#ifndef INTEL_BATCHBUFFER_H #define INTEL_BATCHBUFFER_H #include "main/mtypes.h" #include "brw_context.h" #include "intel_bufmgr.h" #ifdef __cplusplus extern "C" { #endif /** * Number of bytes to reserve for commands necessary to complete a batch. * * This includes: * - MI_BATCHBUFFER_END (4 bytes) * - Optional MI_NOOP for ensuring the batch length is qword aligned (4 bytes) * - Any state emitted by vtbl->finish_batch(): * - Gen4-5 record ending occlusion query values (4 * 4 = 16 bytes) * - Disabling OA counters on Gen6+ (3 DWords = 12 bytes) * - Ending MI_REPORT_PERF_COUNT on Gen5+, plus associated PIPE_CONTROLs: * - Two sets of PIPE_CONTROLs, which become 4 PIPE_CONTROLs each on SNB, * which are 5 DWords each ==> 2 * 4 * 5 * 4 = 160 bytes * - 3 DWords for MI_REPORT_PERF_COUNT itself on Gen6+. ==> 12 bytes. * On Ironlake, it's 6 DWords, but we have some slack due to the lack of * Sandybridge PIPE_CONTROL madness. * - CC_STATE workaround on HSW (17 * 4 = 68 bytes) * - 10 dwords for initial mi_flush * - 2 dwords for CC state setup * - 5 dwords for the required pipe control at the end * - Restoring L3 configuration: (24 dwords = 96 bytes) * - 2*6 dwords for two PIPE_CONTROL flushes. * - 7 dwords for L3 configuration set-up. * - 5 dwords for L3 atomic set-up (on HSW). */ #define BATCH_RESERVED 308 struct intel_batchbuffer; void intel_batchbuffer_emit_render_ring_prelude(struct brw_context *brw); void intel_batchbuffer_init(struct intel_batchbuffer *batch, dri_bufmgr *bufmgr, bool has_llc); void intel_batchbuffer_free(struct intel_batchbuffer *batch); void intel_batchbuffer_save_state(struct brw_context *brw); void intel_batchbuffer_reset_to_saved(struct brw_context *brw); void intel_batchbuffer_require_space(struct brw_context *brw, GLuint sz, enum brw_gpu_ring ring); int _intel_batchbuffer_flush(struct brw_context *brw, const char *file, int line); #define intel_batchbuffer_flush(intel) \ _intel_batchbuffer_flush(intel, __FILE__, __LINE__) /* Unlike bmBufferData, this currently requires the buffer be mapped. * Consider it a convenience function wrapping multple * intel_buffer_dword() calls. */ void intel_batchbuffer_data(struct brw_context *brw, const void *data, GLuint bytes, enum brw_gpu_ring ring); uint32_t intel_batchbuffer_reloc(struct intel_batchbuffer *batch, drm_intel_bo *buffer, uint32_t offset, uint32_t read_domains, uint32_t write_domain, uint32_t delta); uint64_t intel_batchbuffer_reloc64(struct intel_batchbuffer *batch, drm_intel_bo *buffer, uint32_t offset, uint32_t read_domains, uint32_t write_domain, uint32_t delta); #define USED_BATCH(batch) ((uintptr_t)((batch).map_next - (batch).map)) static inline uint32_t float_as_int(float f) { union { float f; uint32_t d; } fi; fi.f = f; return fi.d; } /* Inline functions - might actually be better off with these * non-inlined. Certainly better off switching all command packets to * be passed as structs rather than dwords, but that's a little bit of * work... */ static inline unsigned intel_batchbuffer_space(struct intel_batchbuffer *batch) { return (batch->state_batch_offset - batch->reserved_space) - USED_BATCH(*batch) * 4; } static inline void intel_batchbuffer_emit_dword(struct intel_batchbuffer *batch, GLuint dword) { #ifdef DEBUG assert(intel_batchbuffer_space(batch) >= 4); #endif *batch->map_next++ = dword; assert(batch->ring != UNKNOWN_RING); } static inline void intel_batchbuffer_emit_float(struct intel_batchbuffer *batch, float f) { intel_batchbuffer_emit_dword(batch, float_as_int(f)); } static inline void intel_batchbuffer_begin(struct brw_context *brw, int n, enum brw_gpu_ring ring) { intel_batchbuffer_require_space(brw, n * 4, ring); #ifdef DEBUG brw->batch.emit = USED_BATCH(brw->batch); brw->batch.total = n; #endif } static inline void intel_batchbuffer_advance(struct brw_context *brw) { #ifdef DEBUG struct intel_batchbuffer *batch = &brw->batch; unsigned int _n = USED_BATCH(*batch) - batch->emit; assert(batch->total != 0); if (_n != batch->total) { fprintf(stderr, "ADVANCE_BATCH: %d of %d dwords emitted\n", _n, batch->total); abort(); } batch->total = 0; #else (void) brw; #endif } #define BEGIN_BATCH(n) do { \ intel_batchbuffer_begin(brw, (n), RENDER_RING); \ uint32_t *__map = brw->batch.map_next; \ brw->batch.map_next += (n) #define BEGIN_BATCH_BLT(n) do { \ intel_batchbuffer_begin(brw, (n), BLT_RING); \ uint32_t *__map = brw->batch.map_next; \ brw->batch.map_next += (n) #define OUT_BATCH(d) *__map++ = (d) #define OUT_BATCH_F(f) OUT_BATCH(float_as_int((f))) #define OUT_RELOC(buf, read_domains, write_domain, delta) do { \ uint32_t __offset = (__map - brw->batch.map) * 4; \ OUT_BATCH(intel_batchbuffer_reloc(&brw->batch, (buf), __offset, \ (read_domains), \ (write_domain), \ (delta))); \ } while (0) /* Handle 48-bit address relocations for Gen8+ */ #define OUT_RELOC64(buf, read_domains, write_domain, delta) do { \ uint32_t __offset = (__map - brw->batch.map) * 4; \ uint64_t reloc64 = intel_batchbuffer_reloc64(&brw->batch, (buf), __offset, \ (read_domains), \ (write_domain), \ (delta)); \ OUT_BATCH(reloc64); \ OUT_BATCH(reloc64 >> 32); \ } while (0) #define ADVANCE_BATCH() \ assert(__map == brw->batch.map_next); \ intel_batchbuffer_advance(brw); \ } while (0) #ifdef __cplusplus } #endif #endif