/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "brw_cfg.h" /** @file brw_cfg.cpp * * Walks the shader instructions generated and creates a set of basic * blocks with successor/predecessor edges connecting them. */ static bblock_t * pop_stack(exec_list *list) { bblock_link *link = (bblock_link *)list->get_tail(); bblock_t *block = link->block; link->link.remove(); return block; } static exec_node * link(void *mem_ctx, bblock_t *block) { bblock_link *l = new(mem_ctx) bblock_link(block); return &l->link; } bblock_t::bblock_t(cfg_t *cfg) : cfg(cfg), idom(NULL), start_ip(0), end_ip(0), num(0), cycle_count(0) { instructions.make_empty(); parents.make_empty(); children.make_empty(); } void bblock_t::add_successor(void *mem_ctx, bblock_t *successor) { successor->parents.push_tail(::link(mem_ctx, this)); children.push_tail(::link(mem_ctx, successor)); } bool bblock_t::is_predecessor_of(const bblock_t *block) const { foreach_list_typed_safe (bblock_link, parent, link, &block->parents) { if (parent->block == this) { return true; } } return false; } bool bblock_t::is_successor_of(const bblock_t *block) const { foreach_list_typed_safe (bblock_link, child, link, &block->children) { if (child->block == this) { return true; } } return false; } static bool ends_block(const backend_instruction *inst) { enum opcode op = inst->opcode; return op == BRW_OPCODE_IF || op == BRW_OPCODE_ELSE || op == BRW_OPCODE_CONTINUE || op == BRW_OPCODE_BREAK || op == BRW_OPCODE_WHILE; } static bool starts_block(const backend_instruction *inst) { enum opcode op = inst->opcode; return op == BRW_OPCODE_DO || op == BRW_OPCODE_ENDIF; } bool bblock_t::can_combine_with(const bblock_t *that) const { if ((const bblock_t *)this->link.next != that) return false; if (ends_block(this->end()) || starts_block(that->start())) return false; return true; } void bblock_t::combine_with(bblock_t *that) { assert(this->can_combine_with(that)); foreach_list_typed (bblock_link, link, link, &this->children) { assert(link->block == that); } foreach_list_typed (bblock_link, link, link, &that->parents) { assert(link->block == this); } this->end_ip = that->end_ip; this->instructions.append_list(&that->instructions); this->cfg->remove_block(that); } void bblock_t::dump(backend_shader *s) const { int ip = this->start_ip; foreach_inst_in_block(backend_instruction, inst, this) { fprintf(stderr, "%5d: ", ip); s->dump_instruction(inst); ip++; } } cfg_t::cfg_t(exec_list *instructions) { mem_ctx = ralloc_context(NULL); block_list.make_empty(); blocks = NULL; num_blocks = 0; idom_dirty = true; cycle_count = 0; bblock_t *cur = NULL; int ip = 0; bblock_t *entry = new_block(); bblock_t *cur_if = NULL; /**< BB ending with IF. */ bblock_t *cur_else = NULL; /**< BB ending with ELSE. */ bblock_t *cur_endif = NULL; /**< BB starting with ENDIF. */ bblock_t *cur_do = NULL; /**< BB starting with DO. */ bblock_t *cur_while = NULL; /**< BB immediately following WHILE. */ exec_list if_stack, else_stack, do_stack, while_stack; bblock_t *next; set_next_block(&cur, entry, ip); foreach_in_list_safe(backend_instruction, inst, instructions) { /* set_next_block wants the post-incremented ip */ ip++; inst->exec_node::remove(); switch (inst->opcode) { case BRW_OPCODE_IF: cur->instructions.push_tail(inst); /* Push our information onto a stack so we can recover from * nested ifs. */ if_stack.push_tail(link(mem_ctx, cur_if)); else_stack.push_tail(link(mem_ctx, cur_else)); cur_if = cur; cur_else = NULL; cur_endif = NULL; /* Set up our immediately following block, full of "then" * instructions. */ next = new_block(); cur_if->add_successor(mem_ctx, next); set_next_block(&cur, next, ip); break; case BRW_OPCODE_ELSE: cur->instructions.push_tail(inst); cur_else = cur; next = new_block(); assert(cur_if != NULL); cur_if->add_successor(mem_ctx, next); set_next_block(&cur, next, ip); break; case BRW_OPCODE_ENDIF: { if (cur->instructions.is_empty()) { /* New block was just created; use it. */ cur_endif = cur; } else { cur_endif = new_block(); cur->add_successor(mem_ctx, cur_endif); set_next_block(&cur, cur_endif, ip - 1); } cur->instructions.push_tail(inst); if (cur_else) { cur_else->add_successor(mem_ctx, cur_endif); } else { assert(cur_if != NULL); cur_if->add_successor(mem_ctx, cur_endif); } assert(cur_if->end()->opcode == BRW_OPCODE_IF); assert(!cur_else || cur_else->end()->opcode == BRW_OPCODE_ELSE); /* Pop the stack so we're in the previous if/else/endif */ cur_if = pop_stack(&if_stack); cur_else = pop_stack(&else_stack); break; } case BRW_OPCODE_DO: /* Push our information onto a stack so we can recover from * nested loops. */ do_stack.push_tail(link(mem_ctx, cur_do)); while_stack.push_tail(link(mem_ctx, cur_while)); /* Set up the block just after the while. Don't know when exactly * it will start, yet. */ cur_while = new_block(); if (cur->instructions.is_empty()) { /* New block was just created; use it. */ cur_do = cur; } else { cur_do = new_block(); cur->add_successor(mem_ctx, cur_do); set_next_block(&cur, cur_do, ip - 1); } cur->instructions.push_tail(inst); break; case BRW_OPCODE_CONTINUE: cur->instructions.push_tail(inst); assert(cur_do != NULL); cur->add_successor(mem_ctx, cur_do); next = new_block(); if (inst->predicate) cur->add_successor(mem_ctx, next); set_next_block(&cur, next, ip); break; case BRW_OPCODE_BREAK: cur->instructions.push_tail(inst); assert(cur_while != NULL); cur->add_successor(mem_ctx, cur_while); next = new_block(); if (inst->predicate) cur->add_successor(mem_ctx, next); set_next_block(&cur, next, ip); break; case BRW_OPCODE_WHILE: cur->instructions.push_tail(inst); assert(cur_do != NULL && cur_while != NULL); cur->add_successor(mem_ctx, cur_do); if (inst->predicate) cur->add_successor(mem_ctx, cur_while); set_next_block(&cur, cur_while, ip); /* Pop the stack so we're in the previous loop */ cur_do = pop_stack(&do_stack); cur_while = pop_stack(&while_stack); break; default: cur->instructions.push_tail(inst); break; } } cur->end_ip = ip - 1; make_block_array(); } cfg_t::~cfg_t() { ralloc_free(mem_ctx); } void cfg_t::remove_block(bblock_t *block) { foreach_list_typed_safe (bblock_link, predecessor, link, &block->parents) { /* Remove block from all of its predecessors' successor lists. */ foreach_list_typed_safe (bblock_link, successor, link, &predecessor->block->children) { if (block == successor->block) { successor->link.remove(); ralloc_free(successor); } } /* Add removed-block's successors to its predecessors' successor lists. */ foreach_list_typed (bblock_link, successor, link, &block->children) { if (!successor->block->is_successor_of(predecessor->block)) { predecessor->block->children.push_tail(link(mem_ctx, successor->block)); } } } foreach_list_typed_safe (bblock_link, successor, link, &block->children) { /* Remove block from all of its childrens' parents lists. */ foreach_list_typed_safe (bblock_link, predecessor, link, &successor->block->parents) { if (block == predecessor->block) { predecessor->link.remove(); ralloc_free(predecessor); } } /* Add removed-block's predecessors to its successors' predecessor lists. */ foreach_list_typed (bblock_link, predecessor, link, &block->parents) { if (!predecessor->block->is_predecessor_of(successor->block)) { successor->block->parents.push_tail(link(mem_ctx, predecessor->block)); } } } block->link.remove(); for (int b = block->num; b < this->num_blocks - 1; b++) { this->blocks[b] = this->blocks[b + 1]; this->blocks[b]->num = b; } this->blocks[this->num_blocks - 1]->num = this->num_blocks - 2; this->num_blocks--; idom_dirty = true; } bblock_t * cfg_t::new_block() { bblock_t *block = new(mem_ctx) bblock_t(this); return block; } void cfg_t::set_next_block(bblock_t **cur, bblock_t *block, int ip) { if (*cur) { (*cur)->end_ip = ip - 1; } block->start_ip = ip; block->num = num_blocks++; block_list.push_tail(&block->link); *cur = block; } void cfg_t::make_block_array() { blocks = ralloc_array(mem_ctx, bblock_t *, num_blocks); int i = 0; foreach_block (block, this) { blocks[i++] = block; } assert(i == num_blocks); } void cfg_t::dump(backend_shader *s) { if (idom_dirty) calculate_idom(); foreach_block (block, this) { if (block->idom) fprintf(stderr, "START B%d IDOM(B%d)", block->num, block->idom->num); else fprintf(stderr, "START B%d IDOM(none)", block->num); foreach_list_typed(bblock_link, link, link, &block->parents) { fprintf(stderr, " <-B%d", link->block->num); } fprintf(stderr, "\n"); if (s != NULL) block->dump(s); fprintf(stderr, "END B%d", block->num); foreach_list_typed(bblock_link, link, link, &block->children) { fprintf(stderr, " ->B%d", link->block->num); } fprintf(stderr, "\n"); } } /* Calculates the immediate dominator of each block, according to "A Simple, * Fast Dominance Algorithm" by Keith D. Cooper, Timothy J. Harvey, and Ken * Kennedy. * * The authors claim that for control flow graphs of sizes normally encountered * (less than 1000 nodes) that this algorithm is significantly faster than * others like Lengauer-Tarjan. */ void cfg_t::calculate_idom() { foreach_block(block, this) { block->idom = NULL; } blocks[0]->idom = blocks[0]; bool changed; do { changed = false; foreach_block(block, this) { if (block->num == 0) continue; bblock_t *new_idom = NULL; foreach_list_typed(bblock_link, parent, link, &block->parents) { if (parent->block->idom) { if (new_idom == NULL) { new_idom = parent->block; } else if (parent->block->idom != NULL) { new_idom = intersect(parent->block, new_idom); } } } if (block->idom != new_idom) { block->idom = new_idom; changed = true; } } } while (changed); idom_dirty = false; } bblock_t * cfg_t::intersect(bblock_t *b1, bblock_t *b2) { /* Note, the comparisons here are the opposite of what the paper says * because we index blocks from beginning -> end (i.e. reverse post-order) * instead of post-order like they assume. */ while (b1->num != b2->num) { while (b1->num > b2->num) b1 = b1->idom; while (b2->num > b1->num) b2 = b2->idom; } assert(b1); return b1; } void cfg_t::dump_cfg() { printf("digraph CFG {\n"); for (int b = 0; b < num_blocks; b++) { bblock_t *block = this->blocks[b]; foreach_list_typed_safe (bblock_link, child, link, &block->children) { printf("\t%d -> %d\n", b, child->block->num); } } printf("}\n"); } void cfg_t::dump_domtree() { printf("digraph DominanceTree {\n"); foreach_block(block, this) { if (block->idom) { printf("\t%d -> %d\n", block->idom->num, block->num); } } printf("}\n"); }