/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkArenaAlloc.h" #include "SkBlitter.h" #include "SkBlendModePriv.h" #include "SkColor.h" #include "SkColorFilter.h" #include "SkColorSpaceXformer.h" #include "SkOpts.h" #include "SkPM4f.h" #include "SkPM4fPriv.h" #include "SkRasterPipeline.h" #include "SkShader.h" #include "SkShaderBase.h" #include "SkUtils.h" #include "../jumper/SkJumper.h" class SkRasterPipelineBlitter final : public SkBlitter { public: // This is our common entrypoint for creating the blitter once we've sorted out shaders. static SkBlitter* Create(const SkPixmap&, const SkPaint&, SkArenaAlloc*, const SkRasterPipeline& shaderPipeline, SkShaderBase::Context*, bool is_opaque, bool is_constant); SkRasterPipelineBlitter(SkPixmap dst, SkBlendMode blend, SkArenaAlloc* alloc, SkShaderBase::Context* burstCtx) : fDst(dst) , fBlend(blend) , fAlloc(alloc) , fBurstCtx(burstCtx) , fColorPipeline(alloc) {} void blitH (int x, int y, int w) override; void blitAntiH (int x, int y, const SkAlpha[], const int16_t[]) override; void blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) override; void blitMask (const SkMask&, const SkIRect& clip) override; // TODO: The default implementations of the other blits look fine, // but some of them like blitV could probably benefit from custom // blits using something like a SkRasterPipeline::runFew() method. private: void append_load_d(SkRasterPipeline*) const; void append_blend (SkRasterPipeline*) const; void maybe_clamp (SkRasterPipeline*) const; void append_store (SkRasterPipeline*) const; // If we have an burst context, use it to fill our shader buffer. void maybe_shade(int x, int y, int w); SkPixmap fDst; SkBlendMode fBlend; SkArenaAlloc* fAlloc; SkShaderBase::Context* fBurstCtx; SkRasterPipeline fColorPipeline; // We may be able to specialize blitH() into a memset. bool fCanMemsetInBlitH = false; uint64_t fMemsetColor = 0; // Big enough for largest dst format, F16. // Built lazily on first use. std::function fBlitH, fBlitAntiH, fBlitMaskA8, fBlitMaskLCD16; // These values are pointed to by the blit pipelines above, // which allows us to adjust them from call to call. void* fShaderOutput = nullptr; void* fDstPtr = nullptr; const void* fMaskPtr = nullptr; float fCurrentCoverage = 0.0f; float fDitherRate = 0.0f; std::vector fShaderBuffer; typedef SkBlitter INHERITED; }; SkBlitter* SkCreateRasterPipelineBlitter(const SkPixmap& dst, const SkPaint& paint, const SkMatrix& ctm, SkArenaAlloc* alloc) { SkColorSpace* dstCS = dst.colorSpace(); SkPM4f paintColor = SkPM4f_from_SkColor(paint.getColor(), dstCS); auto shader = as_SB(paint.getShader()); SkRasterPipeline_<256> shaderPipeline; if (!shader) { // Having no shader makes things nice and easy... just use the paint color. shaderPipeline.append_uniform_color(alloc, paintColor); bool is_opaque = paintColor.a() == 1.0f, is_constant = true; return SkRasterPipelineBlitter::Create(dst, paint, alloc, shaderPipeline, nullptr, is_opaque, is_constant); } bool is_opaque = shader->isOpaque() && paintColor.a() == 1.0f; bool is_constant = shader->isConstant(); // Check whether the shader prefers to run in burst mode. if (auto* burstCtx = shader->makeBurstPipelineContext( SkShaderBase::ContextRec(paint, ctm, nullptr, SkShaderBase::ContextRec::kPM4f_DstType, dstCS), alloc)) { return SkRasterPipelineBlitter::Create(dst, paint, alloc, shaderPipeline, burstCtx, is_opaque, is_constant); } if (shader->appendStages(&shaderPipeline, dstCS, alloc, ctm, paint)) { if (paintColor.a() != 1.0f) { shaderPipeline.append(SkRasterPipeline::scale_1_float, alloc->make(paintColor.a())); } return SkRasterPipelineBlitter::Create(dst, paint, alloc, shaderPipeline, nullptr, is_opaque, is_constant); } // The shader has opted out of drawing anything. return alloc->make(); } SkBlitter* SkCreateRasterPipelineBlitter(const SkPixmap& dst, const SkPaint& paint, const SkRasterPipeline& shaderPipeline, bool is_opaque, SkArenaAlloc* alloc) { bool is_constant = false; // If this were the case, it'd be better to just set a paint color. return SkRasterPipelineBlitter::Create(dst, paint, alloc, shaderPipeline, nullptr, is_opaque, is_constant); } SkBlitter* SkRasterPipelineBlitter::Create(const SkPixmap& dst, const SkPaint& paint, SkArenaAlloc* alloc, const SkRasterPipeline& shaderPipeline, SkShaderBase::Context* burstCtx, bool is_opaque, bool is_constant) { auto blitter = alloc->make(dst, paint.getBlendMode(), alloc, burstCtx); // Our job in this factory is to fill out the blitter's color pipeline. // This is the common front of the full blit pipelines, each constructed lazily on first use. // The full blit pipelines handle reading and writing the dst, blending, coverage, dithering. auto colorPipeline = &blitter->fColorPipeline; // Let's get the shader in first. if (burstCtx) { colorPipeline->append(SkRasterPipeline::load_f32, &blitter->fShaderOutput); } else { colorPipeline->extend(shaderPipeline); } // If there's a color filter it comes next. if (auto colorFilter = paint.getColorFilter()) { colorFilter->appendStages(colorPipeline, dst.colorSpace(), alloc, is_opaque); is_opaque = is_opaque && (colorFilter->getFlags() & SkColorFilter::kAlphaUnchanged_Flag); } // Not all formats make sense to dither (think, F16). We set their dither rate to zero. // We need to decide if we're going to dither now to keep is_constant accurate. if (paint.isDither()) { switch (dst.info().colorType()) { default: blitter->fDitherRate = 0.0f; break; case kARGB_4444_SkColorType: blitter->fDitherRate = 1/15.0f; break; case kRGB_565_SkColorType: blitter->fDitherRate = 1/63.0f; break; case kGray_8_SkColorType: case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: blitter->fDitherRate = 1/255.0f; break; } // TODO: for constant colors, we could try to measure the effect of dithering, and if // it has no value (i.e. all variations result in the same 32bit color, then we // could disable it (for speed, by not adding the stage). } is_constant = is_constant && (blitter->fDitherRate == 0.0f); // We're logically done here. The code between here and return blitter is all optimization. // A pipeline that's still constant here can collapse back into a constant color. if (is_constant) { SkPM4f storage; SkPM4f* constantColor = &storage; colorPipeline->append(SkRasterPipeline::store_f32, &constantColor); colorPipeline->run(0,0,1); colorPipeline->reset(); colorPipeline->append_uniform_color(alloc, *constantColor); is_opaque = constantColor->a() == 1.0f; } // We can strength-reduce SrcOver into Src when opaque. if (is_opaque && blitter->fBlend == SkBlendMode::kSrcOver) { blitter->fBlend = SkBlendMode::kSrc; } // When we're drawing a constant color in Src mode, we can sometimes just memset. // (The previous two optimizations help find more opportunities for this one.) if (is_constant && blitter->fBlend == SkBlendMode::kSrc) { // Run our color pipeline all the way through to produce what we'd memset when we can. // Not all blits can memset, so we need to keep colorPipeline too. SkRasterPipeline_<256> p; p.extend(*colorPipeline); blitter->fDstPtr = &blitter->fMemsetColor; blitter->append_store(&p); p.run(0,0,1); blitter->fCanMemsetInBlitH = true; } return blitter; } void SkRasterPipelineBlitter::append_load_d(SkRasterPipeline* p) const { switch (fDst.info().colorType()) { case kGray_8_SkColorType: p->append(SkRasterPipeline::load_g8_dst, &fDstPtr); break; case kAlpha_8_SkColorType: p->append(SkRasterPipeline::load_a8_dst, &fDstPtr); break; case kRGB_565_SkColorType: p->append(SkRasterPipeline::load_565_dst, &fDstPtr); break; case kARGB_4444_SkColorType: p->append(SkRasterPipeline::load_4444_dst, &fDstPtr); break; case kBGRA_8888_SkColorType: p->append(SkRasterPipeline::load_bgra_dst, &fDstPtr); break; case kRGBA_8888_SkColorType: p->append(SkRasterPipeline::load_8888_dst, &fDstPtr); break; case kRGBA_F16_SkColorType: p->append(SkRasterPipeline::load_f16_dst, &fDstPtr); break; default: break; } if (fDst.info().gammaCloseToSRGB()) { p->append_from_srgb_dst(fDst.info().alphaType()); } } void SkRasterPipelineBlitter::append_store(SkRasterPipeline* p) const { if (fDst.info().gammaCloseToSRGB()) { p->append(SkRasterPipeline::to_srgb); } if (fDitherRate > 0.0f) { // We dither after any sRGB transfer function to make sure our 1/255.0f is sensible // over the whole range. If we did it before, 1/255.0f is too big a rate near zero. p->append(SkRasterPipeline::dither, &fDitherRate); } switch (fDst.info().colorType()) { case kGray_8_SkColorType: p->append(SkRasterPipeline::luminance_to_alpha); // fallthru case kAlpha_8_SkColorType: p->append(SkRasterPipeline::store_a8, &fDstPtr); break; case kRGB_565_SkColorType: p->append(SkRasterPipeline::store_565, &fDstPtr); break; case kARGB_4444_SkColorType: p->append(SkRasterPipeline::store_4444, &fDstPtr); break; case kBGRA_8888_SkColorType: p->append(SkRasterPipeline::store_bgra, &fDstPtr); break; case kRGBA_8888_SkColorType: p->append(SkRasterPipeline::store_8888, &fDstPtr); break; case kRGBA_F16_SkColorType: p->append(SkRasterPipeline::store_f16, &fDstPtr); break; default: break; } } void SkRasterPipelineBlitter::append_blend(SkRasterPipeline* p) const { if (fDst.info().alphaType() == kUnpremul_SkAlphaType) { p->append(SkRasterPipeline::premul_dst); } SkBlendMode_AppendStagesNoClamp(fBlend, p); if (fDst.info().alphaType() == kUnpremul_SkAlphaType) { p->append(SkRasterPipeline::unpremul); } } void SkRasterPipelineBlitter::maybe_clamp(SkRasterPipeline* p) const { SkBlendMode_AppendClampIfNeeded(fBlend, p); } void SkRasterPipelineBlitter::maybe_shade(int x, int y, int w) { if (fBurstCtx) { if (w > SkToInt(fShaderBuffer.size())) { fShaderBuffer.resize(w); } fBurstCtx->shadeSpan4f(x,y, fShaderBuffer.data(), w); // We'll be reading from fShaderOutput + x. fShaderOutput = fShaderBuffer.data() - x; } } void SkRasterPipelineBlitter::blitH(int x, int y, int w) { fDstPtr = fDst.writable_addr(0,y); if (fCanMemsetInBlitH) { switch (fDst.shiftPerPixel()) { case 0: memset ((uint8_t *)fDstPtr + x, fMemsetColor, w); return; case 1: sk_memset16((uint16_t*)fDstPtr + x, fMemsetColor, w); return; case 2: sk_memset32((uint32_t*)fDstPtr + x, fMemsetColor, w); return; case 3: sk_memset64((uint64_t*)fDstPtr + x, fMemsetColor, w); return; default: break; } } if (!fBlitH) { SkRasterPipeline p(fAlloc); p.extend(fColorPipeline); if (fBlend == SkBlendMode::kSrcOver && fDst.info().colorType() == kRGBA_8888_SkColorType && !fDst.colorSpace() && fDst.info().alphaType() != kUnpremul_SkAlphaType && fDitherRate == 0.0f) { p.append(SkRasterPipeline::srcover_rgba_8888, &fDstPtr); } else { if (fBlend != SkBlendMode::kSrc) { this->append_load_d(&p); this->append_blend(&p); this->maybe_clamp(&p); } this->append_store(&p); } fBlitH = p.compile(); } this->maybe_shade(x,y,w); fBlitH(x,y,w); } void SkRasterPipelineBlitter::blitAntiH(int x, int y, const SkAlpha aa[], const int16_t runs[]) { if (!fBlitAntiH) { SkRasterPipeline p(fAlloc); p.extend(fColorPipeline); if (fBlend == SkBlendMode::kSrcOver) { p.append(SkRasterPipeline::scale_1_float, &fCurrentCoverage); this->append_load_d(&p); this->append_blend(&p); } else { this->append_load_d(&p); this->append_blend(&p); p.append(SkRasterPipeline::lerp_1_float, &fCurrentCoverage); } this->maybe_clamp(&p); this->append_store(&p); fBlitAntiH = p.compile(); } fDstPtr = fDst.writable_addr(0,y); for (int16_t run = *runs; run > 0; run = *runs) { switch (*aa) { case 0x00: break; case 0xff: this->blitH(x,y,run); break; default: this->maybe_shade(x,y,run); fCurrentCoverage = *aa * (1/255.0f); fBlitAntiH(x,y,run); } x += run; runs += run; aa += run; } } void SkRasterPipelineBlitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) { SkIRect clip = {x,y, x+2,y+1}; uint8_t coverage[] = { (uint8_t)a0, (uint8_t)a1 }; SkMask mask; mask.fImage = coverage; mask.fBounds = clip; mask.fRowBytes = 2; mask.fFormat = SkMask::kA8_Format; this->blitMask(mask, clip); } void SkRasterPipelineBlitter::blitMask(const SkMask& mask, const SkIRect& clip) { if (mask.fFormat == SkMask::kBW_Format) { // TODO: native BW masks? return INHERITED::blitMask(mask, clip); } if (mask.fFormat == SkMask::kA8_Format && !fBlitMaskA8) { SkRasterPipeline p(fAlloc); p.extend(fColorPipeline); if (fBlend == SkBlendMode::kSrcOver) { p.append(SkRasterPipeline::scale_u8, &fMaskPtr); this->append_load_d(&p); this->append_blend(&p); } else { this->append_load_d(&p); this->append_blend(&p); p.append(SkRasterPipeline::lerp_u8, &fMaskPtr); } this->maybe_clamp(&p); this->append_store(&p); fBlitMaskA8 = p.compile(); } if (mask.fFormat == SkMask::kLCD16_Format && !fBlitMaskLCD16) { SkRasterPipeline p(fAlloc); p.extend(fColorPipeline); this->append_load_d(&p); this->append_blend(&p); p.append(SkRasterPipeline::lerp_565, &fMaskPtr); this->maybe_clamp(&p); this->append_store(&p); fBlitMaskLCD16 = p.compile(); } int x = clip.left(); for (int y = clip.top(); y < clip.bottom(); y++) { fDstPtr = fDst.writable_addr(0,y); this->maybe_shade(x,y,clip.width()); switch (mask.fFormat) { case SkMask::kA8_Format: fMaskPtr = mask.getAddr8(x,y)-x; fBlitMaskA8(x,y,clip.width()); break; case SkMask::kLCD16_Format: fMaskPtr = mask.getAddrLCD16(x,y)-x; fBlitMaskLCD16(x,y,clip.width()); break; default: // TODO break; } } }