/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* ---- includes ----------------------------------------------------------- */ #include "b_TensorEm/Cluster2D.h" #include "b_TensorEm/RBFMap2D.h" #include "b_BasicEm/Math.h" #include "b_BasicEm/Memory.h" #include "b_BasicEm/Functions.h" /* ------------------------------------------------------------------------- */ /* ========================================================================= */ /* */ /* ---- \ghd{ auxiliary functions } ---------------------------------------- */ /* */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /** Computes relative scale factor from the 2 mean square node distances to the * cluster centers for 2 clusters. */ void bts_Cluster2D_computeScale( uint32 enumA, /* mean square radius, dst cluster */ int32 bbp_enumA, /* bbp of enumA */ uint32 denomA, /* mean square radius, src cluster */ int32 bbp_denomA, /* bbp of denomA */ uint32* scaleA, /* resulting scale factor */ int32* bbp_scaleA )/* bbp of scale factor */ { uint32 shiftL, quotientL; int32 posL, bbp_denomL; /* how far can we shift enumA to the left */ shiftL = 31 - bbs_intLog2( enumA ); /* how far do we have to shift denomA to the right */ posL = bbs_intLog2( denomA ) + 1; bbp_denomL = bbp_denomA; if( posL - bbp_denomL > 12 ) { /* if denomA has more than 12 bit before the point, discard bits behind the point */ denomA >>= bbp_denomL; bbp_denomL = 0; } else { /* otherwise reduce denomA to 12 bit */ bbs_uint32ReduceToNBits( &denomA, &bbp_denomL, 12 ); } /* make result bbp even for call of sqrt */ if( ( bbp_enumA + shiftL - bbp_denomL ) & 1 ) shiftL--; quotientL = ( enumA << shiftL ) / denomA; *scaleA = bbs_fastSqrt32( quotientL ); *bbp_scaleA = ( bbp_enumA + shiftL - bbp_denomL ) >> 1; } /* ------------------------------------------------------------------------- */ /* ========================================================================= */ /* */ /* ---- \ghd{ constructor / destructor } ----------------------------------- */ /* */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ void bts_Cluster2D_init( struct bbs_Context* cpA, struct bts_Cluster2D* ptrA ) { ptrA->mspE = NULL; ptrA->vecArrE = NULL; ptrA->allocatedSizeE = 0; ptrA->sizeE = 0; ptrA->bbpE = 0; } /* ------------------------------------------------------------------------- */ void bts_Cluster2D_exit( struct bbs_Context* cpA, struct bts_Cluster2D* ptrA ) { bbs_MemSeg_free( cpA, ptrA->mspE, ptrA->vecArrE ); ptrA->vecArrE = NULL; ptrA->mspE = NULL; ptrA->allocatedSizeE = 0; ptrA->sizeE = 0; ptrA->bbpE = 0; } /* ------------------------------------------------------------------------- */ /* ========================================================================= */ /* */ /* ---- \ghd{ operators } -------------------------------------------------- */ /* */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ void bts_Cluster2D_copy( struct bbs_Context* cpA, struct bts_Cluster2D* ptrA, const struct bts_Cluster2D* srcPtrA ) { #ifdef DEBUG2 if( ptrA->allocatedSizeE < srcPtrA->sizeE ) { bbs_ERROR0( "void bts_Cluster2D_copy( struct bts_Cluster2D* ptrA, const struct bts_Cluster2D* srcPtrA ): allocated size too low in destination cluster" ); return; } #endif bbs_memcpy32( ptrA->vecArrE, srcPtrA->vecArrE, bbs_SIZEOF32( struct bts_Int16Vec2D ) * srcPtrA->sizeE ); ptrA->bbpE = srcPtrA->bbpE; ptrA->sizeE = srcPtrA->sizeE; } /* ------------------------------------------------------------------------- */ flag bts_Cluster2D_equal( struct bbs_Context* cpA, const struct bts_Cluster2D* ptrA, const struct bts_Cluster2D* srcPtrA ) { uint32 iL; const struct bts_Int16Vec2D* src1L = ptrA->vecArrE; const struct bts_Int16Vec2D* src2L = srcPtrA->vecArrE; if( ptrA->sizeE != srcPtrA->sizeE ) return FALSE; if( ptrA->bbpE != srcPtrA->bbpE ) return FALSE; for( iL = ptrA->sizeE; iL > 0; iL-- ) { if( ( src1L->xE != src2L->xE ) || ( src1L->yE != src2L->yE ) ) return FALSE; src1L++; src2L++; } return TRUE; } /* ------------------------------------------------------------------------- */ /* ========================================================================= */ /* */ /* ---- \ghd{ query functions } -------------------------------------------- */ /* */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ struct bts_Flt16Vec2D bts_Cluster2D_center( struct bbs_Context* cpA, const struct bts_Cluster2D* ptrA ) { struct bts_Int16Vec2D* vecPtrL = ptrA->vecArrE; uint32 iL; int32 xL = 0; int32 yL = 0; if( ptrA->sizeE == 0 ) return bts_Flt16Vec2D_create16( 0, 0, 0 ); for( iL = ptrA->sizeE; iL > 0; iL-- ) { xL += vecPtrL->xE; yL += vecPtrL->yE; vecPtrL++; } xL = ( ( ( xL << 1 ) / ( int32 )ptrA->sizeE ) + 1 ) >> 1; yL = ( ( ( yL << 1 ) / ( int32 )ptrA->sizeE ) + 1 ) >> 1; return bts_Flt16Vec2D_create16( ( int16 )xL, ( int16 )yL, ( int16 )ptrA->bbpE ); } /* ------------------------------------------------------------------------- */ uint32 bts_Cluster2D_checkSum( struct bbs_Context* cpA, const struct bts_Cluster2D* ptrA ) { struct bts_Int16Vec2D* vecPtrL = ptrA->vecArrE; uint32 iL; int32 sumL = ptrA->bbpE; for( iL = ptrA->sizeE; iL > 0; iL-- ) { sumL += vecPtrL->xE; sumL += vecPtrL->yE; vecPtrL++; } return (uint32)sumL; } /* ------------------------------------------------------------------------- */ struct bts_Int16Rect bts_Cluster2D_boundingBox( struct bbs_Context* cpA, const struct bts_Cluster2D* ptrA ) { struct bts_Int16Vec2D* vecPtrL = ptrA->vecArrE; uint32 iL; int32 xMinL = 65536; int32 yMinL = 65536; int32 xMaxL = -65536; int32 yMaxL = -65536; if( ptrA->sizeE == 0 ) return bts_Int16Rect_create( 0, 0, 0, 0 ); for( iL = ptrA->sizeE; iL > 0; iL-- ) { xMinL = bbs_min( xMinL, vecPtrL->xE ); yMinL = bbs_min( yMinL, vecPtrL->yE ); xMaxL = bbs_max( xMaxL, vecPtrL->xE ); yMaxL = bbs_max( yMaxL, vecPtrL->yE ); vecPtrL++; } return bts_Int16Rect_create( ( int16 )xMinL, ( int16 )yMinL, ( int16 )xMaxL, ( int16 )yMaxL ); } /* ------------------------------------------------------------------------- */ int32 bts_Cluster2D_int32X( struct bbs_Context* cpA, const struct bts_Cluster2D* ptrA, uint32 indexA, int32 bbpA ) { #ifdef DEBUG2 if( indexA >= ptrA->sizeE ) { bbs_ERROR2( "int32 bts_Cluster2D_int32X( .... )\n" "indexA = %i is out of range [0,%i]", indexA, ptrA->sizeE - 1 ); return 0; } #endif { int32 shiftL = bbpA - ptrA->bbpE; int32 xL = ptrA->vecArrE[ indexA ].xE; if( shiftL >= 0 ) { xL <<= shiftL; } else { xL = ( ( xL >> ( -shiftL - 1 ) ) + 1 ) >> 1; } return xL; } } /* ------------------------------------------------------------------------- */ int32 bts_Cluster2D_int32Y( struct bbs_Context* cpA, const struct bts_Cluster2D* ptrA, uint32 indexA, int32 bbpA ) { #ifdef DEBUG2 if( indexA >= ptrA->sizeE ) { bbs_ERROR2( "int32 bts_Cluster2D_int32Y( .... )\n" "indexA = %i is out of range [0,%i]", indexA, ptrA->sizeE - 1 ); return 0; } #endif { int32 shiftL = bbpA - ptrA->bbpE; int32 yL = ptrA->vecArrE[ indexA ].yE; if( shiftL >= 0 ) { yL <<= shiftL; } else { yL = ( ( yL >> ( -shiftL - 1 ) ) + 1 ) >> 1; } return yL; } } /* ------------------------------------------------------------------------- */ /* ========================================================================= */ /* */ /* ---- \ghd{ modify functions } ------------------------------------------- */ /* */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ void bts_Cluster2D_create( struct bbs_Context* cpA, struct bts_Cluster2D* ptrA, uint32 sizeA, struct bbs_MemSeg* mspA ) { if( bbs_Context_error( cpA ) ) return; if( ptrA->mspE == NULL ) { ptrA->sizeE = 0; ptrA->allocatedSizeE = 0; ptrA->vecArrE = NULL; } if( ptrA->sizeE == sizeA ) return; if( ptrA->vecArrE != 0 ) { bbs_ERROR0( "void bts_Cluster2D_create( const struct bts_Cluster2D*, uint32 ):\n" "object has already been created and cannot be resized." ); return; } ptrA->vecArrE = bbs_MemSeg_alloc( cpA, mspA, sizeA * bbs_SIZEOF16( struct bts_Int16Vec2D ) ); if( bbs_Context_error( cpA ) ) return; ptrA->sizeE = sizeA; ptrA->allocatedSizeE = sizeA; if( !mspA->sharedE ) ptrA->mspE = mspA; } /* ------------------------------------------------------------------------- */ void bts_Cluster2D_size( struct bbs_Context* cpA, struct bts_Cluster2D* ptrA, uint32 sizeA ) { if( ptrA->allocatedSizeE < sizeA ) { bbs_ERROR2( "void bts_Cluster2D_size( struct bts_Cluster2D* ptrA, uint32 sizeA ):\n" "Allocated size (%i) of cluster is smaller than requested size (%i).", ptrA->allocatedSizeE, sizeA ); return; } ptrA->sizeE = sizeA; } /* ------------------------------------------------------------------------- */ void bts_Cluster2D_transform( struct bbs_Context* cpA, struct bts_Cluster2D* ptrA, struct bts_Flt16Alt2D altA ) { uint32 iL; for( iL = 0; iL < ptrA->sizeE; iL++ ) { struct bts_Flt16Vec2D vL = bts_Flt16Vec2D_createVec16( ptrA->vecArrE[ iL ], ptrA->bbpE ); ptrA->vecArrE[ iL ] = bts_Flt16Vec2D_int16Vec2D( bts_Flt16Alt2D_mapFlt( &altA, &vL ), ptrA->bbpE ); } } /* ------------------------------------------------------------------------- */ void bts_Cluster2D_transformBbp( struct bbs_Context* cpA, struct bts_Cluster2D* ptrA, struct bts_Flt16Alt2D altA, uint32 dstBbpA ) { uint32 iL; for( iL = 0; iL < ptrA->sizeE; iL++ ) { struct bts_Flt16Vec2D vL = bts_Flt16Vec2D_createVec16( ptrA->vecArrE[ iL ], ptrA->bbpE ); ptrA->vecArrE[ iL ] = bts_Flt16Vec2D_int16Vec2D( bts_Flt16Alt2D_mapFlt( &altA, &vL ), dstBbpA ); } ptrA->bbpE = dstBbpA; } /* ------------------------------------------------------------------------- */ void bts_Cluster2D_rbfTransform( struct bbs_Context* cpA, struct bts_Cluster2D* ptrA, const struct bts_RBFMap2D* rbfMapPtrA ) { bts_RBFMap2D_mapCluster( cpA, rbfMapPtrA, ptrA, ptrA, ptrA->bbpE ); } /* ------------------------------------------------------------------------- */ void bts_Cluster2D_copyTransform( struct bbs_Context* cpA, struct bts_Cluster2D* ptrA, const struct bts_Cluster2D* srcPtrA, struct bts_Flt16Alt2D altA, uint32 dstBbpA ) { uint32 iL; /* prepare destination cluster */ if( ptrA->allocatedSizeE < srcPtrA->sizeE ) { bbs_ERROR0( "void bts_Cluster2D_copyTransform( struct bts_Cluster2D* ptrA, const struct bts_Cluster2D* srcPtrA, struct bts_Flt16Alt2D altA, uint32 dstBbpA ): allocated size too low in destination cluster" ); return; } ptrA->sizeE = srcPtrA->sizeE; ptrA->bbpE = dstBbpA; /* transform */ for( iL = 0; iL < ptrA->sizeE; iL++ ) { struct bts_Flt16Vec2D vL = bts_Flt16Vec2D_createVec16( srcPtrA->vecArrE[ iL ], srcPtrA->bbpE ); ptrA->vecArrE[ iL ] = bts_Flt16Vec2D_int16Vec2D( bts_Flt16Alt2D_mapFlt( &altA, &vL ), ptrA->bbpE ); } } /* ------------------------------------------------------------------------- */ /* ========================================================================= */ /* */ /* ---- \ghd{ I/O } -------------------------------------------------------- */ /* */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ uint32 bts_Cluster2D_memSize( struct bbs_Context* cpA, const struct bts_Cluster2D *ptrA ) { return bbs_SIZEOF16( uint32 ) /* mem size */ + bbs_SIZEOF16( uint32 ) /* version */ + bbs_SIZEOF16( ptrA->sizeE ) + bbs_SIZEOF16( ptrA->bbpE ) + bbs_SIZEOF16( struct bts_Int16Vec2D ) * ptrA->sizeE; } /* ------------------------------------------------------------------------- */ uint32 bts_Cluster2D_memWrite( struct bbs_Context* cpA, const struct bts_Cluster2D* ptrA, uint16* memPtrA ) { uint32 memSizeL = bts_Cluster2D_memSize( cpA, ptrA ); memPtrA += bbs_memWrite32( &memSizeL, memPtrA ); memPtrA += bbs_memWriteUInt32( bts_CLUSTER2D_VERSION, memPtrA ); memPtrA += bbs_memWrite32( &ptrA->sizeE, memPtrA ); memPtrA += bbs_memWrite32( &ptrA->bbpE, memPtrA ); memPtrA += bbs_memWrite16Arr( cpA, ptrA->vecArrE, ptrA->sizeE * 2, memPtrA ); return memSizeL; } /* ------------------------------------------------------------------------- */ uint32 bts_Cluster2D_memRead( struct bbs_Context* cpA, struct bts_Cluster2D* ptrA, const uint16* memPtrA, struct bbs_MemSeg* mspA ) { uint32 memSizeL; uint32 sizeL; uint32 versionL; if( bbs_Context_error( cpA ) ) return 0; memPtrA += bbs_memRead32( &memSizeL, memPtrA ); memPtrA += bbs_memReadVersion32( cpA, &versionL, bts_CLUSTER2D_VERSION, memPtrA ); memPtrA += bbs_memRead32( &sizeL, memPtrA ); memPtrA += bbs_memRead32( &ptrA->bbpE, memPtrA ); if( ptrA->allocatedSizeE < sizeL ) { bts_Cluster2D_create( cpA, ptrA, sizeL, mspA ); } else { bts_Cluster2D_size( cpA, ptrA, sizeL ); } memPtrA += bbs_memRead16Arr( cpA, ptrA->vecArrE, ptrA->sizeE * 2, memPtrA ); if( memSizeL != bts_Cluster2D_memSize( cpA, ptrA ) ) { bbs_ERR0( bbs_ERR_CORRUPT_DATA, "uint32 bts_Cluster2D_memRead( const struct bts_Cluster2D* ptrA, const void* memPtrA ):\n" "size mismatch" ); return 0; } return memSizeL; } /* ------------------------------------------------------------------------- */ /* ========================================================================= */ /* */ /* ---- \ghd{ exec functions } --------------------------------------------- */ /* */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ struct bts_Flt16Alt2D bts_Cluster2D_alt( struct bbs_Context* cpA, const struct bts_Cluster2D* srcPtrA, const struct bts_Cluster2D* dstPtrA, enum bts_AltType altTypeA ) { struct bts_Flt16Alt2D altL = bts_Flt16Alt2D_createIdentity(); enum bts_AltType altTypeL = altTypeA; uint32 sizeL = srcPtrA->sizeE; int32 srcBbpL = srcPtrA->bbpE; int32 dstBbpL = dstPtrA->bbpE; struct bts_Flt16Vec2D cpL, cqL, cpMappedL, cpAdjustedL; if( dstPtrA->sizeE != srcPtrA->sizeE ) { bbs_ERROR2( "struct bts_Flt16Alt2D bts_Cluster2D_alt( ... ):\n" "the 2 input clusters differ in size: %d vs %d", srcPtrA->sizeE, dstPtrA->sizeE ); } if( sizeL <= 2 ) { if( altTypeL == bts_ALT_LINEAR ) { altTypeL = bts_ALT_RIGID; } } if( sizeL <= 1 ) { if( altTypeL == bts_ALT_RIGID ) { altTypeL = bts_ALT_TRANS; } else if( altTypeL == bts_ALT_TRANS_SCALE ) { altTypeL = bts_ALT_TRANS; } } if( sizeL == 0 || altTypeL == bts_ALT_IDENTITY ) { /* return identity */ return altL; } cpL = bts_Cluster2D_center( cpA, srcPtrA ); cqL = bts_Cluster2D_center( cpA, dstPtrA ); if( altTypeL == bts_ALT_TRANS ) { /* return translation only */ altL.vecE = bts_Flt16Vec2D_sub( cqL, cpL ); return altL; } switch( altTypeL ) { case bts_ALT_TRANS_SCALE: { uint32 spL = 0; uint32 sqL = 0; struct bts_Int16Vec2D* srcPtrL = srcPtrA->vecArrE; struct bts_Int16Vec2D* dstPtrL = dstPtrA->vecArrE; int32 iL = sizeL; while( iL-- ) { int32 pxL = srcPtrL->xE - cpL.xE; int32 pyL = srcPtrL->yE - cpL.yE; int32 qxL = dstPtrL->xE - cqL.xE; int32 qyL = dstPtrL->yE - cqL.yE; srcPtrL++; dstPtrL++; /* overflow estimate: no problem with 100 nodes, bbp = 6, x = y = 500 */ spL += ( pxL * pxL ) >> srcBbpL; spL += ( pyL * pyL ) >> srcBbpL; sqL += ( qxL * qxL ) >> dstBbpL; sqL += ( qyL * qyL ) >> dstBbpL; } spL /= sizeL; sqL /= sizeL; if( spL == 0 ) { bbs_ERROR0( "struct bts_Flt16Alt2D bts_Cluster2D_alt( ... ):\n" "All nodes of the src cluster are sitting in the center -> " "unable to compute scale matrix between clusters" ); } else { uint32 scaleL; int32 factor32L, bbp_scaleL; int16 factor16L; bts_Cluster2D_computeScale( sqL, dstBbpL, spL, srcBbpL, &scaleL, &bbp_scaleL ); /* create scale matrix */ factor32L = ( int32 )scaleL; altL.matE = bts_Flt16Mat2D_createScale( factor32L, bbp_scaleL ); /* create translation vector */ factor16L = scaleL; cpMappedL = bts_Flt16Vec2D_mul( cpL, factor16L, bbp_scaleL ); altL.vecE = bts_Flt16Vec2D_sub( cqL, cpMappedL ); return altL; } } break; case bts_ALT_RIGID: { /* smaller of the 2 bbp's */ int32 minBbpL = bbs_min( srcBbpL, dstBbpL ); uint32 spL = 0; uint32 sqL = 0; int32 pxqxL = 0; int32 pxqyL = 0; int32 pyqxL = 0; int32 pyqyL = 0; struct bts_Int16Vec2D* srcPtrL = srcPtrA->vecArrE; struct bts_Int16Vec2D* dstPtrL = dstPtrA->vecArrE; int32 iL = sizeL; while( iL-- ) { int32 pxL = srcPtrL->xE - cpL.xE; int32 pyL = srcPtrL->yE - cpL.yE; int32 qxL = dstPtrL->xE - cqL.xE; int32 qyL = dstPtrL->yE - cqL.yE; srcPtrL++; dstPtrL++; /* overflow estimate: no problem with 100 nodes, bbp = 6, x = y = 500 */ spL += ( pxL * pxL ) >> srcBbpL; spL += ( pyL * pyL ) >> srcBbpL; sqL += ( qxL * qxL ) >> dstBbpL; sqL += ( qyL * qyL ) >> dstBbpL; pxqxL += ( pxL * qxL ) >> minBbpL; pxqyL += ( pxL * qyL ) >> minBbpL; pyqxL += ( pyL * qxL ) >> minBbpL; pyqyL += ( pyL * qyL ) >> minBbpL; } spL /= sizeL; sqL /= sizeL; pxqxL /= ( int32 )sizeL; pxqyL /= ( int32 )sizeL; pyqxL /= ( int32 )sizeL; pyqyL /= ( int32 )sizeL; if( spL == 0 ) { bbs_ERROR0( "struct bts_Flt16Alt2D bts_Cluster2D_alt( ... ):\n" "All nodes of the src cluster are sitting in the center -> " "unable to compute scale matrix between clusters" ); } else { uint32 scaleL, shiftL, quotientL, enumL, denomL, bitsTaken0L, bitsTaken1L; int32 bbp_scaleL, cL, rL, c1L, r1L; int32 ppL, pmL, mpL, mmL, maxL; int32 quotientBbpL, bbp_crL, posL; /* find scale factor: */ bts_Cluster2D_computeScale( sqL, dstBbpL, spL, srcBbpL, &scaleL, &bbp_scaleL ); /* find rotation matrix: */ /* sign not needed any more */ enumL = bbs_abs( pxqyL - pyqxL ); denomL = bbs_abs( pxqxL + pyqyL ); if( denomL == 0 ) { cL = 0; rL = 1; quotientBbpL = 0; } else { /* original formula: float aL = enumL / denomL; cL = sqrt( 1.0 / ( 1.0 + ebs_sqr( aL ) ) ); rL = sqrt( 1 - ebs_sqr( cL ) ); */ /* how far can we shift enumL to the left */ shiftL = 31 - bbs_intLog2( enumL ); /* result has bbp = shiftL */ quotientL = ( enumL << shiftL ) / denomL; quotientBbpL = shiftL; posL = bbs_intLog2( quotientL ); /* if enumL much larger than denomL, then we cannot square the quotient */ if( posL > ( quotientBbpL + 14 ) ) { cL = 0; rL = 1; quotientBbpL = 0; } else if( quotientBbpL > ( posL + 14 ) ) { cL = 1; rL = 0; quotientBbpL = 0; } else { bbs_uint32ReduceToNBits( "ientL, "ientBbpL, 15 ); /* to avoid an overflow in the next operation */ if( quotientBbpL > 15 ) { quotientL >>= ( quotientBbpL - 15 ); quotientBbpL -= ( quotientBbpL - 15 ); } /* result has again bbp = quotientBbpL */ denomL = bbs_fastSqrt32( quotientL * quotientL + ( ( int32 )1 << ( quotientBbpL << 1 ) ) ); quotientL = ( ( uint32 )1 << 31 ) / denomL; quotientBbpL = 31 - quotientBbpL; bbs_uint32ReduceToNBits( "ientL, "ientBbpL, 15 ); /* to avoid an overflow in the next operation */ if( quotientBbpL > 15 ) { quotientL >>= ( quotientBbpL - 15 ); quotientBbpL -= ( quotientBbpL - 15 ); } cL = quotientL; rL = bbs_fastSqrt32( ( ( int32 )1 << ( quotientBbpL << 1 ) ) - quotientL * quotientL ); } } /* save cL and rL with this accuracy for later */ c1L = cL; r1L = rL; bbp_crL = quotientBbpL; /* prepare the next computations */ bitsTaken0L = bts_maxAbsIntLog2Of4( pxqxL, pxqyL, pyqxL, pyqyL ) + 1; bitsTaken1L = bts_maxAbsIntLog2Of2( cL, rL ) + 1; if( ( bitsTaken0L + bitsTaken1L ) > 29 ) { int32 shiftL = bitsTaken0L + bitsTaken1L - 29; cL >>= shiftL; rL >>= shiftL; quotientBbpL -= shiftL; } /* best combination: */ ppL = cL * pxqxL - rL * pyqxL + cL * pyqyL + rL * pxqyL; pmL = cL * pxqxL + rL * pyqxL + cL * pyqyL - rL * pxqyL; mpL = - cL * pxqxL - rL * pyqxL - cL * pyqyL + rL * pxqyL; mmL = - cL * pxqxL + rL * pyqxL - cL * pyqyL - rL * pxqyL; maxL = bbs_max( bbs_max( ppL, pmL ), bbs_max( mpL, mmL ) ); /* restore cL and rL, bbp = bbp_crL */ cL = c1L; rL = r1L; /* rotation matrix */ if( ppL == maxL ) { altL.matE = bts_Flt16Mat2D_create32( cL, -rL, rL, cL, bbp_crL ); } else if( pmL == maxL ) { altL.matE = bts_Flt16Mat2D_create32( cL, rL, -rL, cL, bbp_crL ); } else if( mpL == maxL ) { altL.matE = bts_Flt16Mat2D_create32( -cL, -rL, rL, -cL, bbp_crL ); } else { altL.matE = bts_Flt16Mat2D_create32( -cL, rL, -rL, -cL, bbp_crL ); } /* find translation: */ /* original formula: ets_Float2DVec transL = cqL - ( scaleL * ( rotL * cpL ) ); altL.mat( rotL * scaleL ); altL.vec( transL ); */ bts_Flt16Mat2D_scale( &altL.matE, scaleL, bbp_scaleL ); cpMappedL = bts_Flt16Mat2D_mapFlt( &altL.matE, &cpL ); altL.vecE = bts_Flt16Vec2D_sub( cqL, cpMappedL ); } return altL; } case bts_ALT_LINEAR: { /* smaller of the 2 bbp's */ int32 minBbpL = bbs_min( srcBbpL, dstBbpL ); int32 iL = 0; int32 pxpxL = 0; int32 pxpyL = 0; int32 pypyL = 0; int32 pxqxL = 0; int32 pxqyL = 0; int32 pyqxL = 0; int32 pyqyL = 0; struct bts_Int16Vec2D* srcPtrL = srcPtrA->vecArrE; struct bts_Int16Vec2D* dstPtrL = dstPtrA->vecArrE; /* get cp adjusted to dstBbpL */ int32 shiftL = dstBbpL - srcBbpL; if( shiftL > 0 ) { cpAdjustedL.xE = cpL.xE << shiftL; cpAdjustedL.yE = cpL.yE << shiftL; cpAdjustedL.bbpE = dstBbpL; } else { cpAdjustedL.xE = ( ( cpL.xE >> ( -shiftL - 1 ) ) + 1 ) >> 1; cpAdjustedL.yE = ( ( cpL.yE >> ( -shiftL - 1 ) ) + 1 ) >> 1; cpAdjustedL.bbpE = dstBbpL; } iL = sizeL; while( iL-- ) { int32 pxL = srcPtrL->xE - cpL.xE; int32 pyL = srcPtrL->yE - cpL.yE; int32 qxL = dstPtrL->xE - cpAdjustedL.xE; /* cp, not cq! */ int32 qyL = dstPtrL->yE - cpAdjustedL.yE; srcPtrL++; dstPtrL++; /* overflow estimate: no problem with 100 nodes, bbp = 6, x = y = 500 */ pxpxL += ( pxL * pxL ) >> srcBbpL; pxpyL += ( pxL * pyL ) >> srcBbpL; pypyL += ( pyL * pyL ) >> srcBbpL; pxqxL += ( pxL * qxL ) >> minBbpL; pxqyL += ( pxL * qyL ) >> minBbpL; pyqxL += ( pyL * qxL ) >> minBbpL; pyqyL += ( pyL * qyL ) >> minBbpL; } pxpxL /= ( int32 )sizeL; pxpyL /= ( int32 )sizeL; pypyL /= ( int32 )sizeL; pxqxL /= ( int32 )sizeL; pxqyL /= ( int32 )sizeL; pyqxL /= ( int32 )sizeL; pyqyL /= ( int32 )sizeL; { /* original code: float detPL = ( pxpxL * pypyL ) - ( pxpyL * pxpyL ); if( ebs_neglectable( detPL ) ) { matL.setIdentity(); } else { matL.xx( ( pxqxL * pypyL - pyqxL * pxpyL ) / detPL ); matL.xy( ( pyqxL * pxpxL - pxqxL * pxpyL ) / detPL ); matL.yx( ( pxqyL * pypyL - pyqyL * pxpyL ) / detPL ); matL.yy( ( pyqyL * pxpxL - pxqyL * pxpyL ) / detPL ); } */ /* compute det first */ uint32 bitsTaken0L = bts_maxAbsIntLog2Of4( pxpxL, pypyL, pxpyL, pxpyL ) + 1; int32 shL = 0; int32 detL = 0; int32 detBbpL = 0; if( bitsTaken0L > 15 ) { shL = bitsTaken0L - 15; } detL = ( pxpxL >> shL ) * ( pypyL >> shL ) - ( pxpyL >> shL ) * ( pxpyL >> shL ); /* this can be negative */ detBbpL = ( srcBbpL - shL ) << 1; /* reduce to 15 bit */ shL = ( int32 )bts_absIntLog2( detL ); if( shL > 15 ) { detL >>= ( shL - 15 ); detBbpL -= ( shL - 15 ); } if( detL != 0 ) { int32 sh0L, sh1L, xxL, xyL, yxL, yyL, bbp_enumL; uint32 bitsTaken1L, highestBitL; sh0L = 0; if( bitsTaken0L > 15 ) { sh0L = bitsTaken0L - 15; } bitsTaken1L = bts_maxAbsIntLog2Of4( pxqxL, pxqyL, pyqxL, pyqyL ) + 1; sh1L = 0; if( bitsTaken1L > 15 ) { sh1L = bitsTaken1L - 15; } xxL = ( pxqxL >> sh1L ) * ( pypyL >> sh0L ) - ( pyqxL >> sh1L ) * ( pxpyL >> sh0L ); xyL = ( pyqxL >> sh1L ) * ( pxpxL >> sh0L ) - ( pxqxL >> sh1L ) * ( pxpyL >> sh0L ); yxL = ( pxqyL >> sh1L ) * ( pypyL >> sh0L ) - ( pyqyL >> sh1L ) * ( pxpyL >> sh0L ); yyL = ( pyqyL >> sh1L ) * ( pxpxL >> sh0L ) - ( pxqyL >> sh1L ) * ( pxpyL >> sh0L ); /* again, can be negative */ bbp_enumL = ( srcBbpL - sh0L ) + ( bbs_max( srcBbpL, dstBbpL ) - sh1L ); highestBitL = bts_maxAbsIntLog2Of4( xxL, xyL, yxL, yyL ) + 1; /* shift left */ xxL <<= ( 31 - highestBitL ); xyL <<= ( 31 - highestBitL ); yxL <<= ( 31 - highestBitL ); yyL <<= ( 31 - highestBitL ); bbp_enumL += ( 31 - highestBitL ); xxL /= detL; xyL /= detL; yxL /= detL; yyL /= detL; bbp_enumL -= detBbpL; altL.matE = bts_Flt16Mat2D_create32( xxL, xyL, yxL, yyL, bbp_enumL ); } cpMappedL = bts_Flt16Mat2D_mapFlt( &altL.matE, &cpL ); altL.vecE = bts_Flt16Vec2D_sub( cqL, cpMappedL ); } return altL; } default: { bbs_ERROR1( "struct bts_Flt16Alt2D bts_Cluster2D_alt( ... ):\n" "altType %d is not handled", altTypeL ); } } return altL; } /* ------------------------------------------------------------------------- */ /* ========================================================================= */