/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrDistanceFieldGeoProc.h" #include "GrTexture.h" #include "SkDistanceFieldGen.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #include "glsl/GrGLSLUtil.h" #include "glsl/GrGLSLVarying.h" #include "glsl/GrGLSLVertexShaderBuilder.h" // Assuming a radius of a little less than the diagonal of the fragment #define SK_DistanceFieldAAFactor "0.65" class GrGLDistanceFieldA8TextGeoProc : public GrGLSLGeometryProcessor { public: GrGLDistanceFieldA8TextGeoProc() : fViewMatrix(SkMatrix::InvalidMatrix()) #ifdef SK_GAMMA_APPLY_TO_A8 , fDistanceAdjust(-1.0f) #endif {} void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrDistanceFieldA8TextGeoProc& dfTexEffect = args.fGP.cast(); GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(dfTexEffect); #ifdef SK_GAMMA_APPLY_TO_A8 // adjust based on gamma const char* distanceAdjustUniName = nullptr; // width, height, 1/(3*width) fDistanceAdjustUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType, kDefault_GrSLPrecision, "DistanceAdjust", &distanceAdjustUniName); #endif // Setup pass through color varyingHandler->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor); // Setup position this->setupPosition(vertBuilder, uniformHandler, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix(), &fViewMatrixUniform); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName, args.fFPCoordTransformHandler); // add varyings GrGLSLVertToFrag recipScale(kFloat_GrSLType); GrGLSLVertToFrag uv(kVec2f_GrSLType); bool isUniformScale = (dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask) == kUniformScale_DistanceFieldEffectMask; bool isSimilarity = SkToBool(dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag); bool isGammaCorrect = SkToBool(dfTexEffect.getFlags() & kGammaCorrect_DistanceFieldEffectFlag); bool isAliased = SkToBool(dfTexEffect.getFlags() & kAliased_DistanceFieldEffectFlag); varyingHandler->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision); vertBuilder->codeAppendf("%s = %s;", uv.vsOut(), dfTexEffect.inTextureCoords()->fName); // compute numbers to be hardcoded to convert texture coordinates from float to int SkASSERT(dfTexEffect.numTextureSamplers() == 1); GrTexture* atlas = dfTexEffect.textureSampler(0).peekTexture(); SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height())); GrGLSLVertToFrag st(kVec2f_GrSLType); varyingHandler->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision); vertBuilder->codeAppendf("%s = vec2(%d, %d) * %s;", st.vsOut(), atlas->width(), atlas->height(), dfTexEffect.inTextureCoords()->fName); // Use highp to work around aliasing issues fragBuilder->codeAppendf("highp vec2 uv = %s;\n", uv.fsIn()); fragBuilder->codeAppend("\tfloat texColor = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "uv", kVec2f_GrSLType); fragBuilder->codeAppend(".r;\n"); fragBuilder->codeAppend("\tfloat distance = " SK_DistanceFieldMultiplier "*(texColor - " SK_DistanceFieldThreshold ");"); #ifdef SK_GAMMA_APPLY_TO_A8 // adjust width based on gamma fragBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName); #endif fragBuilder->codeAppend("float afwidth;"); if (isUniformScale) { // For uniform scale, we adjust for the effect of the transformation on the distance // by using the length of the gradient of the t coordinate in the y direction. // We use st coordinates to ensure we're mapping 1:1 from texel space to pixel space. // this gives us a smooth step across approximately one fragment #ifdef SK_VULKAN fragBuilder->codeAppendf("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdx(%s.x));", st.fsIn()); #else // We use the y gradient because there is a bug in the Mali 400 in the x direction. fragBuilder->codeAppendf("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(%s.y));", st.fsIn()); #endif } else if (isSimilarity) { // For similarity transform, we adjust the effect of the transformation on the distance // by using the length of the gradient of the texture coordinates. We use st coordinates // to ensure we're mapping 1:1 from texel space to pixel space. // We use the y gradient because there is a bug in the Mali 400 in the x direction. // this gives us a smooth step across approximately one fragment #ifdef SK_VULKAN fragBuilder->codeAppendf("float st_grad_len = length(dFdx(%s));", st.fsIn()); #else // We use the y gradient because there is a bug in the Mali 400 in the x direction. fragBuilder->codeAppendf("float st_grad_len = length(dFdy(%s));", st.fsIn()); #endif fragBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*st_grad_len);"); } else { // For general transforms, to determine the amount of correction we multiply a unit // vector pointing along the SDF gradient direction by the Jacobian of the st coords // (which is the inverse transform for this fragment) and take the length of the result. fragBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance), dFdy(distance));"); // the length of the gradient may be 0, so we need to check for this // this also compensates for the Adreno, which likes to drop tiles on division by 0 fragBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);"); fragBuilder->codeAppend("if (dg_len2 < 0.0001) {"); fragBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);"); fragBuilder->codeAppend("} else {"); fragBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);"); fragBuilder->codeAppend("}"); fragBuilder->codeAppendf("vec2 Jdx = dFdx(%s);", st.fsIn()); fragBuilder->codeAppendf("vec2 Jdy = dFdy(%s);", st.fsIn()); fragBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,"); fragBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);"); // this gives us a smooth step across approximately one fragment fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);"); } if (isAliased) { fragBuilder->codeAppend("float val = distance > 0 ? 1.0 : 0.0;"); } else if (isGammaCorrect) { // The smoothstep falloff compensates for the non-linear sRGB response curve. If we are // doing gamma-correct rendering (to an sRGB or F16 buffer), then we actually want // distance mapped linearly to coverage, so use a linear step: fragBuilder->codeAppend( "float val = clamp((distance + afwidth) / (2.0 * afwidth), 0.0, 1.0);"); } else { fragBuilder->codeAppend("float val = smoothstep(-afwidth, afwidth, distance);"); } fragBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage); } void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& proc, FPCoordTransformIter&& transformIter) override { #ifdef SK_GAMMA_APPLY_TO_A8 const GrDistanceFieldA8TextGeoProc& dfTexEffect = proc.cast(); float distanceAdjust = dfTexEffect.getDistanceAdjust(); if (distanceAdjust != fDistanceAdjust) { pdman.set1f(fDistanceAdjustUni, distanceAdjust); fDistanceAdjust = distanceAdjust; } #endif const GrDistanceFieldA8TextGeoProc& dfa8gp = proc.cast(); if (!dfa8gp.viewMatrix().isIdentity() && !fViewMatrix.cheapEqualTo(dfa8gp.viewMatrix())) { fViewMatrix = dfa8gp.viewMatrix(); float viewMatrix[3 * 3]; GrGLSLGetMatrix<3>(viewMatrix, fViewMatrix); pdman.setMatrix3f(fViewMatrixUniform, viewMatrix); } this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter); } static inline void GenKey(const GrGeometryProcessor& gp, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const GrDistanceFieldA8TextGeoProc& dfTexEffect = gp.cast(); uint32_t key = dfTexEffect.getFlags(); key |= ComputePosKey(dfTexEffect.viewMatrix()) << 16; b->add32(key); // Currently we hardcode numbers to convert atlas coordinates to normalized floating point SkASSERT(gp.numTextureSamplers() == 1); GrTextureProxy* atlas = gp.textureSampler(0).proxy(); if (atlas) { b->add32(atlas->width()); b->add32(atlas->height()); } } private: SkMatrix fViewMatrix; UniformHandle fViewMatrixUniform; #ifdef SK_GAMMA_APPLY_TO_A8 float fDistanceAdjust; UniformHandle fDistanceAdjustUni; #endif typedef GrGLSLGeometryProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// GrDistanceFieldA8TextGeoProc::GrDistanceFieldA8TextGeoProc(GrColor color, const SkMatrix& viewMatrix, sk_sp proxy, const GrSamplerParams& params, #ifdef SK_GAMMA_APPLY_TO_A8 float distanceAdjust, #endif uint32_t flags, bool usesLocalCoords) : fColor(color) , fViewMatrix(viewMatrix) , fTextureSampler(std::move(proxy), params) #ifdef SK_GAMMA_APPLY_TO_A8 , fDistanceAdjust(distanceAdjust) #endif , fFlags(flags & kNonLCD_DistanceFieldEffectMask) , fInColor(nullptr) , fUsesLocalCoords(usesLocalCoords) { SkASSERT(!(flags & ~kNonLCD_DistanceFieldEffectMask)); this->initClassID(); fInPosition = &this->addVertexAttrib("inPosition", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision); fInColor = &this->addVertexAttrib("inColor", kVec4ub_GrVertexAttribType); fInTextureCoords = &this->addVertexAttrib("inTextureCoords", kVec2us_GrVertexAttribType, kHigh_GrSLPrecision); this->addTextureSampler(&fTextureSampler); } void GrDistanceFieldA8TextGeoProc::getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GrGLDistanceFieldA8TextGeoProc::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* GrDistanceFieldA8TextGeoProc::createGLSLInstance(const GrShaderCaps&) const { return new GrGLDistanceFieldA8TextGeoProc(); } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_GEOMETRY_PROCESSOR_TEST(GrDistanceFieldA8TextGeoProc); #if GR_TEST_UTILS sk_sp GrDistanceFieldA8TextGeoProc::TestCreate(GrProcessorTestData* d) { int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; sk_sp proxy = d->textureProxy(texIdx); static const SkShader::TileMode kTileModes[] = { SkShader::kClamp_TileMode, SkShader::kRepeat_TileMode, SkShader::kMirror_TileMode, }; SkShader::TileMode tileModes[] = { kTileModes[d->fRandom->nextULessThan(SK_ARRAY_COUNT(kTileModes))], kTileModes[d->fRandom->nextULessThan(SK_ARRAY_COUNT(kTileModes))], }; GrSamplerParams params(tileModes, d->fRandom->nextBool() ? GrSamplerParams::kBilerp_FilterMode : GrSamplerParams::kNone_FilterMode); uint32_t flags = 0; flags |= d->fRandom->nextBool() ? kSimilarity_DistanceFieldEffectFlag : 0; if (flags & kSimilarity_DistanceFieldEffectFlag) { flags |= d->fRandom->nextBool() ? kScaleOnly_DistanceFieldEffectFlag : 0; } return GrDistanceFieldA8TextGeoProc::Make(GrRandomColor(d->fRandom), GrTest::TestMatrix(d->fRandom), std::move(proxy), params, #ifdef SK_GAMMA_APPLY_TO_A8 d->fRandom->nextF(), #endif flags, d->fRandom->nextBool()); } #endif /////////////////////////////////////////////////////////////////////////////// class GrGLDistanceFieldPathGeoProc : public GrGLSLGeometryProcessor { public: GrGLDistanceFieldPathGeoProc() : fViewMatrix(SkMatrix::InvalidMatrix()) , fTextureSize(SkISize::Make(-1, -1)) {} void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrDistanceFieldPathGeoProc& dfTexEffect = args.fGP.cast(); GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(dfTexEffect); GrGLSLVertToFrag v(kVec2f_GrSLType); varyingHandler->addVarying("TextureCoords", &v, kHigh_GrSLPrecision); // setup pass through color varyingHandler->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor); vertBuilder->codeAppendf("%s = %s;", v.vsOut(), dfTexEffect.inTextureCoords()->fName); // Setup position this->setupPosition(vertBuilder, uniformHandler, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix(), &fViewMatrixUniform); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName, args.fFPCoordTransformHandler); const char* textureSizeUniName = nullptr; fTextureSizeUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "TextureSize", &textureSizeUniName); // Use highp to work around aliasing issues fragBuilder->codeAppendf("highp vec2 uv = %s;", v.fsIn()); fragBuilder->codeAppend("float texColor = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "uv", kVec2f_GrSLType); fragBuilder->codeAppend(".r;"); fragBuilder->codeAppend("float distance = " SK_DistanceFieldMultiplier "*(texColor - " SK_DistanceFieldThreshold ");"); fragBuilder->codeAppendf("highp vec2 st = uv*%s;", textureSizeUniName); fragBuilder->codeAppend("float afwidth;"); bool isUniformScale = (dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask) == kUniformScale_DistanceFieldEffectMask; bool isSimilarity = SkToBool(dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag); bool isGammaCorrect = SkToBool(dfTexEffect.getFlags() & kGammaCorrect_DistanceFieldEffectFlag); if (isUniformScale) { // For uniform scale, we adjust for the effect of the transformation on the distance // by using the length of the gradient of the t coordinate in the y direction. // We use st coordinates to ensure we're mapping 1:1 from texel space to pixel space. // this gives us a smooth step across approximately one fragment #ifdef SK_VULKAN fragBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdx(st.x));"); #else // We use the y gradient because there is a bug in the Mali 400 in the x direction. fragBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*dFdy(st.y));"); #endif } else if (isSimilarity) { // For similarity transform, we adjust the effect of the transformation on the distance // by using the length of the gradient of the texture coordinates. We use st coordinates // to ensure we're mapping 1:1 from texel space to pixel space. // this gives us a smooth step across approximately one fragment #ifdef SK_VULKAN fragBuilder->codeAppend("float st_grad_len = length(dFdx(st));"); #else // We use the y gradient because there is a bug in the Mali 400 in the x direction. fragBuilder->codeAppend("float st_grad_len = length(dFdy(st));"); #endif fragBuilder->codeAppend("afwidth = abs(" SK_DistanceFieldAAFactor "*st_grad_len);"); } else { // For general transforms, to determine the amount of correction we multiply a unit // vector pointing along the SDF gradient direction by the Jacobian of the st coords // (which is the inverse transform for this fragment) and take the length of the result. fragBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance), dFdy(distance));"); // the length of the gradient may be 0, so we need to check for this // this also compensates for the Adreno, which likes to drop tiles on division by 0 fragBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);"); fragBuilder->codeAppend("if (dg_len2 < 0.0001) {"); fragBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);"); fragBuilder->codeAppend("} else {"); fragBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);"); fragBuilder->codeAppend("}"); fragBuilder->codeAppend("vec2 Jdx = dFdx(st);"); fragBuilder->codeAppend("vec2 Jdy = dFdy(st);"); fragBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,"); fragBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);"); // this gives us a smooth step across approximately one fragment fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);"); } // The smoothstep falloff compensates for the non-linear sRGB response curve. If we are // doing gamma-correct rendering (to an sRGB or F16 buffer), then we actually want distance // mapped linearly to coverage, so use a linear step: if (isGammaCorrect) { fragBuilder->codeAppend( "float val = clamp((distance + afwidth) / (2.0 * afwidth), 0.0, 1.0);"); } else { fragBuilder->codeAppend("float val = smoothstep(-afwidth, afwidth, distance);"); } fragBuilder->codeAppendf("%s = vec4(val);", args.fOutputCoverage); } void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& proc, FPCoordTransformIter&& transformIter) override { SkASSERT(fTextureSizeUni.isValid()); GrTexture* texture = proc.textureSampler(0).peekTexture(); if (texture->width() != fTextureSize.width() || texture->height() != fTextureSize.height()) { fTextureSize = SkISize::Make(texture->width(), texture->height()); pdman.set2f(fTextureSizeUni, SkIntToScalar(fTextureSize.width()), SkIntToScalar(fTextureSize.height())); } const GrDistanceFieldPathGeoProc& dfpgp = proc.cast(); if (!dfpgp.viewMatrix().isIdentity() && !fViewMatrix.cheapEqualTo(dfpgp.viewMatrix())) { fViewMatrix = dfpgp.viewMatrix(); float viewMatrix[3 * 3]; GrGLSLGetMatrix<3>(viewMatrix, fViewMatrix); pdman.setMatrix3f(fViewMatrixUniform, viewMatrix); } this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter); } static inline void GenKey(const GrGeometryProcessor& gp, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const GrDistanceFieldPathGeoProc& dfTexEffect = gp.cast(); uint32_t key = dfTexEffect.getFlags(); key |= ComputePosKey(dfTexEffect.viewMatrix()) << 16; b->add32(key); } private: UniformHandle fTextureSizeUni; UniformHandle fViewMatrixUniform; SkMatrix fViewMatrix; SkISize fTextureSize; typedef GrGLSLGeometryProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// GrDistanceFieldPathGeoProc::GrDistanceFieldPathGeoProc(GrColor color, const SkMatrix& viewMatrix, sk_sp proxy, const GrSamplerParams& params, uint32_t flags, bool usesLocalCoords) : fColor(color) , fViewMatrix(viewMatrix) , fTextureSampler(std::move(proxy), params) , fFlags(flags & kNonLCD_DistanceFieldEffectMask) , fInColor(nullptr) , fUsesLocalCoords(usesLocalCoords) { SkASSERT(!(flags & ~kNonLCD_DistanceFieldEffectMask)); this->initClassID(); fInPosition = &this->addVertexAttrib("inPosition", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision); fInColor = &this->addVertexAttrib("inColor", kVec4ub_GrVertexAttribType); fInTextureCoords = &this->addVertexAttrib("inTextureCoords", kVec2us_GrVertexAttribType); this->addTextureSampler(&fTextureSampler); } void GrDistanceFieldPathGeoProc::getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GrGLDistanceFieldPathGeoProc::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* GrDistanceFieldPathGeoProc::createGLSLInstance(const GrShaderCaps&) const { return new GrGLDistanceFieldPathGeoProc(); } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_GEOMETRY_PROCESSOR_TEST(GrDistanceFieldPathGeoProc); #if GR_TEST_UTILS sk_sp GrDistanceFieldPathGeoProc::TestCreate(GrProcessorTestData* d) { int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; sk_sp proxy = d->textureProxy(texIdx); static const SkShader::TileMode kTileModes[] = { SkShader::kClamp_TileMode, SkShader::kRepeat_TileMode, SkShader::kMirror_TileMode, }; SkShader::TileMode tileModes[] = { kTileModes[d->fRandom->nextULessThan(SK_ARRAY_COUNT(kTileModes))], kTileModes[d->fRandom->nextULessThan(SK_ARRAY_COUNT(kTileModes))], }; GrSamplerParams params(tileModes, d->fRandom->nextBool() ? GrSamplerParams::kBilerp_FilterMode : GrSamplerParams::kNone_FilterMode); uint32_t flags = 0; flags |= d->fRandom->nextBool() ? kSimilarity_DistanceFieldEffectFlag : 0; if (flags & kSimilarity_DistanceFieldEffectFlag) { flags |= d->fRandom->nextBool() ? kScaleOnly_DistanceFieldEffectFlag : 0; } return GrDistanceFieldPathGeoProc::Make(GrRandomColor(d->fRandom), GrTest::TestMatrix(d->fRandom), std::move(proxy), params, flags, d->fRandom->nextBool()); } #endif /////////////////////////////////////////////////////////////////////////////// class GrGLDistanceFieldLCDTextGeoProc : public GrGLSLGeometryProcessor { public: GrGLDistanceFieldLCDTextGeoProc() : fViewMatrix(SkMatrix::InvalidMatrix()) { fDistanceAdjust = GrDistanceFieldLCDTextGeoProc::DistanceAdjust::Make(1.0f, 1.0f, 1.0f); } void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ const GrDistanceFieldLCDTextGeoProc& dfTexEffect = args.fGP.cast(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(dfTexEffect); GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; // setup pass through color varyingHandler->addPassThroughAttribute(dfTexEffect.inColor(), args.fOutputColor); // Setup position this->setupPosition(vertBuilder, uniformHandler, gpArgs, dfTexEffect.inPosition()->fName, dfTexEffect.viewMatrix(), &fViewMatrixUniform); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar, dfTexEffect.inPosition()->fName, args.fFPCoordTransformHandler); // set up varyings bool isUniformScale = (dfTexEffect.getFlags() & kUniformScale_DistanceFieldEffectMask) == kUniformScale_DistanceFieldEffectMask; bool isSimilarity = SkToBool(dfTexEffect.getFlags() & kSimilarity_DistanceFieldEffectFlag); bool isGammaCorrect = SkToBool(dfTexEffect.getFlags() & kGammaCorrect_DistanceFieldEffectFlag); GrGLSLVertToFrag recipScale(kFloat_GrSLType); GrGLSLVertToFrag uv(kVec2f_GrSLType); varyingHandler->addVarying("TextureCoords", &uv, kHigh_GrSLPrecision); vertBuilder->codeAppendf("%s = %s;", uv.vsOut(), dfTexEffect.inTextureCoords()->fName); // compute numbers to be hardcoded to convert texture coordinates from float to int SkASSERT(dfTexEffect.numTextureSamplers() == 1); GrTexture* atlas = dfTexEffect.textureSampler(0).peekTexture(); SkASSERT(atlas && SkIsPow2(atlas->width()) && SkIsPow2(atlas->height())); GrGLSLVertToFrag st(kVec2f_GrSLType); varyingHandler->addVarying("IntTextureCoords", &st, kHigh_GrSLPrecision); vertBuilder->codeAppendf("%s = vec2(%d, %d) * %s;", st.vsOut(), atlas->width(), atlas->height(), dfTexEffect.inTextureCoords()->fName); // add frag shader code // create LCD offset adjusted by inverse of transform // Use highp to work around aliasing issues fragBuilder->codeAppendf("highp vec2 uv = %s;\n", uv.fsIn()); SkScalar lcdDelta = 1.0f / (3.0f * atlas->width()); if (dfTexEffect.getFlags() & kBGR_DistanceFieldEffectFlag) { fragBuilder->codeAppendf("highp float delta = -%.*f;\n", SK_FLT_DECIMAL_DIG, lcdDelta); } else { fragBuilder->codeAppendf("highp float delta = %.*f;\n", SK_FLT_DECIMAL_DIG, lcdDelta); } if (isUniformScale) { #ifdef SK_VULKAN fragBuilder->codeAppendf("float st_grad_len = abs(dFdx(%s.x));", st.fsIn()); #else // We use the y gradient because there is a bug in the Mali 400 in the x direction. fragBuilder->codeAppendf("float st_grad_len = abs(dFdy(%s.y));", st.fsIn()); #endif fragBuilder->codeAppend("vec2 offset = vec2(st_grad_len*delta, 0.0);"); } else if (isSimilarity) { // For a similarity matrix with rotation, the gradient will not be aligned // with the texel coordinate axes, so we need to calculate it. #ifdef SK_VULKAN fragBuilder->codeAppendf("vec2 st_grad = dFdx(%s);", st.fsIn()); fragBuilder->codeAppend("vec2 offset = delta*st_grad;"); #else // We use dFdy because of a Mali 400 bug, and rotate -90 degrees to // get the gradient in the x direction. fragBuilder->codeAppendf("vec2 st_grad = dFdy(%s);", st.fsIn()); fragBuilder->codeAppend("vec2 offset = delta*vec2(st_grad.y, -st_grad.x);"); #endif fragBuilder->codeAppend("float st_grad_len = length(st_grad);"); } else { fragBuilder->codeAppendf("vec2 st = %s;\n", st.fsIn()); fragBuilder->codeAppend("vec2 Jdx = dFdx(st);"); fragBuilder->codeAppend("vec2 Jdy = dFdy(st);"); fragBuilder->codeAppend("vec2 offset = delta*Jdx;"); } // green is distance to uv center fragBuilder->codeAppend("\tvec4 texColor = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "uv", kVec2f_GrSLType); fragBuilder->codeAppend(";\n"); fragBuilder->codeAppend("\tvec3 distance;\n"); fragBuilder->codeAppend("\tdistance.y = texColor.r;\n"); // red is distance to left offset fragBuilder->codeAppend("\tvec2 uv_adjusted = uv - offset;\n"); fragBuilder->codeAppend("\ttexColor = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "uv_adjusted", kVec2f_GrSLType); fragBuilder->codeAppend(";\n"); fragBuilder->codeAppend("\tdistance.x = texColor.r;\n"); // blue is distance to right offset fragBuilder->codeAppend("\tuv_adjusted = uv + offset;\n"); fragBuilder->codeAppend("\ttexColor = "); fragBuilder->appendTextureLookup(args.fTexSamplers[0], "uv_adjusted", kVec2f_GrSLType); fragBuilder->codeAppend(";\n"); fragBuilder->codeAppend("\tdistance.z = texColor.r;\n"); fragBuilder->codeAppend("\tdistance = " "vec3(" SK_DistanceFieldMultiplier ")*(distance - vec3(" SK_DistanceFieldThreshold"));"); // adjust width based on gamma const char* distanceAdjustUniName = nullptr; fDistanceAdjustUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec3f_GrSLType, kDefault_GrSLPrecision, "DistanceAdjust", &distanceAdjustUniName); fragBuilder->codeAppendf("distance -= %s;", distanceAdjustUniName); // To be strictly correct, we should compute the anti-aliasing factor separately // for each color component. However, this is only important when using perspective // transformations, and even then using a single factor seems like a reasonable // trade-off between quality and speed. fragBuilder->codeAppend("float afwidth;"); if (isSimilarity) { // For similarity transform (uniform scale-only is a subset of this), we adjust for the // effect of the transformation on the distance by using the length of the gradient of // the texture coordinates. We use st coordinates to ensure we're mapping 1:1 from texel // space to pixel space. // this gives us a smooth step across approximately one fragment fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*st_grad_len;"); } else { // For general transforms, to determine the amount of correction we multiply a unit // vector pointing along the SDF gradient direction by the Jacobian of the st coords // (which is the inverse transform for this fragment) and take the length of the result. fragBuilder->codeAppend("vec2 dist_grad = vec2(dFdx(distance.r), dFdy(distance.r));"); // the length of the gradient may be 0, so we need to check for this // this also compensates for the Adreno, which likes to drop tiles on division by 0 fragBuilder->codeAppend("float dg_len2 = dot(dist_grad, dist_grad);"); fragBuilder->codeAppend("if (dg_len2 < 0.0001) {"); fragBuilder->codeAppend("dist_grad = vec2(0.7071, 0.7071);"); fragBuilder->codeAppend("} else {"); fragBuilder->codeAppend("dist_grad = dist_grad*inversesqrt(dg_len2);"); fragBuilder->codeAppend("}"); fragBuilder->codeAppend("vec2 grad = vec2(dist_grad.x*Jdx.x + dist_grad.y*Jdy.x,"); fragBuilder->codeAppend(" dist_grad.x*Jdx.y + dist_grad.y*Jdy.y);"); // this gives us a smooth step across approximately one fragment fragBuilder->codeAppend("afwidth = " SK_DistanceFieldAAFactor "*length(grad);"); } // The smoothstep falloff compensates for the non-linear sRGB response curve. If we are // doing gamma-correct rendering (to an sRGB or F16 buffer), then we actually want distance // mapped linearly to coverage, so use a linear step: if (isGammaCorrect) { fragBuilder->codeAppendf("%s = " "vec4(clamp((distance + vec3(afwidth)) / vec3(2.0 * afwidth), 0.0, 1.0), 1.0);", args.fOutputCoverage); } else { fragBuilder->codeAppendf( "%s = vec4(smoothstep(vec3(-afwidth), vec3(afwidth), distance), 1.0);", args.fOutputCoverage); } } void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& processor, FPCoordTransformIter&& transformIter) override { SkASSERT(fDistanceAdjustUni.isValid()); const GrDistanceFieldLCDTextGeoProc& dflcd = processor.cast(); GrDistanceFieldLCDTextGeoProc::DistanceAdjust wa = dflcd.getDistanceAdjust(); if (wa != fDistanceAdjust) { pdman.set3f(fDistanceAdjustUni, wa.fR, wa.fG, wa.fB); fDistanceAdjust = wa; } if (!dflcd.viewMatrix().isIdentity() && !fViewMatrix.cheapEqualTo(dflcd.viewMatrix())) { fViewMatrix = dflcd.viewMatrix(); float viewMatrix[3 * 3]; GrGLSLGetMatrix<3>(viewMatrix, fViewMatrix); pdman.setMatrix3f(fViewMatrixUniform, viewMatrix); } this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter); } static inline void GenKey(const GrGeometryProcessor& gp, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const GrDistanceFieldLCDTextGeoProc& dfTexEffect = gp.cast(); uint32_t key = dfTexEffect.getFlags(); key |= ComputePosKey(dfTexEffect.viewMatrix()) << 16; b->add32(key); // Currently we hardcode numbers to convert atlas coordinates to normalized floating point SkASSERT(gp.numTextureSamplers() == 1); GrTextureProxy* atlas = gp.textureSampler(0).proxy(); if (atlas) { b->add32(atlas->width()); b->add32(atlas->height()); } } private: SkMatrix fViewMatrix; UniformHandle fViewMatrixUniform; UniformHandle fColorUniform; GrDistanceFieldLCDTextGeoProc::DistanceAdjust fDistanceAdjust; UniformHandle fDistanceAdjustUni; typedef GrGLSLGeometryProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// GrDistanceFieldLCDTextGeoProc::GrDistanceFieldLCDTextGeoProc( GrColor color, const SkMatrix& viewMatrix, sk_sp proxy, const GrSamplerParams& params, DistanceAdjust distanceAdjust, uint32_t flags, bool usesLocalCoords) : fColor(color) , fViewMatrix(viewMatrix) , fTextureSampler(std::move(proxy), params) , fDistanceAdjust(distanceAdjust) , fFlags(flags & kLCD_DistanceFieldEffectMask) , fUsesLocalCoords(usesLocalCoords) { SkASSERT(!(flags & ~kLCD_DistanceFieldEffectMask) && (flags & kUseLCD_DistanceFieldEffectFlag)); this->initClassID(); fInPosition = &this->addVertexAttrib("inPosition", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision); fInColor = &this->addVertexAttrib("inColor", kVec4ub_GrVertexAttribType); fInTextureCoords = &this->addVertexAttrib("inTextureCoords", kVec2us_GrVertexAttribType, kHigh_GrSLPrecision); this->addTextureSampler(&fTextureSampler); } void GrDistanceFieldLCDTextGeoProc::getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GrGLDistanceFieldLCDTextGeoProc::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* GrDistanceFieldLCDTextGeoProc::createGLSLInstance(const GrShaderCaps&) const { return new GrGLDistanceFieldLCDTextGeoProc(); } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_GEOMETRY_PROCESSOR_TEST(GrDistanceFieldLCDTextGeoProc); #if GR_TEST_UTILS sk_sp GrDistanceFieldLCDTextGeoProc::TestCreate(GrProcessorTestData* d) { int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; sk_sp proxy = d->textureProxy(texIdx); static const SkShader::TileMode kTileModes[] = { SkShader::kClamp_TileMode, SkShader::kRepeat_TileMode, SkShader::kMirror_TileMode, }; SkShader::TileMode tileModes[] = { kTileModes[d->fRandom->nextULessThan(SK_ARRAY_COUNT(kTileModes))], kTileModes[d->fRandom->nextULessThan(SK_ARRAY_COUNT(kTileModes))], }; GrSamplerParams params(tileModes, d->fRandom->nextBool() ? GrSamplerParams::kBilerp_FilterMode : GrSamplerParams::kNone_FilterMode); DistanceAdjust wa = { 0.0f, 0.1f, -0.1f }; uint32_t flags = kUseLCD_DistanceFieldEffectFlag; flags |= d->fRandom->nextBool() ? kSimilarity_DistanceFieldEffectFlag : 0; if (flags & kSimilarity_DistanceFieldEffectFlag) { flags |= d->fRandom->nextBool() ? kScaleOnly_DistanceFieldEffectFlag : 0; } flags |= d->fRandom->nextBool() ? kBGR_DistanceFieldEffectFlag : 0; return GrDistanceFieldLCDTextGeoProc::Make(GrRandomColor(d->fRandom), GrTest::TestMatrix(d->fRandom), std::move(proxy), params, wa, flags, d->fRandom->nextBool()); } #endif