // any loop invariant values. VectorParts &VecRdxPhi = WidenMap.get(Phi); BasicBlock *Latch = OrigLoop->getLoopLatch(); Value *LoopVal = Phi->getIncomingValueForBlock(Latch); VectorParts &Val = getVectorValue(LoopVal); for (unsigned part = 0; part < UF; ++part) { // Make sure to add the reduction stat value only to the // first unroll part. Value *StartVal = (part == 0) ? VectorStart : Identity; cast(VecRdxPhi[part]) ->addIncoming(StartVal, LoopVectorPreHeader); cast(VecRdxPhi[part]) ->addIncoming(Val[part], LoopVectorBody); } // Before each round, move the insertion point right between // the PHIs and the values we are going to write. // This allows us to write both PHINodes and the extractelement // instructions. Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); VectorParts RdxParts = getVectorValue(LoopExitInst); setDebugLocFromInst(Builder, LoopExitInst); // If the vector reduction can be performed in a smaller type, we truncate // then extend the loop exit value to enable InstCombine to evaluate the // entire expression in the smaller type. if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); Builder.SetInsertPoint(LoopVectorBody->getTerminator()); for (unsigned part = 0; part < UF; ++part) { Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) : Builder.CreateZExt(Trunc, VecTy); for (Value::user_iterator UI = RdxParts[part]->user_begin(); UI != RdxParts[part]->user_end();) if (*UI != Trunc) { (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); RdxParts[part] = Extnd; } else { ++UI; } } Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); for (unsigned part = 0; part < UF; ++part) RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); } // Reduce all of the unrolled parts into a single vector. Value *ReducedPartRdx = RdxParts[0]; unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); setDebugLocFromInst(Builder, ReducedPartRdx); for (unsigned part = 1; part < UF; ++part) { if (Op != Instruction::ICmp && Op != Instruction::FCmp) // Floating point operations had to be 'fast' to enable the reduction. ReducedPartRdx = addFastMathFlag( Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], ReducedPartRdx, "bin.rdx")); else ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); } if (VF > 1) { // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles // and vector ops, reducing the set of values being computed by half each // round. assert(isPowerOf2_32(VF) && "Reduction emission only supported for pow2 vectors!"); Value *TmpVec = ReducedPartRdx; SmallVector ShuffleMask(VF, nullptr); for (unsigned i = VF; i != 1; i >>= 1) { // Move the upper half of the vector to the lower half. for (unsigned j = 0; j != i / 2; ++j) ShuffleMask[j] = Builder.getInt32(i / 2 + j); // Fill the rest of the mask with undef. std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), UndefValue::get(Builder.getInt32Ty())); Value *Shuf = Builder.CreateShuffleVector( TmpVec, UndefValue::get(TmpVec->getType()), ConstantVector::get(ShuffleMask), "rdx.shuf"); if (Op != Instruction::ICmp && Op != Instruction::FCmp) // Floating point operations had to be 'fast' to enable the reduction. TmpVec = addFastMathFlag(Builder.CreateBinOp( (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); else TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); } // The result is in the first element of the vector. ReducedPartRdx = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); // If the reduction can be performed in a smaller type, we need to extend // the reduction to the wider type before we branch to the original loop. if (Phi->getType() != RdxDesc.getRecurrenceType()) ReducedPartRdx = RdxDesc.isSigned() ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); } // Create a phi node that merges control-flow from the backedge-taken check // block and the middle block. PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", LoopScalarPreHeader->getTerminator()); for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); // Now, we need to fix the users of the reduction variable // inside and outside of the scalar remainder loop. // We know that the loop is in LCSSA form. We need to update the // PHI nodes in the exit blocks. for (BasicBlock::iterator LEI = LoopExitBlock->begin(), LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { PHINode *LCSSAPhi = dyn_cast(LEI); if (!LCSSAPhi) break; // All PHINodes need to have a single entry edge, or two if // we already fixed them. assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); // We found our reduction value exit-PHI. Update it with the // incoming bypass edge. if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { // Add an edge coming from the bypass. LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); break; } } // end of the LCSSA phi scan. // Fix the scalar loop reduction variable with the incoming reduction sum // from the vector body and from the backedge value. int IncomingEdgeBlockIdx = Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); // Pick the other block. int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); } // end of for each Phi in PHIsToFix. fixLCSSAPHIs(); // Make sure DomTree is updated. updateAnalysis(); // Predicate any stores. for (auto KV : PredicatedStores) { BasicBlock::iterator I(KV.first); auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, /*BranchWeights=*/nullptr, DT, LI); I->moveBefore(T); I->getParent()->setName("pred.store.if"); BB->setName("pred.store.continue"); } DEBUG(DT->verifyDomTree()); // Remove redundant induction instructions. cse(LoopVectorBody); } void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { // This is the second phase of vectorizing first-order recurrences. An // overview of the transformation is described below. Suppose we have the // following loop. // // for (int i = 0; i < n; ++i) // b[i] = a[i] - a[i - 1]; // // There is a first-order recurrence on "a". For this loop, the shorthand // scalar IR looks like: // // scalar.ph: // s_init = a[-1] // br scalar.body // // scalar.body: // i = phi [0, scalar.ph], [i+1, scalar.body] // s1 = phi [s_init, scalar.ph], [s2, scalar.body] // s2 = a[i] // b[i] = s2 - s1 // br cond, scalar.body, ... // // In this example, s1 is a recurrence because it's value depends on the // previous iteration. In the first phase of vectorization, we created a // temporary value for s1. We now complete the vectorization and produce the // shorthand vector IR shown below (for VF = 4, UF = 1). // // vector.ph: // v_init = vector(..., ..., ..., a[-1]) // br vector.body // // vector.body // i = phi [0, vector.ph], [i+4, vector.body] // v1 = phi [v_init, vector.ph], [v2, vector.body] // v2 = a[i, i+1, i+2, i+3]; // v3 = vector(v1(3), v2(0, 1, 2)) // b[i, i+1, i+2, i+3] = v2 - v3 // br cond, vector.body, middle.block // // middle.block: // x = v2(3) // br scalar.ph // // scalar.ph: // s_init = phi [x, middle.block], [a[-1], otherwise] // br scalar.body // // After execution completes the vector loop, we extract the next value of // the recurrence (x) to use as the initial value in the scalar loop. // Get the original loop preheader and single loop latch. auto *Preheader = OrigLoop->getLoopPreheader(); auto *Latch = OrigLoop->getLoopLatch(); // Get the initial and previous values of the scalar recurrence. auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); auto *Previous = Phi->getIncomingValueForBlock(Latch); // Create a vector from the initial value. auto *VectorInit = ScalarInit; if (VF > 1) { Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); VectorInit = Builder.CreateInsertElement( UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, Builder.getInt32(VF - 1), "vector.recur.init"); } // We constructed a temporary phi node in the first phase of vectorization. // This phi node will eventually be deleted. auto &PhiParts = getVectorValue(Phi); Builder.SetInsertPoint(cast(PhiParts[0])); // Create a phi node for the new recurrence. The current value will either be // the initial value inserted into a vector or loop-varying vector value. auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); // Get the vectorized previous value. We ensured the previous values was an // instruction when detecting the recurrence. auto &PreviousParts = getVectorValue(Previous); // Set the insertion point to be after this instruction. We ensured the // previous value dominated all uses of the phi when detecting the // recurrence. Builder.SetInsertPoint( &*++BasicBlock::iterator(cast(PreviousParts[UF - 1]))); // We will construct a vector for the recurrence by combining the values for // the current and previous iterations. This is the required shuffle mask. SmallVector ShuffleMask(VF); ShuffleMask[0] = Builder.getInt32(VF - 1); for (unsigned I = 1; I < VF; ++I) ShuffleMask[I] = Builder.getInt32(I + VF - 1); // The vector from which to take the initial value for the current iteration // (actual or unrolled). Initially, this is the vector phi node. Value *Incoming = VecPhi; // Shuffle the current and previous vector and update the vector parts. for (unsigned Part = 0; Part < UF; ++Part) { auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], ConstantVector::get(ShuffleMask)) : Incoming; PhiParts[Part]->replaceAllUsesWith(Shuffle); cast(PhiParts[Part])->eraseFromParent(); PhiParts[Part] = Shuffle; Incoming = PreviousParts[Part]; } // Fix the latch value of the new recurrence in the vector loop. VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); // Extract the last vector element in the middle block. This will be the // initial value for the recurrence when jumping to the scalar loop. auto *Extract = Incoming; if (VF > 1) { Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), "vector.recur.extract"); } // Fix the initial value of the original recurrence in the scalar loop. Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); for (auto *BB : predecessors(LoopScalarPreHeader)) { auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; Start->addIncoming(Incoming, BB); } Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); Phi->setName("scalar.recur"); // Finally, fix users of the recurrence outside the loop. The users will need // either the last value of the scalar recurrence or the last value of the // vector recurrence we extracted in the middle block. Since the loop is in // LCSSA form, we just need to find the phi node for the original scalar // recurrence in the exit block, and then add an edge for the middle block. for (auto &I : *LoopExitBlock) { auto *LCSSAPhi = dyn_cast(&I); if (!LCSSAPhi) break; if (LCSSAPhi->getIncomingValue(0) == Phi) { LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); break; } } } void InnerLoopVectorizer::fixLCSSAPHIs() { for (Instruction &LEI : *LoopExitBlock) { auto *LCSSAPhi = dyn_cast(&LEI); if (!LCSSAPhi) break; if (LCSSAPhi->getNumIncomingValues() == 1) LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), LoopMiddleBlock); } } InnerLoopVectorizer::VectorParts InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && "Invalid edge"); // Look for cached value. std::pair Edge(Src, Dst); EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); if (ECEntryIt != MaskCache.end()) return ECEntryIt->second; VectorParts SrcMask = createBlockInMask(Src); // The terminator has to be a branch inst! BranchInst *BI = dyn_cast(Src->getTerminator()); assert(BI && "Unexpected terminator found"); if (BI->isConditional()) { VectorParts EdgeMask = getVectorValue(BI->getCondition()); if (BI->getSuccessor(0) != Dst) for (unsigned part = 0; part < UF; ++part) EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); for (unsigned part = 0; part < UF; ++part) EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); MaskCache[Edge] = EdgeMask; return EdgeMask; } MaskCache[Edge] = SrcMask; return SrcMask; } InnerLoopVectorizer::VectorParts InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); // Loop incoming mask is all-one. if (OrigLoop->getHeader() == BB) { Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); return getVectorValue(C); } // This is the block mask. We OR all incoming edges, and with zero. Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); VectorParts BlockMask = getVectorValue(Zero); // For each pred: for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { VectorParts EM = createEdgeMask(*it, BB); for (unsigned part = 0; part < UF; ++part) BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); } return BlockMask; } void InnerLoopVectorizer::widenPHIInstruction( Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, unsigned VF, PhiVector *PV) { PHINode *P = cast(PN); // Handle recurrences. if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { for (unsigned part = 0; part < UF; ++part) { // This is phase one of vectorizing PHIs. Type *VecTy = (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); Entry[part] = PHINode::Create( VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); } PV->push_back(P); return; } setDebugLocFromInst(Builder, P); // Check for PHI nodes that are lowered to vector selects. if (P->getParent() != OrigLoop->getHeader()) { // We know that all PHIs in non-header blocks are converted into // selects, so we don't have to worry about the insertion order and we // can just use the builder. // At this point we generate the predication tree. There may be // duplications since this is a simple recursive scan, but future // optimizations will clean it up. unsigned NumIncoming = P->getNumIncomingValues(); // Generate a sequence of selects of the form: // SELECT(Mask3, In3, // SELECT(Mask2, In2, // ( ...))) for (unsigned In = 0; In < NumIncoming; In++) { VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), P->getParent()); VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); for (unsigned part = 0; part < UF; ++part) { // We might have single edge PHIs (blocks) - use an identity // 'select' for the first PHI operand. if (In == 0) Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); else // Select between the current value and the previous incoming edge // based on the incoming mask. Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], "predphi"); } } return; } // This PHINode must be an induction variable. // Make sure that we know about it. assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); InductionDescriptor II = Legal->getInductionVars()->lookup(P); const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); // FIXME: The newly created binary instructions should contain nsw/nuw flags, // which can be found from the original scalar operations. switch (II.getKind()) { case InductionDescriptor::IK_NoInduction: llvm_unreachable("Unknown induction"); case InductionDescriptor::IK_IntInduction: return widenIntInduction(P, Entry); case InductionDescriptor::IK_PtrInduction: // Handle the pointer induction variable case. assert(P->getType()->isPointerTy() && "Unexpected type."); // This is the normalized GEP that starts counting at zero. Value *PtrInd = Induction; PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); // This is the vector of results. Notice that we don't generate // vector geps because scalar geps result in better code. for (unsigned part = 0; part < UF; ++part) { if (VF == 1) { int EltIndex = part; Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); SclrGep->setName("next.gep"); Entry[part] = SclrGep; continue; } Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); for (unsigned int i = 0; i < VF; ++i) { int EltIndex = i + part * VF; Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); SclrGep->setName("next.gep"); VecVal = Builder.CreateInsertElement(VecVal, SclrGep, Builder.getInt32(i), "insert.gep"); } Entry[part] = VecVal; } return; } } void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { // For each instruction in the old loop. for (Instruction &I : *BB) { VectorParts &Entry = WidenMap.get(&I); switch (I.getOpcode()) { case Instruction::Br: // Nothing to do for PHIs and BR, since we already took care of the // loop control flow instructions. continue; case Instruction::PHI: { // Vectorize PHINodes. widenPHIInstruction(&I, Entry, UF, VF, PV); continue; } // End of PHI. case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // Just widen binops. auto *BinOp = cast(&I); setDebugLocFromInst(Builder, BinOp); VectorParts &A = getVectorValue(BinOp->getOperand(0)); VectorParts &B = getVectorValue(BinOp->getOperand(1)); // Use this vector value for all users of the original instruction. for (unsigned Part = 0; Part < UF; ++Part) { Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); if (BinaryOperator *VecOp = dyn_cast(V)) VecOp->copyIRFlags(BinOp); Entry[Part] = V; } addMetadata(Entry, BinOp); break; } case Instruction::Select: { // Widen selects. // If the selector is loop invariant we can create a select // instruction with a scalar condition. Otherwise, use vector-select. auto *SE = PSE.getSE(); bool InvariantCond = SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); setDebugLocFromInst(Builder, &I); // The condition can be loop invariant but still defined inside the // loop. This means that we can't just use the original 'cond' value. // We have to take the 'vectorized' value and pick the first lane. // Instcombine will make this a no-op. VectorParts &Cond = getVectorValue(I.getOperand(0)); VectorParts &Op0 = getVectorValue(I.getOperand(1)); VectorParts &Op1 = getVectorValue(I.getOperand(2)); Value *ScalarCond = (VF == 1) ? Cond[0] : Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); for (unsigned Part = 0; Part < UF; ++Part) { Entry[Part] = Builder.CreateSelect( InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); } addMetadata(Entry, &I); break; } case Instruction::ICmp: case Instruction::FCmp: { // Widen compares. Generate vector compares. bool FCmp = (I.getOpcode() == Instruction::FCmp); auto *Cmp = dyn_cast(&I); setDebugLocFromInst(Builder, Cmp); VectorParts &A = getVectorValue(Cmp->getOperand(0)); VectorParts &B = getVectorValue(Cmp->getOperand(1)); for (unsigned Part = 0; Part < UF; ++Part) { Value *C = nullptr; if (FCmp) { C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); cast(C)->copyFastMathFlags(Cmp); } else { C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); } Entry[Part] = C; } addMetadata(Entry, &I); break; } case Instruction::Store: case Instruction::Load: vectorizeMemoryInstruction(&I); break; case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { auto *CI = dyn_cast(&I); setDebugLocFromInst(Builder, CI); // Optimize the special case where the source is a constant integer // induction variable. Notice that we can only optimize the 'trunc' case // because (a) FP conversions lose precision, (b) sext/zext may wrap, and // (c) other casts depend on pointer size. auto ID = Legal->getInductionVars()->lookup(OldInduction); if (isa(CI) && CI->getOperand(0) == OldInduction && ID.getConstIntStepValue()) { widenIntInduction(OldInduction, Entry, cast(CI)); addMetadata(Entry, &I); break; } /// Vectorize casts. Type *DestTy = (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); VectorParts &A = getVectorValue(CI->getOperand(0)); for (unsigned Part = 0; Part < UF; ++Part) Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); addMetadata(Entry, &I); break; } case Instruction::Call: { // Ignore dbg intrinsics. if (isa(I)) break; setDebugLocFromInst(Builder, &I); Module *M = BB->getParent()->getParent(); auto *CI = cast(&I); StringRef FnName = CI->getCalledFunction()->getName(); Function *F = CI->getCalledFunction(); Type *RetTy = ToVectorTy(CI->getType(), VF); SmallVector Tys; for (Value *ArgOperand : CI->arg_operands()) Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || ID == Intrinsic::lifetime_start)) { scalarizeInstruction(&I); break; } // The flag shows whether we use Intrinsic or a usual Call for vectorized // version of the instruction. // Is it beneficial to perform intrinsic call compared to lib call? bool NeedToScalarize; unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); bool UseVectorIntrinsic = ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; if (!UseVectorIntrinsic && NeedToScalarize) { scalarizeInstruction(&I); break; } for (unsigned Part = 0; Part < UF; ++Part) { SmallVector Args; for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { Value *Arg = CI->getArgOperand(i); // Some intrinsics have a scalar argument - don't replace it with a // vector. if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); Arg = VectorArg[Part]; } Args.push_back(Arg); } Function *VectorF; if (UseVectorIntrinsic) { // Use vector version of the intrinsic. Type *TysForDecl[] = {CI->getType()}; if (VF > 1) TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); } else { // Use vector version of the library call. StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); assert(!VFnName.empty() && "Vector function name is empty."); VectorF = M->getFunction(VFnName); if (!VectorF) { // Generate a declaration FunctionType *FTy = FunctionType::get(RetTy, Tys, false); VectorF = Function::Create(FTy, Function::ExternalLinkage, VFnName, M); VectorF->copyAttributesFrom(F); } } assert(VectorF && "Can't create vector function."); SmallVector OpBundles; CI->getOperandBundlesAsDefs(OpBundles); CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); if (isa(V)) V->copyFastMathFlags(CI); Entry[Part] = V; } addMetadata(Entry, &I); break; } default: // All other instructions are unsupported. Scalarize them. scalarizeInstruction(&I); break; } // end of switch. } // end of for_each instr. } void InnerLoopVectorizer::updateAnalysis() { // Forget the original basic block. PSE.getSE()->forgetLoop(OrigLoop); // Update the dominator tree information. assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && "Entry does not dominate exit."); // We don't predicate stores by this point, so the vector body should be a // single loop. DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); DEBUG(DT->verifyDomTree()); } /// \brief Check whether it is safe to if-convert this phi node. /// /// Phi nodes with constant expressions that can trap are not safe to if /// convert. static bool canIfConvertPHINodes(BasicBlock *BB) { for (Instruction &I : *BB) { auto *Phi = dyn_cast(&I); if (!Phi) return true; for (Value *V : Phi->incoming_values()) if (auto *C = dyn_cast(V)) if (C->canTrap()) return false; } return true; } bool LoopVectorizationLegality::canVectorizeWithIfConvert() { if (!EnableIfConversion) { emitAnalysis(VectorizationReport() << "if-conversion is disabled"); return false; } assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); // A list of pointers that we can safely read and write to. SmallPtrSet SafePointes; // Collect safe addresses. for (BasicBlock *BB : TheLoop->blocks()) { if (blockNeedsPredication(BB)) continue; for (Instruction &I : *BB) { if (auto *LI = dyn_cast(&I)) SafePointes.insert(LI->getPointerOperand()); else if (auto *SI = dyn_cast(&I)) SafePointes.insert(SI->getPointerOperand()); } } // Collect the blocks that need predication. BasicBlock *Header = TheLoop->getHeader(); for (BasicBlock *BB : TheLoop->blocks()) { // We don't support switch statements inside loops. if (!isa(BB->getTerminator())) { emitAnalysis(VectorizationReport(BB->getTerminator()) << "loop contains a switch statement"); return false; } // We must be able to predicate all blocks that need to be predicated. if (blockNeedsPredication(BB)) { if (!blockCanBePredicated(BB, SafePointes)) { emitAnalysis(VectorizationReport(BB->getTerminator()) << "control flow cannot be substituted for a select"); return false; } } else if (BB != Header && !canIfConvertPHINodes(BB)) { emitAnalysis(VectorizationReport(BB->getTerminator()) << "control flow cannot be substituted for a select"); return false; } } // We can if-convert this loop. return true; } bool LoopVectorizationLegality::canVectorize() { // We must have a loop in canonical form. Loops with indirectbr in them cannot // be canonicalized. if (!TheLoop->getLoopPreheader()) { emitAnalysis(VectorizationReport() << "loop control flow is not understood by vectorizer"); return false; } // We can only vectorize innermost loops. if (!TheLoop->empty()) { emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); return false; } // We must have a single backedge. if (TheLoop->getNumBackEdges() != 1) { emitAnalysis(VectorizationReport() << "loop control flow is not understood by vectorizer"); return false; } // We must have a single exiting block. if (!TheLoop->getExitingBlock()) { emitAnalysis(VectorizationReport() << "loop control flow is not understood by vectorizer"); return false; } // We only handle bottom-tested loops, i.e. loop in which the condition is // checked at the end of each iteration. With that we can assume that all // instructions in the loop are executed the same number of times. if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { emitAnalysis(VectorizationReport() << "loop control flow is not understood by vectorizer"); return false; } // We need to have a loop header. DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() << '\n'); // Check if we can if-convert non-single-bb loops. unsigned NumBlocks = TheLoop->getNumBlocks(); if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); return false; } // ScalarEvolution needs to be able to find the exit count. const SCEV *ExitCount = PSE.getBackedgeTakenCount(); if (ExitCount == PSE.getSE()->getCouldNotCompute()) { emitAnalysis(VectorizationReport() << "could not determine number of loop iterations"); DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); return false; } // Check if we can vectorize the instructions and CFG in this loop. if (!canVectorizeInstrs()) { DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); return false; } // Go over each instruction and look at memory deps. if (!canVectorizeMemory()) { DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); return false; } // Collect all of the variables that remain uniform after vectorization. collectLoopUniforms(); DEBUG(dbgs() << "LV: We can vectorize this loop" << (LAI->getRuntimePointerChecking()->Need ? " (with a runtime bound check)" : "") << "!\n"); bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); // If an override option has been passed in for interleaved accesses, use it. if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) UseInterleaved = EnableInterleavedMemAccesses; // Analyze interleaved memory accesses. if (UseInterleaved) InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { emitAnalysis(VectorizationReport() << "Too many SCEV assumptions need to be made and checked " << "at runtime"); DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); return false; } // Okay! We can vectorize. At this point we don't have any other mem analysis // which may limit our maximum vectorization factor, so just return true with // no restrictions. return true; } static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { if (Ty->isPointerTy()) return DL.getIntPtrType(Ty); // It is possible that char's or short's overflow when we ask for the loop's // trip count, work around this by changing the type size. if (Ty->getScalarSizeInBits() < 32) return Type::getInt32Ty(Ty->getContext()); return Ty; } static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { Ty0 = convertPointerToIntegerType(DL, Ty0); Ty1 = convertPointerToIntegerType(DL, Ty1); if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) return Ty0; return Ty1; } /// \brief Check that the instruction has outside loop users and is not an /// identified reduction variable. static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, SmallPtrSetImpl &AllowedExit) { // Reduction and Induction instructions are allowed to have exit users. All // other instructions must not have external users. if (!AllowedExit.count(Inst)) // Check that all of the users of the loop are inside the BB. for (User *U : Inst->users()) { Instruction *UI = cast(U); // This user may be a reduction exit value. if (!TheLoop->contains(UI)) { DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); return true; } } return false; } void LoopVectorizationLegality::addInductionPhi( PHINode *Phi, const InductionDescriptor &ID, SmallPtrSetImpl &AllowedExit) { Inductions[Phi] = ID; Type *PhiTy = Phi->getType(); const DataLayout &DL = Phi->getModule()->getDataLayout(); // Get the widest type. if (!WidestIndTy) WidestIndTy = convertPointerToIntegerType(DL, PhiTy); else WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); // Int inductions are special because we only allow one IV. if (ID.getKind() == InductionDescriptor::IK_IntInduction && ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && isa(ID.getStartValue()) && cast(ID.getStartValue())->isNullValue()) { // Use the phi node with the widest type as induction. Use the last // one if there are multiple (no good reason for doing this other // than it is expedient). We've checked that it begins at zero and // steps by one, so this is a canonical induction variable. if (!Induction || PhiTy == WidestIndTy) Induction = Phi; } // Both the PHI node itself, and the "post-increment" value feeding // back into the PHI node may have external users. AllowedExit.insert(Phi); AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); DEBUG(dbgs() << "LV: Found an induction variable.\n"); return; } bool LoopVectorizationLegality::canVectorizeInstrs() { BasicBlock *Header = TheLoop->getHeader(); // Look for the attribute signaling the absence of NaNs. Function &F = *Header->getParent(); HasFunNoNaNAttr = F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; // For each block in the loop. for (BasicBlock *BB : TheLoop->blocks()) { // Scan the instructions in the block and look for hazards. for (Instruction &I : *BB) { if (auto *Phi = dyn_cast(&I)) { Type *PhiTy = Phi->getType(); // Check that this PHI type is allowed. if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && !PhiTy->isPointerTy()) { emitAnalysis(VectorizationReport(Phi) << "loop control flow is not understood by vectorizer"); DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); return false; } // If this PHINode is not in the header block, then we know that we // can convert it to select during if-conversion. No need to check if // the PHIs in this block are induction or reduction variables. if (BB != Header) { // Check that this instruction has no outside users or is an // identified reduction value with an outside user. if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) continue; emitAnalysis(VectorizationReport(Phi) << "value could not be identified as " "an induction or reduction variable"); return false; } // We only allow if-converted PHIs with exactly two incoming values. if (Phi->getNumIncomingValues() != 2) { emitAnalysis(VectorizationReport(Phi) << "control flow not understood by vectorizer"); DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); return false; } RecurrenceDescriptor RedDes; if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { if (RedDes.hasUnsafeAlgebra()) Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); AllowedExit.insert(RedDes.getLoopExitInstr()); Reductions[Phi] = RedDes; continue; } InductionDescriptor ID; if (InductionDescriptor::isInductionPHI(Phi, PSE, ID)) { addInductionPhi(Phi, ID, AllowedExit); continue; } if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { FirstOrderRecurrences.insert(Phi); continue; } // As a last resort, coerce the PHI to a AddRec expression // and re-try classifying it a an induction PHI. if (InductionDescriptor::isInductionPHI(Phi, PSE, ID, true)) { addInductionPhi(Phi, ID, AllowedExit); continue; } emitAnalysis(VectorizationReport(Phi) << "value that could not be identified as " "reduction is used outside the loop"); DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); return false; } // end of PHI handling // We handle calls that: // * Are debug info intrinsics. // * Have a mapping to an IR intrinsic. // * Have a vector version available. auto *CI = dyn_cast(&I); if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && !isa(CI) && !(CI->getCalledFunction() && TLI && TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { emitAnalysis(VectorizationReport(CI) << "call instruction cannot be vectorized"); DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); return false; } // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the // second argument is the same (i.e. loop invariant) if (CI && hasVectorInstrinsicScalarOpd( getVectorIntrinsicIDForCall(CI, TLI), 1)) { auto *SE = PSE.getSE(); if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { emitAnalysis(VectorizationReport(CI) << "intrinsic instruction cannot be vectorized"); DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); return false; } } // Check that the instruction return type is vectorizable. // Also, we can't vectorize extractelement instructions. if ((!VectorType::isValidElementType(I.getType()) && !I.getType()->isVoidTy()) || isa(I)) { emitAnalysis(VectorizationReport(&I) << "instruction return type cannot be vectorized"); DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); return false; } // Check that the stored type is vectorizable. if (auto *ST = dyn_cast(&I)) { Type *T = ST->getValueOperand()->getType(); if (!VectorType::isValidElementType(T)) { emitAnalysis(VectorizationReport(ST) << "store instruction cannot be vectorized"); return false; } // FP instructions can allow unsafe algebra, thus vectorizable by // non-IEEE-754 compliant SIMD units. // This applies to floating-point math operations and calls, not memory // operations, shuffles, or casts, as they don't change precision or // semantics. } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && !I.hasUnsafeAlgebra()) { DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); Hints->setPotentiallyUnsafe(); } // Reduction instructions are allowed to have exit users. // All other instructions must not have external users. if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { emitAnalysis(VectorizationReport(&I) << "value cannot be used outside the loop"); return false; } } // next instr. } if (!Induction) { DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); if (Inductions.empty()) { emitAnalysis(VectorizationReport() << "loop induction variable could not be identified"); return false; } } // Now we know the widest induction type, check if our found induction // is the same size. If it's not, unset it here and InnerLoopVectorizer // will create another. if (Induction && WidestIndTy != Induction->getType()) Induction = nullptr; return true; } void LoopVectorizationLegality::collectLoopUniforms() { // We now know that the loop is vectorizable! // Collect variables that will remain uniform after vectorization. // If V is not an instruction inside the current loop, it is a Value // outside of the scope which we are interesting in. auto isOutOfScope = [&](Value *V) -> bool { Instruction *I = dyn_cast(V); return (!I || !TheLoop->contains(I)); }; SetVector Worklist; BasicBlock *Latch = TheLoop->getLoopLatch(); // Start with the conditional branch. if (!isOutOfScope(Latch->getTerminator()->getOperand(0))) { Instruction *Cmp = cast(Latch->getTerminator()->getOperand(0)); Worklist.insert(Cmp); DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); } // Also add all consecutive pointer values; these values will be uniform // after vectorization (and subsequent cleanup). for (auto *BB : TheLoop->blocks()) { for (auto &I : *BB) { if (I.getType()->isPointerTy() && isConsecutivePtr(&I)) { Worklist.insert(&I); DEBUG(dbgs() << "LV: Found uniform instruction: " << I << "\n"); } } } // Expand Worklist in topological order: whenever a new instruction // is added , its users should be either already inside Worklist, or // out of scope. It ensures a uniform instruction will only be used // by uniform instructions or out of scope instructions. unsigned idx = 0; do { Instruction *I = Worklist[idx++]; for (auto OV : I->operand_values()) { if (isOutOfScope(OV)) continue; auto *OI = cast(OV); if (all_of(OI->users(), [&](User *U) -> bool { return isOutOfScope(U) || Worklist.count(cast(U)); })) { Worklist.insert(OI); DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); } } } while (idx != Worklist.size()); // For an instruction to be added into Worklist above, all its users inside // the current loop should be already added into Worklist. This condition // cannot be true for phi instructions which is always in a dependence loop. // Because any instruction in the dependence cycle always depends on others // in the cycle to be added into Worklist first, the result is no ones in // the cycle will be added into Worklist in the end. // That is why we process PHI separately. for (auto &Induction : *getInductionVars()) { auto *PN = Induction.first; auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); if (all_of(PN->users(), [&](User *U) -> bool { return U == UpdateV || isOutOfScope(U) || Worklist.count(cast(U)); }) && all_of(UpdateV->users(), [&](User *U) -> bool { return U == PN || isOutOfScope(U) || Worklist.count(cast(U)); })) { Worklist.insert(cast(PN)); Worklist.insert(cast(UpdateV)); DEBUG(dbgs() << "LV: Found uniform instruction: " << *PN << "\n"); DEBUG(dbgs() << "LV: Found uniform instruction: " << *UpdateV << "\n"); } } Uniforms.insert(Worklist.begin(), Worklist.end()); } bool LoopVectorizationLegality::canVectorizeMemory() { LAI = &(*GetLAA)(*TheLoop); InterleaveInfo.setLAI(LAI); auto &OptionalReport = LAI->getReport(); if (OptionalReport) emitAnalysis(VectorizationReport(*OptionalReport)); if (!LAI->canVectorizeMemory()) return false; if (LAI->hasStoreToLoopInvariantAddress()) { emitAnalysis( VectorizationReport() << "write to a loop invariant address could not be vectorized"); DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); return false; } Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); PSE.addPredicate(LAI->getPSE().getUnionPredicate()); return true; } bool LoopVectorizationLegality::isInductionVariable(const Value *V) { Value *In0 = const_cast(V); PHINode *PN = dyn_cast_or_null(In0); if (!PN) return false; return Inductions.count(PN); } bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { return FirstOrderRecurrences.count(Phi); } bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); } bool LoopVectorizationLegality::blockCanBePredicated( BasicBlock *BB, SmallPtrSetImpl &SafePtrs) { const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); for (Instruction &I : *BB) { // Check that we don't have a constant expression that can trap as operand. for (Value *Operand : I.operands()) { if (auto *C = dyn_cast(Operand)) if (C->canTrap()) return false; } // We might be able to hoist the load. if (I.mayReadFromMemory()) { auto *LI = dyn_cast(&I); if (!LI) return false; if (!SafePtrs.count(LI->getPointerOperand())) { if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || isLegalMaskedGather(LI->getType())) { MaskedOp.insert(LI); continue; } // !llvm.mem.parallel_loop_access implies if-conversion safety. if (IsAnnotatedParallel) continue; return false; } } // We don't predicate stores at the moment. if (I.mayWriteToMemory()) { auto *SI = dyn_cast(&I); // We only support predication of stores in basic blocks with one // predecessor. if (!SI) return false; // Build a masked store if it is legal for the target. if (isLegalMaskedStore(SI->getValueOperand()->getType(), SI->getPointerOperand()) || isLegalMaskedScatter(SI->getValueOperand()->getType())) { MaskedOp.insert(SI); continue; } bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || !isSinglePredecessor) return false; } if (I.mayThrow()) return false; // The instructions below can trap. switch (I.getOpcode()) { default: continue; case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: return false; } } return true; } void InterleavedAccessInfo::collectConstStrideAccesses( MapVector &AccessStrideInfo, const ValueToValueMap &Strides) { auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); // Since it's desired that the load/store instructions be maintained in // "program order" for the interleaved access analysis, we have to visit the // blocks in the loop in reverse postorder (i.e., in a topological order). // Such an ordering will ensure that any load/store that may be executed // before a second load/store will precede the second load/store in // AccessStrideInfo. LoopBlocksDFS DFS(TheLoop); DFS.perform(LI); for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) for (auto &I : *BB) { auto *LI = dyn_cast(&I); auto *SI = dyn_cast(&I); if (!LI && !SI) continue; Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides); const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); PointerType *PtrTy = dyn_cast(Ptr->getType()); uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); // An alignment of 0 means target ABI alignment. unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); if (!Align) Align = DL.getABITypeAlignment(PtrTy->getElementType()); AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); } } // Analyze interleaved accesses and collect them into interleaved load and // store groups. // // When generating code for an interleaved load group, we effectively hoist all // loads in the group to the location of the first load in program order. When // generating code for an interleaved store group, we sink all stores to the // location of the last store. This code motion can change the order of load // and store instructions and may break dependences. // // The code generation strategy mentioned above ensures that we won't violate // any write-after-read (WAR) dependences. // // E.g., for the WAR dependence: a = A[i]; // (1) // A[i] = b; // (2) // // The store group of (2) is always inserted at or below (2), and the load // group of (1) is always inserted at or above (1). Thus, the instructions will // never be reordered. All other dependences are checked to ensure the // correctness of the instruction reordering. // // The algorithm visits all memory accesses in the loop in bottom-up program // order. Program order is established by traversing the blocks in the loop in // reverse postorder when collecting the accesses. // // We visit the memory accesses in bottom-up order because it can simplify the // construction of store groups in the presence of write-after-write (WAW) // dependences. // // E.g., for the WAW dependence: A[i] = a; // (1) // A[i] = b; // (2) // A[i + 1] = c; // (3) // // We will first create a store group with (3) and (2). (1) can't be added to // this group because it and (2) are dependent. However, (1) can be grouped // with other accesses that may precede it in program order. Note that a // bottom-up order does not imply that WAW dependences should not be checked. void InterleavedAccessInfo::analyzeInterleaving( const ValueToValueMap &Strides) { DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); // Holds all accesses with a constant stride. MapVector AccessStrideInfo; collectConstStrideAccesses(AccessStrideInfo, Strides); if (AccessStrideInfo.empty()) return; // Collect the dependences in the loop. collectDependences(); // Holds all interleaved store groups temporarily. SmallSetVector StoreGroups; // Holds all interleaved load groups temporarily. SmallSetVector LoadGroups; // Search the load-load/write-write pair B-A in bottom-up order and try to // insert B into the interleave group of A according to 3 rules: // 1. A and B have the same stride. // 2. A and B have the same memory object size. // 3. B belongs to the group according to the distance. for (auto AI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); AI != E; ++AI) { Instruction *A = AI->first; StrideDescriptor DesA = AI->second; // Initialize a group for A if it has an allowable stride. Even if we don't // create a group for A, we continue with the bottom-up algorithm to ensure // we don't break any of A's dependences. InterleaveGroup *Group = nullptr; if (isStrided(DesA.Stride)) { Group = getInterleaveGroup(A); if (!Group) { DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); } if (A->mayWriteToMemory()) StoreGroups.insert(Group); else LoadGroups.insert(Group); } for (auto BI = std::next(AI); BI != E; ++BI) { Instruction *B = BI->first; StrideDescriptor DesB = BI->second; // Our code motion strategy implies that we can't have dependences // between accesses in an interleaved group and other accesses located // between the first and last member of the group. Note that this also // means that a group can't have more than one member at a given offset. // The accesses in a group can have dependences with other accesses, but // we must ensure we don't extend the boundaries of the group such that // we encompass those dependent accesses. // // For example, assume we have the sequence of accesses shown below in a // stride-2 loop: // // (1, 2) is a group | A[i] = a; // (1) // | A[i-1] = b; // (2) | // A[i-3] = c; // (3) // A[i] = d; // (4) | (2, 4) is not a group // // Because accesses (2) and (3) are dependent, we can group (2) with (1) // but not with (4). If we did, the dependent access (3) would be within // the boundaries of the (2, 4) group. if (!canReorderMemAccessesForInterleavedGroups(&*BI, &*AI)) { // If a dependence exists and B is already in a group, we know that B // must be a store since B precedes A and WAR dependences are allowed. // Thus, B would be sunk below A. We release B's group to prevent this // illegal code motion. B will then be free to form another group with // instructions that precede it. if (isInterleaved(B)) { InterleaveGroup *StoreGroup = getInterleaveGroup(B); StoreGroups.remove(StoreGroup); releaseGroup(StoreGroup); } // If a dependence exists and B is not already in a group (or it was // and we just released it), A might be hoisted above B (if A is a // load) or another store might be sunk below B (if A is a store). In // either case, we can't add additional instructions to A's group. A // will only form a group with instructions that it precedes. break; } // At this point, we've checked for illegal code motion. If either A or B // isn't strided, there's nothing left to do. if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) continue; // Ignore if B is already in a group or B is a different memory operation. if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) continue; // Check the rule 1 and 2. if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) continue; // Calculate the distance and prepare for the rule 3. const SCEVConstant *DistToA = dyn_cast( PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); if (!DistToA) continue; int64_t DistanceToA = DistToA->getAPInt().getSExtValue(); // Skip if the distance is not multiple of size as they are not in the // same group. if (DistanceToA % static_cast(DesA.Size)) continue; // If either A or B is in a predicated block, we prevent adding them to a // group. We may be able to relax this limitation in the future once we // handle more complicated blocks. if (isPredicated(A->getParent()) || isPredicated(B->getParent())) continue; // The index of B is the index of A plus the related index to A. int IndexB = Group->getIndex(A) + DistanceToA / static_cast(DesA.Size); // Try to insert B into the group. if (Group->insertMember(B, IndexB, DesB.Align)) { DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' << " into the interleave group with" << *A << '\n'); InterleaveGroupMap[B] = Group; // Set the first load in program order as the insert position. if (B->mayReadFromMemory()) Group->setInsertPos(B); } } // Iteration on instruction B } // Iteration on instruction A // Remove interleaved store groups with gaps. for (InterleaveGroup *Group : StoreGroups) if (Group->getNumMembers() != Group->getFactor()) releaseGroup(Group); // If there is a non-reversed interleaved load group with gaps, we will need // to execute at least one scalar epilogue iteration. This will ensure that // we don't speculatively access memory out-of-bounds. Note that we only need // to look for a member at index factor - 1, since every group must have a // member at index zero. for (InterleaveGroup *Group : LoadGroups) if (!Group->getMember(Group->getFactor() - 1)) { if (Group->isReverse()) { releaseGroup(Group); } else { DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); RequiresScalarEpilogue = true; } } } LoopVectorizationCostModel::VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { // Width 1 means no vectorize VectorizationFactor Factor = {1U, 0U}; if (OptForSize && Legal->getRuntimePointerChecking()->Need) { emitAnalysis( VectorizationReport() << "runtime pointer checks needed. Enable vectorization of this " "loop with '#pragma clang loop vectorize(enable)' when " "compiling with -Os/-Oz"); DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); return Factor; } if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { emitAnalysis( VectorizationReport() << "store that is conditionally executed prevents vectorization"); DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); return Factor; } // Find the trip count. unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); unsigned SmallestType, WidestType; std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); unsigned WidestRegister = TTI.getRegisterBitWidth(true); unsigned MaxSafeDepDist = -1U; // Get the maximum safe dependence distance in bits computed by LAA. If the // loop contains any interleaved accesses, we divide the dependence distance // by the maximum interleave factor of all interleaved groups. Note that // although the division ensures correctness, this is a fairly conservative // computation because the maximum distance computed by LAA may not involve // any of the interleaved accesses. if (Legal->getMaxSafeDepDistBytes() != -1U) MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); WidestRegister = ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); unsigned MaxVectorSize = WidestRegister / WidestType; DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " << WidestType << " bits.\n"); DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister << " bits.\n"); if (MaxVectorSize == 0) { DEBUG(dbgs() << "LV: The target has no vector registers.\n"); MaxVectorSize = 1; } assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" " into one vector!"); unsigned VF = MaxVectorSize; if (MaximizeBandwidth && !OptForSize) { // Collect all viable vectorization factors. SmallVector VFs; unsigned NewMaxVectorSize = WidestRegister / SmallestType; for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) VFs.push_back(VS); // For each VF calculate its register usage. auto RUs = calculateRegisterUsage(VFs); // Select the largest VF which doesn't require more registers than existing // ones. unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); for (int i = RUs.size() - 1; i >= 0; --i) { if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { VF = VFs[i]; break; } } } // If we optimize the program for size, avoid creating the tail loop. if (OptForSize) { // If we are unable to calculate the trip count then don't try to vectorize. if (TC < 2) { emitAnalysis( VectorizationReport() << "unable to calculate the loop count due to complex control flow"); DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); return Factor; } // Find the maximum SIMD width that can fit within the trip count. VF = TC % MaxVectorSize; if (VF == 0) VF = MaxVectorSize; else { // If the trip count that we found modulo the vectorization factor is not // zero then we require a tail. emitAnalysis(VectorizationReport() << "cannot optimize for size and vectorize at the " "same time. Enable vectorization of this loop " "with '#pragma clang loop vectorize(enable)' " "when compiling with -Os/-Oz"); DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); return Factor; } } int UserVF = Hints->getWidth(); if (UserVF != 0) { assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); Factor.Width = UserVF; return Factor; } float Cost = expectedCost(1).first; #ifndef NDEBUG const float ScalarCost = Cost; #endif /* NDEBUG */ unsigned Width = 1; DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; // Ignore scalar width, because the user explicitly wants vectorization. if (ForceVectorization && VF > 1) { Width = 2; Cost = expectedCost(Width).first / (float)Width; } for (unsigned i = 2; i <= VF; i *= 2) { // Notice that the vector loop needs to be executed less times, so // we need to divide the cost of the vector loops by the width of // the vector elements. VectorizationCostTy C = expectedCost(i); float VectorCost = C.first / (float)i; DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << (int)VectorCost << ".\n"); if (!C.second && !ForceVectorization) { DEBUG( dbgs() << "LV: Not considering vector loop of width " << i << " because it will not generate any vector instructions.\n"); continue; } if (VectorCost < Cost) { Cost = VectorCost; Width = i; } } DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() << "LV: Vectorization seems to be not beneficial, " << "but was forced by a user.\n"); DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); Factor.Width = Width; Factor.Cost = Width * Cost; return Factor; } std::pair LoopVectorizationCostModel::getSmallestAndWidestTypes() { unsigned MinWidth = -1U; unsigned MaxWidth = 8; const DataLayout &DL = TheFunction->getParent()->getDataLayout(); // For each block. for (BasicBlock *BB : TheLoop->blocks()) { // For each instruction in the loop. for (Instruction &I : *BB) { Type *T = I.getType(); // Skip ignored values. if (ValuesToIgnore.count(&I)) continue; // Only examine Loads, Stores and PHINodes. if (!isa(I) && !isa(I) && !isa(I)) continue; // Examine PHI nodes that are reduction variables. Update the type to // account for the recurrence type. if (auto *PN = dyn_cast(&I)) { if (!Legal->isReductionVariable(PN)) continue; RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; T = RdxDesc.getRecurrenceType(); } // Examine the stored values. if (auto *ST = dyn_cast(&I)) T = ST->getValueOperand()->getType(); // Ignore loaded pointer types and stored pointer types that are not // consecutive. However, we do want to take consecutive stores/loads of // pointer vectors into account. if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I)) continue; MinWidth = std::min(MinWidth, (unsigned)DL.getTypeSizeInBits(T->getScalarType())); MaxWidth = std::max(MaxWidth, (unsigned)DL.getTypeSizeInBits(T->getScalarType())); } } return {MinWidth, MaxWidth}; } unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, unsigned VF, unsigned LoopCost) { // -- The interleave heuristics -- // We interleave the loop in order to expose ILP and reduce the loop overhead. // There are many micro-architectural considerations that we can't predict // at this level. For example, frontend pressure (on decode or fetch) due to // code size, or the number and capabilities of the execution ports. // // We use the following heuristics to select the interleave count: // 1. If the code has reductions, then we interleave to break the cross // iteration dependency. // 2. If the loop is really small, then we interleave to reduce the loop // overhead. // 3. We don't interleave if we think that we will spill registers to memory // due to the increased register pressure. // When we optimize for size, we don't interleave. if (OptForSize) return 1; // We used the distance for the interleave count. if (Legal->getMaxSafeDepDistBytes() != -1U) return 1; // Do not interleave loops with a relatively small trip count. unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); if (TC > 1 && TC < TinyTripCountInterleaveThreshold) return 1; unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << " registers\n"); if (VF == 1) { if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) TargetNumRegisters = ForceTargetNumScalarRegs; } else { if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) TargetNumRegisters = ForceTargetNumVectorRegs; } RegisterUsage R = calculateRegisterUsage({VF})[0]; // We divide by these constants so assume that we have at least one // instruction that uses at least one register. R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); R.NumInstructions = std::max(R.NumInstructions, 1U); // We calculate the interleave count using the following formula. // Subtract the number of loop invariants from the number of available // registers. These registers are used by all of the interleaved instances. // Next, divide the remaining registers by the number of registers that is // required by the loop, in order to estimate how many parallel instances // fit without causing spills. All of this is rounded down if necessary to be // a power of two. We want power of two interleave count to simplify any // addressing operations or alignment considerations. unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers); // Don't count the induction variable as interleaved. if (EnableIndVarRegisterHeur) IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / std::max(1U, (R.MaxLocalUsers - 1))); // Clamp the interleave ranges to reasonable counts. unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); // Check if the user has overridden the max. if (VF == 1) { if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; } else { if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; } // If we did not calculate the cost for VF (because the user selected the VF) // then we calculate the cost of VF here. if (LoopCost == 0) LoopCost = expectedCost(VF).first; // Clamp the calculated IC to be between the 1 and the max interleave count // that the target allows. if (IC > MaxInterleaveCount) IC = MaxInterleaveCount; else if (IC < 1) IC = 1; // Interleave if we vectorized this loop and there is a reduction that could // benefit from interleaving. if (VF > 1 && Legal->getReductionVars()->size()) { DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); return IC; } // Note that if we've already vectorized the loop we will have done the // runtime check and so interleaving won't require further checks. bool InterleavingRequiresRuntimePointerCheck = (VF == 1 && Legal->getRuntimePointerChecking()->Need); // We want to interleave small loops in order to reduce the loop overhead and // potentially expose ILP opportunities. DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { // We assume that the cost overhead is 1 and we use the cost model // to estimate the cost of the loop and interleave until the cost of the // loop overhead is about 5% of the cost of the loop. unsigned SmallIC = std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); // Interleave until store/load ports (estimated by max interleave count) are // saturated. unsigned NumStores = Legal->getNumStores(); unsigned NumLoads = Legal->getNumLoads(); unsigned StoresIC = IC / (NumStores ? NumStores : 1); unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); // If we have a scalar reduction (vector reductions are already dealt with // by this point), we can increase the critical path length if the loop // we're interleaving is inside another loop. Limit, by default to 2, so the // critical path only gets increased by one reduction operation. if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { unsigned F = static_cast(MaxNestedScalarReductionIC); SmallIC = std::min(SmallIC, F); StoresIC = std::min(StoresIC, F); LoadsIC = std::min(LoadsIC, F); } if (EnableLoadStoreRuntimeInterleave && std::max(StoresIC, LoadsIC) > SmallIC) { DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); return std::max(StoresIC, LoadsIC); } DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); return SmallIC; } // Interleave if this is a large loop (small loops are already dealt with by // this point) that could benefit from interleaving. bool HasReductions = (Legal->getReductionVars()->size() > 0); if (TTI.enableAggressiveInterleaving(HasReductions)) { DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); return IC; } DEBUG(dbgs() << "LV: Not Interleaving.\n"); return 1; } SmallVector LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef VFs) { // This function calculates the register usage by measuring the highest number // of values that are alive at a single location. Obviously, this is a very // rough estimation. We scan the loop in a topological order in order and // assign a number to each instruction. We use RPO to ensure that defs are // met before their users. We assume that each instruction that has in-loop // users starts an interval. We record every time that an in-loop value is // used, so we have a list of the first and last occurrences of each // instruction. Next, we transpose this data structure into a multi map that // holds the list of intervals that *end* at a specific location. This multi // map allows us to perform a linear search. We scan the instructions linearly // and record each time that a new interval starts, by placing it in a set. // If we find this value in the multi-map then we remove it from the set. // The max register usage is the maximum size of the set. // We also search for instructions that are defined outside the loop, but are // used inside the loop. We need this number separately from the max-interval // usage number because when we unroll, loop-invariant values do not take // more register. LoopBlocksDFS DFS(TheLoop); DFS.perform(LI); RegisterUsage RU; RU.NumInstructions = 0; // Each 'key' in the map opens a new interval. The values // of the map are the index of the 'last seen' usage of the // instruction that is the key. typedef DenseMap IntervalMap; // Maps instruction to its index. DenseMap IdxToInstr; // Marks the end of each interval. IntervalMap EndPoint; // Saves the list of instruction indices that are used in the loop. SmallSet Ends; // Saves the list of values that are used in the loop but are // defined outside the loop, such as arguments and constants. SmallPtrSet LoopInvariants; unsigned Index = 0; for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { RU.NumInstructions += BB->size(); for (Instruction &I : *BB) { IdxToInstr[Index++] = &I; // Save the end location of each USE. for (Value *U : I.operands()) { auto *Instr = dyn_cast(U); // Ignore non-instruction values such as arguments, constants, etc. if (!Instr) continue; // If this instruction is outside the loop then record it and continue. if (!TheLoop->contains(Instr)) { LoopInvariants.insert(Instr); continue; } // Overwrite previous end points. EndPoint[Instr] = Index; Ends.insert(Instr); } } } // Saves the list of intervals that end with the index in 'key'. typedef SmallVector InstrList; DenseMap TransposeEnds; // Transpose the EndPoints to a list of values that end at each index. for (auto &Interval : EndPoint) TransposeEnds[Interval.second].push_back(Interval.first); SmallSet OpenIntervals; // Get the size of the widest register. unsigned MaxSafeDepDist = -1U; if (Legal->getMaxSafeDepDistBytes() != -1U) MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; unsigned WidestRegister = std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); const DataLayout &DL = TheFunction->getParent()->getDataLayout(); SmallVector RUs(VFs.size()); SmallVector MaxUsages(VFs.size(), 0); DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); // A lambda that gets the register usage for the given type and VF. auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { if (Ty->isTokenTy()) return 0U; unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); return std::max(1, VF * TypeSize / WidestRegister); }; for (unsigned int i = 0; i < Index; ++i) { Instruction *I = IdxToInstr[i]; // Ignore instructions that are never used within the loop. if (!Ends.count(I)) continue; // Remove all of the instructions that end at this location. InstrList &List = TransposeEnds[i]; for (Instruction *ToRemove : List) OpenIntervals.erase(ToRemove); // Skip ignored values. if (ValuesToIgnore.count(I)) continue; // For each VF find the maximum usage of registers. for (unsigned j = 0, e = VFs.size(); j < e; ++j) { if (VFs[j] == 1) { MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); continue; } // Count the number of live intervals. unsigned RegUsage = 0; for (auto Inst : OpenIntervals) { // Skip ignored values for VF > 1. if (VecValuesToIgnore.count(Inst)) continue; RegUsage += GetRegUsage(Inst->getType(), VFs[j]); } MaxUsages[j] = std::max(MaxUsages[j], RegUsage); } DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << OpenIntervals.size() << '\n'); // Add the current instruction to the list of open intervals. OpenIntervals.insert(I); } for (unsigned i = 0, e = VFs.size(); i < e; ++i) { unsigned Invariant = 0; if (VFs[i] == 1) Invariant = LoopInvariants.size(); else { for (auto Inst : LoopInvariants) Invariant += GetRegUsage(Inst->getType(), VFs[i]); } DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); RU.LoopInvariantRegs = Invariant; RU.MaxLocalUsers = MaxUsages[i]; RUs[i] = RU; } return RUs; } LoopVectorizationCostModel::VectorizationCostTy LoopVectorizationCostModel::expectedCost(unsigned VF) { VectorizationCostTy Cost; // For each block. for (BasicBlock *BB : TheLoop->blocks()) { VectorizationCostTy BlockCost; // For each instruction in the old loop. for (Instruction &I : *BB) { // Skip dbg intrinsics. if (isa(I)) continue; // Skip ignored values. if (ValuesToIgnore.count(&I)) continue; VectorizationCostTy C = getInstructionCost(&I, VF); // Check if we should override the cost. if (ForceTargetInstructionCost.getNumOccurrences() > 0) C.first = ForceTargetInstructionCost; BlockCost.first += C.first; BlockCost.second |= C.second; DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " << VF << " For instruction: " << I << '\n'); } // We assume that if-converted blocks have a 50% chance of being executed. // When the code is scalar then some of the blocks are avoided due to CF. // When the code is vectorized we execute all code paths. if (VF == 1 && Legal->blockNeedsPredication(BB)) BlockCost.first /= 2; Cost.first += BlockCost.first; Cost.second |= BlockCost.second; } return Cost; } /// \brief Check if the load/store instruction \p I may be translated into /// gather/scatter during vectorization. /// /// Pointer \p Ptr specifies address in memory for the given scalar memory /// instruction. We need it to retrieve data type. /// Using gather/scatter is possible when it is supported by target. static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr, LoopVectorizationLegality *Legal) { auto *DataTy = cast(Ptr->getType())->getElementType(); return (isa(I) && Legal->isLegalMaskedGather(DataTy)) || (isa(I) && Legal->isLegalMaskedScatter(DataTy)); } /// \brief Check whether the address computation for a non-consecutive memory /// access looks like an unlikely candidate for being merged into the indexing /// mode. /// /// We look for a GEP which has one index that is an induction variable and all /// other indices are loop invariant. If the stride of this access is also /// within a small bound we decide that this address computation can likely be /// merged into the addressing mode. /// In all other cases, we identify the address computation as complex. static bool isLikelyComplexAddressComputation(Value *Ptr, LoopVectorizationLegality *Legal, ScalarEvolution *SE, const Loop *TheLoop) { auto *Gep = dyn_cast(Ptr); if (!Gep) return true; // We are looking for a gep with all loop invariant indices except for one // which should be an induction variable. unsigned NumOperands = Gep->getNumOperands(); for (unsigned i = 1; i < NumOperands; ++i) { Value *Opd = Gep->getOperand(i); if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && !Legal->isInductionVariable(Opd)) return true; } // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step // can likely be merged into the address computation. unsigned MaxMergeDistance = 64; const SCEVAddRecExpr *AddRec = dyn_cast(SE->getSCEV(Ptr)); if (!AddRec) return true; // Check the step is constant. const SCEV *Step = AddRec->getStepRecurrence(*SE); // Calculate the pointer stride and check if it is consecutive. const auto *C = dyn_cast(Step); if (!C) return true; const APInt &APStepVal = C->getAPInt(); // Huge step value - give up. if (APStepVal.getBitWidth() > 64) return true; int64_t StepVal = APStepVal.getSExtValue(); return StepVal > MaxMergeDistance; } static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { return Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1)); } LoopVectorizationCostModel::VectorizationCostTy LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { // If we know that this instruction will remain uniform, check the cost of // the scalar version. if (Legal->isUniformAfterVectorization(I)) VF = 1; Type *VectorTy; unsigned C = getInstructionCost(I, VF, VectorTy); bool TypeNotScalarized = VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; return VectorizationCostTy(C, TypeNotScalarized); } unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy) { Type *RetTy = I->getType(); if (VF > 1 && MinBWs.count(I)) RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); VectorTy = ToVectorTy(RetTy, VF); auto SE = PSE.getSE(); // TODO: We need to estimate the cost of intrinsic calls. switch (I->getOpcode()) { case Instruction::GetElementPtr: // We mark this instruction as zero-cost because the cost of GEPs in // vectorized code depends on whether the corresponding memory instruction // is scalarized or not. Therefore, we handle GEPs with the memory // instruction cost. return 0; case Instruction::Br: { return TTI.getCFInstrCost(I->getOpcode()); } case Instruction::PHI: { auto *Phi = cast(I); // First-order recurrences are replaced by vector shuffles inside the loop. if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, VectorTy, VF - 1, VectorTy); // TODO: IF-converted IFs become selects. return 0; } case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // Since we will replace the stride by 1 the multiplication should go away. if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) return 0; // Certain instructions can be cheaper to vectorize if they have a constant // second vector operand. One example of this are shifts on x86. TargetTransformInfo::OperandValueKind Op1VK = TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueKind Op2VK = TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueProperties Op1VP = TargetTransformInfo::OP_None; TargetTransformInfo::OperandValueProperties Op2VP = TargetTransformInfo::OP_None; Value *Op2 = I->getOperand(1); // Check for a splat of a constant or for a non uniform vector of constants. if (isa(Op2)) { ConstantInt *CInt = cast(Op2); if (CInt && CInt->getValue().isPowerOf2()) Op2VP = TargetTransformInfo::OP_PowerOf2; Op2VK = TargetTransformInfo::OK_UniformConstantValue; } else if (isa(Op2) || isa(Op2)) { Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; Constant *SplatValue = cast(Op2)->getSplatValue(); if (SplatValue) { ConstantInt *CInt = dyn_cast(SplatValue); if (CInt && CInt->getValue().isPowerOf2()) Op2VP = TargetTransformInfo::OP_PowerOf2; Op2VK = TargetTransformInfo::OK_UniformConstantValue; } } return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, Op1VP, Op2VP); } case Instruction::Select: { SelectInst *SI = cast(I); const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); Type *CondTy = SI->getCondition()->getType(); if (!ScalarCond) CondTy = VectorType::get(CondTy, VF); return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); } case Instruction::ICmp: case Instruction::FCmp: { Type *ValTy = I->getOperand(0)->getType(); Instruction *Op0AsInstruction = dyn_cast(I->getOperand(0)); auto It = MinBWs.find(Op0AsInstruction); if (VF > 1 && It != MinBWs.end()) ValTy = IntegerType::get(ValTy->getContext(), It->second); VectorTy = ToVectorTy(ValTy, VF); return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); } case Instruction::Store: case Instruction::Load: { StoreInst *SI = dyn_cast(I); LoadInst *LI = dyn_cast(I); Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); VectorTy = ToVectorTy(ValTy, VF); unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); unsigned AS = SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); // We add the cost of address computation here instead of with the gep // instruction because only here we know whether the operation is // scalarized. if (VF == 1) return TTI.getAddressComputationCost(VectorTy) + TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); if (LI && Legal->isUniform(Ptr)) { // Scalar load + broadcast unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, AS); return Cost + TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); } // For an interleaved access, calculate the total cost of the whole // interleave group. if (Legal->isAccessInterleaved(I)) { auto Group = Legal->getInterleavedAccessGroup(I); assert(Group && "Fail to get an interleaved access group."); // Only calculate the cost once at the insert position. if (Group->getInsertPos() != I) return 0; unsigned InterleaveFactor = Group->getFactor(); Type *WideVecTy = VectorType::get(VectorTy->getVectorElementType(), VectorTy->getVectorNumElements() * InterleaveFactor); // Holds the indices of existing members in an interleaved load group. // An interleaved store group doesn't need this as it doesn't allow gaps. SmallVector Indices; if (LI) { for (unsigned i = 0; i < InterleaveFactor; i++) if (Group->getMember(i)) Indices.push_back(i); } // Calculate the cost of the whole interleaved group. unsigned Cost = TTI.getInterleavedMemoryOpCost( I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlignment(), AS); if (Group->isReverse()) Cost += Group->getNumMembers() * TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); // FIXME: The interleaved load group with a huge gap could be even more // expensive than scalar operations. Then we could ignore such group and // use scalar operations instead. return Cost; } // Scalarized loads/stores. int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); bool UseGatherOrScatter = (ConsecutiveStride == 0) && isGatherOrScatterLegal(I, Ptr, Legal); bool Reverse = ConsecutiveStride < 0; const DataLayout &DL = I->getModule()->getDataLayout(); uint64_t ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); uint64_t VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; if ((!ConsecutiveStride && !UseGatherOrScatter) || ScalarAllocatedSize != VectorElementSize) { bool IsComplexComputation = isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); unsigned Cost = 0; // The cost of extracting from the value vector and pointer vector. Type *PtrTy = ToVectorTy(Ptr->getType(), VF); for (unsigned i = 0; i < VF; ++i) { // The cost of extracting the pointer operand. Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); // In case of STORE, the cost of ExtractElement from the vector. // In case of LOAD, the cost of InsertElement into the returned // vector. Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : Instruction::InsertElement, VectorTy, i); } // The cost of the scalar loads/stores. Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, AS); return Cost; } unsigned Cost = TTI.getAddressComputationCost(VectorTy); if (UseGatherOrScatter) { assert(ConsecutiveStride == 0 && "Gather/Scatter are not used for consecutive stride"); return Cost + TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment); } // Wide load/stores. if (Legal->isMaskRequired(I)) Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); else Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); if (Reverse) Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); return Cost; } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { // We optimize the truncation of induction variable. // The cost of these is the same as the scalar operation. if (I->getOpcode() == Instruction::Trunc && Legal->isInductionVariable(I->getOperand(0))) return TTI.getCastInstrCost(I->getOpcode(), I->getType(), I->getOperand(0)->getType()); Type *SrcScalarTy = I->getOperand(0)->getType(); Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); if (VF > 1 && MinBWs.count(I)) { // This cast is going to be shrunk. This may remove the cast or it might // turn it into slightly different cast. For example, if MinBW == 16, // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". // // Calculate the modified src and dest types. Type *MinVecTy = VectorTy; if (I->getOpcode() == Instruction::Trunc) { SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); VectorTy = largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); } else if (I->getOpcode() == Instruction::ZExt || I->getOpcode() == Instruction::SExt) { SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); VectorTy = smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); } } return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); } case Instruction::Call: { bool NeedToScalarize; CallInst *CI = cast(I); unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); if (getVectorIntrinsicIDForCall(CI, TLI)) return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); return CallCost; } default: { // We are scalarizing the instruction. Return the cost of the scalar // instruction, plus the cost of insert and extract into vector // elements, times the vector width. unsigned Cost = 0; if (!RetTy->isVoidTy() && VF != 1) { unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy); unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy); // The cost of inserting the results plus extracting each one of the // operands. Cost += VF * (InsCost + ExtCost * I->getNumOperands()); } // The cost of executing VF copies of the scalar instruction. This opcode // is unknown. Assume that it is the same as 'mul'. Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); return Cost; } } // end of switch. } char LoopVectorize::ID = 0; static const char lv_name[] = "Loop Vectorization"; INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) namespace llvm { Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { return new LoopVectorize(NoUnrolling, AlwaysVectorize); } } bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { // Check for a store. if (auto *ST = dyn_cast(Inst)) return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; // Check for a load. if (auto *LI = dyn_cast(Inst)) return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; return false; } void LoopVectorizationCostModel::collectValuesToIgnore() { // Ignore ephemeral values. CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); // Ignore type-promoting instructions we identified during reduction // detection. for (auto &Reduction : *Legal->getReductionVars()) { RecurrenceDescriptor &RedDes = Reduction.second; SmallPtrSetImpl &Casts = RedDes.getCastInsts(); VecValuesToIgnore.insert(Casts.begin(), Casts.end()); } // Ignore induction phis that are only used in either GetElementPtr or ICmp // instruction to exit loop. Induction variables usually have large types and // can have big impact when estimating register usage. // This is for when VF > 1. for (auto &Induction : *Legal->getInductionVars()) { auto *PN = Induction.first; auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); // Check that the PHI is only used by the induction increment (UpdateV) or // by GEPs. Then check that UpdateV is only used by a compare instruction, // the loop header PHI, or by GEPs. // FIXME: Need precise def-use analysis to determine if this instruction // variable will be vectorized. if (all_of(PN->users(), [&](const User *U) -> bool { return U == UpdateV || isa(U); }) && all_of(UpdateV->users(), [&](const User *U) -> bool { return U == PN || isa(U) || isa(U); })) { VecValuesToIgnore.insert(PN); VecValuesToIgnore.insert(UpdateV); } } // Ignore instructions that will not be vectorized. // This is for when VF > 1. for (BasicBlock *BB : TheLoop->blocks()) { for (auto &Inst : *BB) { switch (Inst.getOpcode()) case Instruction::GetElementPtr: { // Ignore GEP if its last operand is an induction variable so that it is // a consecutive load/store and won't be vectorized as scatter/gather // pattern. GetElementPtrInst *Gep = cast(&Inst); unsigned NumOperands = Gep->getNumOperands(); unsigned InductionOperand = getGEPInductionOperand(Gep); bool GepToIgnore = true; // Check that all of the gep indices are uniform except for the // induction operand. for (unsigned i = 0; i != NumOperands; ++i) { if (i != InductionOperand && !PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) { GepToIgnore = false; break; } } if (GepToIgnore) VecValuesToIgnore.insert(&Inst); break; } } } } void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); // Holds vector parameters or scalars, in case of uniform vals. SmallVector Params; setDebugLocFromInst(Builder, Instr); // Find all of the vectorized parameters. for (Value *SrcOp : Instr->operands()) { // If we are accessing the old induction variable, use the new one. if (SrcOp == OldInduction) { Params.push_back(getVectorValue(SrcOp)); continue; } // Try using previously calculated values. Instruction *SrcInst = dyn_cast(SrcOp); // If the src is an instruction that appeared earlier in the basic block // then it should already be vectorized. if (SrcInst && OrigLoop->contains(SrcInst)) { assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); // The parameter is a vector value from earlier. Params.push_back(WidenMap.get(SrcInst)); } else { // The parameter is a scalar from outside the loop. Maybe even a constant. VectorParts Scalars; Scalars.append(UF, SrcOp); Params.push_back(Scalars); } } assert(Params.size() == Instr->getNumOperands() && "Invalid number of operands"); // Does this instruction return a value ? bool IsVoidRetTy = Instr->getType()->isVoidTy(); Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(Instr->getType()); // Create a new entry in the WidenMap and initialize it to Undef or Null. VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); VectorParts Cond; if (IfPredicateStore) { assert(Instr->getParent()->getSinglePredecessor() && "Only support single predecessor blocks"); Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), Instr->getParent()); } // For each vector unroll 'part': for (unsigned Part = 0; Part < UF; ++Part) { // For each scalar that we create: // Start an "if (pred) a[i] = ..." block. Value *Cmp = nullptr; if (IfPredicateStore) { if (Cond[Part]->getType()->isVectorTy()) Cond[Part] = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], ConstantInt::get(Cond[Part]->getType(), 1)); } Instruction *Cloned = Instr->clone(); if (!IsVoidRetTy) Cloned->setName(Instr->getName() + ".cloned"); // Replace the operands of the cloned instructions with extracted scalars. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { Value *Op = Params[op][Part]; Cloned->setOperand(op, Op); } // Place the cloned scalar in the new loop. Builder.Insert(Cloned); // If we just cloned a new assumption, add it the assumption cache. if (auto *II = dyn_cast(Cloned)) if (II->getIntrinsicID() == Intrinsic::assume) AC->registerAssumption(II); // If the original scalar returns a value we need to place it in a vector // so that future users will be able to use it. if (!IsVoidRetTy) VecResults[Part] = Cloned; // End if-block. if (IfPredicateStore) PredicatedStores.push_back(std::make_pair(cast(Cloned), Cmp)); } } void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { auto *SI = dyn_cast(Instr); bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); return scalarizeInstruction(Instr, IfPredicateStore); } Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { // When unrolling and the VF is 1, we only need to add a simple scalar. Type *ITy = Val->getType(); assert(!ITy->isVectorTy() && "Val must be a scalar"); Constant *C = ConstantInt::get(ITy, StartIdx); return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); } static void AddRuntimeUnrollDisableMetaData(Loop *L) { SmallVector MDs; // Reserve first location for self reference to the LoopID metadata node. MDs.push_back(nullptr); bool IsUnrollMetadata = false; MDNode *LoopID = L->getLoopID(); if (LoopID) { // First find existing loop unrolling disable metadata. for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { auto *MD = dyn_cast(LoopID->getOperand(i)); if (MD) { const auto *S = dyn_cast(MD->getOperand(0)); IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.disable"); } MDs.push_back(LoopID->getOperand(i)); } } if (!IsUnrollMetadata) { // Add runtime unroll disable metadata. LLVMContext &Context = L->getHeader()->getContext(); SmallVector DisableOperands; DisableOperands.push_back( MDString::get(Context, "llvm.loop.unroll.runtime.disable")); MDNode *DisableNode = MDNode::get(Context, DisableOperands); MDs.push_back(DisableNode); MDNode *NewLoopID = MDNode::get(Context, MDs); // Set operand 0 to refer to the loop id itself. NewLoopID->replaceOperandWith(0, NewLoopID); L->setLoopID(NewLoopID); } } bool LoopVectorizePass::processLoop(Loop *L) { assert(L->empty() && "Only process inner loops."); #ifndef NDEBUG const std::string DebugLocStr = getDebugLocString(L); #endif /* NDEBUG */ DEBUG(dbgs() << "\nLV: Checking a loop in \"" << L->getHeader()->getParent()->getName() << "\" from " << DebugLocStr << "\n"); LoopVectorizeHints Hints(L, DisableUnrolling); DEBUG(dbgs() << "LV: Loop hints:" << " force=" << (Hints.getForce() == LoopVectorizeHints::FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints::FK_Enabled ? "enabled" : "?")) << " width=" << Hints.getWidth() << " unroll=" << Hints.getInterleave() << "\n"); // Function containing loop Function *F = L->getHeader()->getParent(); // Looking at the diagnostic output is the only way to determine if a loop // was vectorized (other than looking at the IR or machine code), so it // is important to generate an optimization remark for each loop. Most of // these messages are generated by emitOptimizationRemarkAnalysis. Remarks // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are // less verbose reporting vectorized loops and unvectorized loops that may // benefit from vectorization, respectively. if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); return false; } // Check the loop for a trip count threshold: // do not vectorize loops with a tiny trip count. const unsigned TC = SE->getSmallConstantTripCount(L); if (TC > 0u && TC < TinyTripCountVectorThreshold) { DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " << "This loop is not worth vectorizing."); if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); else { DEBUG(dbgs() << "\n"); emitAnalysisDiag(F, L, Hints, VectorizationReport() << "vectorization is not beneficial " "and is not explicitly forced"); return false; } } PredicatedScalarEvolution PSE(*SE, *L); // Check if it is legal to vectorize the loop. LoopVectorizationRequirements Requirements; LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, &Requirements, &Hints); if (!LVL.canVectorize()) { DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); emitMissedWarning(F, L, Hints); return false; } // Use the cost model. LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F, &Hints); CM.collectValuesToIgnore(); // Check the function attributes to find out if this function should be // optimized for size. bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); // Compute the weighted frequency of this loop being executed and see if it // is less than 20% of the function entry baseline frequency. Note that we // always have a canonical loop here because we think we *can* vectorize. // FIXME: This is hidden behind a flag due to pervasive problems with // exactly what block frequency models. if (LoopVectorizeWithBlockFrequency) { BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && LoopEntryFreq < ColdEntryFreq) OptForSize = true; } // Check the function attributes to see if implicit floats are allowed. // FIXME: This check doesn't seem possibly correct -- what if the loop is // an integer loop and the vector instructions selected are purely integer // vector instructions? if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" "attribute is used.\n"); emitAnalysisDiag( F, L, Hints, VectorizationReport() << "loop not vectorized due to NoImplicitFloat attribute"); emitMissedWarning(F, L, Hints); return false; } // Check if the target supports potentially unsafe FP vectorization. // FIXME: Add a check for the type of safety issue (denormal, signaling) // for the target we're vectorizing for, to make sure none of the // additional fp-math flags can help. if (Hints.isPotentiallyUnsafe() && TTI->isFPVectorizationPotentiallyUnsafe()) { DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); emitAnalysisDiag(F, L, Hints, VectorizationReport() << "loop not vectorized due to unsafe FP support."); emitMissedWarning(F, L, Hints); return false; } // Select the optimal vectorization factor. const LoopVectorizationCostModel::VectorizationFactor VF = CM.selectVectorizationFactor(OptForSize); // Select the interleave count. unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); // Get user interleave count. unsigned UserIC = Hints.getInterleave(); // Identify the diagnostic messages that should be produced. std::string VecDiagMsg, IntDiagMsg; bool VectorizeLoop = true, InterleaveLoop = true; if (Requirements.doesNotMeet(F, L, Hints)) { DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " "requirements.\n"); emitMissedWarning(F, L, Hints); return false; } if (VF.Width == 1) { DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); VecDiagMsg = "the cost-model indicates that vectorization is not beneficial"; VectorizeLoop = false; } if (IC == 1 && UserIC <= 1) { // Tell the user interleaving is not beneficial. DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); IntDiagMsg = "the cost-model indicates that interleaving is not beneficial"; InterleaveLoop = false; if (UserIC == 1) IntDiagMsg += " and is explicitly disabled or interleave count is set to 1"; } else if (IC > 1 && UserIC == 1) { // Tell the user interleaving is beneficial, but it explicitly disabled. DEBUG(dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); IntDiagMsg = "the cost-model indicates that interleaving is beneficial " "but is explicitly disabled or interleave count is set to 1"; InterleaveLoop = false; } // Override IC if user provided an interleave count. IC = UserIC > 0 ? UserIC : IC; // Emit diagnostic messages, if any. const char *VAPassName = Hints.vectorizeAnalysisPassName(); if (!VectorizeLoop && !InterleaveLoop) { // Do not vectorize or interleaving the loop. emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, L->getStartLoc(), VecDiagMsg); emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, L->getStartLoc(), IntDiagMsg); return false; } else if (!VectorizeLoop && InterleaveLoop) { DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, L->getStartLoc(), VecDiagMsg); } else if (VectorizeLoop && !InterleaveLoop) { DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " << DebugLocStr << '\n'); emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, L->getStartLoc(), IntDiagMsg); } else if (VectorizeLoop && InterleaveLoop) { DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " << DebugLocStr << '\n'); DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); } if (!VectorizeLoop) { assert(IC > 1 && "interleave count should not be 1 or 0"); // If we decided that it is not legal to vectorize the loop, then // interleave it. InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC); Unroller.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore); emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), Twine("interleaved loop (interleaved count: ") + Twine(IC) + ")"); } else { // If we decided that it is *legal* to vectorize the loop, then do it. InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC); LB.vectorize(&LVL, CM.MinBWs, CM.VecValuesToIgnore); ++LoopsVectorized; // Add metadata to disable runtime unrolling a scalar loop when there are // no runtime checks about strides and memory. A scalar loop that is // rarely used is not worth unrolling. if (!LB.areSafetyChecksAdded()) AddRuntimeUnrollDisableMetaData(L); // Report the vectorization decision. emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), Twine("vectorized loop (vectorization width: ") + Twine(VF.Width) + ", interleaved count: " + Twine(IC) + ")"); } // Mark the loop as already vectorized to avoid vectorizing again. Hints.setAlreadyVectorized(); DEBUG(verifyFunction(*L->getHeader()->getParent())); return true; } bool LoopVectorizePass::runImpl( Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, std::function &GetLAA_) { SE = &SE_; LI = &LI_; TTI = &TTI_; DT = &DT_; BFI = &BFI_; TLI = TLI_; AA = &AA_; AC = &AC_; GetLAA = &GetLAA_; DB = &DB_; // Compute some weights outside of the loop over the loops. Compute this // using a BranchProbability to re-use its scaling math. const BranchProbability ColdProb(1, 5); // 20% ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; // Don't attempt if // 1. the target claims to have no vector registers, and // 2. interleaving won't help ILP. // // The second condition is necessary because, even if the target has no // vector registers, loop vectorization may still enable scalar // interleaving. if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) return false; // Build up a worklist of inner-loops to vectorize. This is necessary as // the act of vectorizing or partially unrolling a loop creates new loops // and can invalidate iterators across the loops. SmallVector Worklist; for (Loop *L : *LI) addInnerLoop(*L, Worklist); LoopsAnalyzed += Worklist.size(); // Now walk the identified inner loops. bool Changed = false; while (!Worklist.empty()) Changed |= processLoop(Worklist.pop_back_val()); // Process each loop nest in the function. return Changed; } PreservedAnalyses LoopVectorizePass::run(Function &F, FunctionAnalysisManager &AM) { auto &SE = AM.getResult(F); auto &LI = AM.getResult(F); auto &TTI = AM.getResult(F); auto &DT = AM.getResult(F); auto &BFI = AM.getResult(F); auto *TLI = AM.getCachedResult(F); auto &AA = AM.getResult(F); auto &AC = AM.getResult(F); auto &DB = AM.getResult(F); auto &LAM = AM.getResult(F).getManager(); std::function GetLAA = [&](Loop &L) -> const LoopAccessInfo & { return LAM.getResult(L); }; bool Changed = runImpl(F, SE, LI, TTI, DT, BFI, TLI, DB, AA, AC, GetLAA); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); PA.preserve(); PA.preserve(); PA.preserve(); return PA; }