2.5. YUV Formats

Table of Contents
Packed YUV formats -- Packed YUV formats
V4L2_PIX_FMT_GREY ('GREY') -- Grey-scale image
V4L2_PIX_FMT_Y16 ('Y16 ') -- Grey-scale image
V4L2_PIX_FMT_YUYV ('YUYV') -- Packed format with ½ horizontal chroma resolution, also known as YUV 4:2:2
V4L2_PIX_FMT_UYVY ('UYVY') -- Variation of V4L2_PIX_FMT_YUYV with different order of samples in memory
V4L2_PIX_FMT_Y41P ('Y41P') -- Format with ¼ horizontal chroma resolution, also known as YUV 4:1:1
V4L2_PIX_FMT_YVU420 ('YV12'), V4L2_PIX_FMT_YUV420 ('YU12') -- Planar formats with ½ horizontal and vertical chroma resolution, also known as YUV 4:2:0
V4L2_PIX_FMT_YVU410 ('YVU9'), V4L2_PIX_FMT_YUV410 ('YUV9') -- Planar formats with ¼ horizontal and vertical chroma resolution, also known as YUV 4:1:0
V4L2_PIX_FMT_YUV422P ('422P') -- Format with ½ horizontal chroma resolution, also known as YUV 4:2:2. Planar layout as opposed to V4L2_PIX_FMT_YUYV
V4L2_PIX_FMT_YUV411P ('411P') -- Format with ¼ horizontal chroma resolution, also known as YUV 4:1:1. Planar layout as opposed to V4L2_PIX_FMT_Y41P
V4L2_PIX_FMT_NV12 ('NV12'), V4L2_PIX_FMT_NV21 ('NV21') -- Formats with ½ horizontal and vertical chroma resolution, also known as YUV 4:2:0. One luminance and one chrominance plane with alternating chroma samples as opposed to V4L2_PIX_FMT_YVU420

YUV is the format native to TV broadcast and composite video signals. It separates the brightness information (Y) from the color information (U and V or Cb and Cr). The color information consists of red and blue color difference signals, this way the green component can be reconstructed by subtracting from the brightness component. See Section 2.2 for conversion examples. YUV was chosen because early television would only transmit brightness information. To add color in a way compatible with existing receivers a new signal carrier was added to transmit the color difference signals. Secondary in the YUV format the U and V components usually have lower resolution than the Y component. This is an analog video compression technique taking advantage of a property of the human visual system, being more sensitive to brightness information.