/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrLatticeOp.h" #include "GrDefaultGeoProcFactory.h" #include "GrDrawOpTest.h" #include "GrMeshDrawOp.h" #include "GrOpFlushState.h" #include "GrResourceProvider.h" #include "GrSimpleMeshDrawOpHelper.h" #include "SkBitmap.h" #include "SkLatticeIter.h" #include "SkRect.h" static sk_sp create_gp() { using namespace GrDefaultGeoProcFactory; return GrDefaultGeoProcFactory::Make(Color::kPremulGrColorAttribute_Type, Coverage::kSolid_Type, LocalCoords::kHasExplicit_Type, SkMatrix::I()); } namespace { class NonAALatticeOp final : public GrMeshDrawOp { private: using Helper = GrSimpleMeshDrawOpHelper; public: DEFINE_OP_CLASS_ID static const int kVertsPerRect = 4; static const int kIndicesPerRect = 6; static std::unique_ptr Make(GrPaint&& paint, const SkMatrix& viewMatrix, int imageWidth, int imageHeight, std::unique_ptr iter, const SkRect& dst) { return Helper::FactoryHelper(std::move(paint), viewMatrix, imageWidth, imageHeight, std::move(iter), dst); } NonAALatticeOp(Helper::MakeArgs& helperArgs, GrColor color, const SkMatrix& viewMatrix, int imageWidth, int imageHeight, std::unique_ptr iter, const SkRect& dst) : INHERITED(ClassID()), fHelper(helperArgs, GrAAType::kNone) { Patch& patch = fPatches.push_back(); patch.fViewMatrix = viewMatrix; patch.fColor = color; patch.fIter = std::move(iter); patch.fDst = dst; fImageWidth = imageWidth; fImageHeight = imageHeight; // setup bounds this->setTransformedBounds(patch.fDst, viewMatrix, HasAABloat::kNo, IsZeroArea::kNo); } const char* name() const override { return "NonAALatticeOp"; } SkString dumpInfo() const override { SkString str; for (int i = 0; i < fPatches.count(); ++i) { str.appendf("%d: Color: 0x%08x Dst [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", i, fPatches[i].fColor, fPatches[i].fDst.fLeft, fPatches[i].fDst.fTop, fPatches[i].fDst.fRight, fPatches[i].fDst.fBottom); } str += fHelper.dumpInfo(); str += INHERITED::dumpInfo(); return str; } FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); } RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip) override { return fHelper.xpRequiresDstTexture(caps, clip, GrProcessorAnalysisCoverage::kNone, &fPatches.front().fColor); } private: void onPrepareDraws(Target* target) const override { sk_sp gp(create_gp()); if (!gp) { SkDebugf("Couldn't create GrGeometryProcessor\n"); return; } size_t vertexStride = gp->getVertexStride(); int patchCnt = fPatches.count(); int numRects = 0; for (int i = 0; i < patchCnt; i++) { numRects += fPatches[i].fIter->numRectsToDraw(); } if (!numRects) { return; } sk_sp indexBuffer(target->resourceProvider()->refQuadIndexBuffer()); PatternHelper helper(GrPrimitiveType::kTriangles); void* vertices = helper.init(target, vertexStride, indexBuffer.get(), kVertsPerRect, kIndicesPerRect, numRects); if (!vertices || !indexBuffer) { SkDebugf("Could not allocate vertices\n"); return; } intptr_t verts = reinterpret_cast(vertices); for (int i = 0; i < patchCnt; i++) { const Patch& patch = fPatches[i]; // Apply the view matrix here if it is scale-translate. Otherwise, we need to // wait until we've created the dst rects. bool isScaleTranslate = patch.fViewMatrix.isScaleTranslate(); if (isScaleTranslate) { patch.fIter->mapDstScaleTranslate(patch.fViewMatrix); } SkRect srcR, dstR; intptr_t patchVerts = verts; while (patch.fIter->next(&srcR, &dstR)) { SkPoint* positions = reinterpret_cast(verts); positions->setRectFan(dstR.fLeft, dstR.fTop, dstR.fRight, dstR.fBottom, vertexStride); // Setup local coords static const int kLocalOffset = sizeof(SkPoint) + sizeof(GrColor); SkPoint* coords = reinterpret_cast(verts + kLocalOffset); coords->setRectFan(srcR.fLeft, srcR.fTop, srcR.fRight, srcR.fBottom, vertexStride); static const int kColorOffset = sizeof(SkPoint); GrColor* vertColor = reinterpret_cast(verts + kColorOffset); for (int j = 0; j < 4; ++j) { *vertColor = patch.fColor; vertColor = (GrColor*)((intptr_t)vertColor + vertexStride); } verts += kVertsPerRect * vertexStride; } // If we didn't handle it above, apply the matrix here. if (!isScaleTranslate) { SkPoint* positions = reinterpret_cast(patchVerts); patch.fViewMatrix.mapPointsWithStride( positions, vertexStride, kVertsPerRect * patch.fIter->numRectsToDraw()); } } helper.recordDraw(target, gp.get(), fHelper.makePipeline(target)); } bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override { NonAALatticeOp* that = t->cast(); if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) { return false; } SkASSERT(this->fImageWidth == that->fImageWidth && this->fImageHeight == that->fImageHeight); fPatches.move_back_n(that->fPatches.count(), that->fPatches.begin()); this->joinBounds(*that); return true; } struct Patch { SkMatrix fViewMatrix; std::unique_ptr fIter; SkRect fDst; GrColor fColor; }; Helper fHelper; SkSTArray<1, Patch, true> fPatches; int fImageWidth; int fImageHeight; typedef GrMeshDrawOp INHERITED; }; } // anonymous namespace namespace GrLatticeOp { std::unique_ptr MakeNonAA(GrPaint&& paint, const SkMatrix& viewMatrix, int imageWidth, int imageHeight, std::unique_ptr iter, const SkRect& dst) { return NonAALatticeOp::Make(std::move(paint), viewMatrix, imageWidth, imageHeight, std::move(iter), dst); } }; #if GR_TEST_UTILS /** Randomly divides subset into count divs. */ static void init_random_divs(int divs[], int count, int subsetStart, int subsetStop, SkRandom* random) { // Rules for lattice divs: Must be strictly increasing and in the range // [subsetStart, subsetStop). // Not terribly efficient alg for generating random divs: // 1) Start with minimum legal pixels between each div. // 2) Randomly assign the remaining pixels of the subset to divs. // 3) Convert from pixel counts to div offsets. // 1) Initially each divs[i] represents the number of pixels between // div i-1 and i. The initial div is allowed to be at subsetStart. There // must be one pixel spacing between subsequent divs. divs[0] = 0; for (int i = 1; i < count; ++i) { divs[i] = 1; } // 2) Assign the remaining subset pixels to fall int subsetLength = subsetStop - subsetStart; for (int i = 0; i < subsetLength - count; ++i) { // +1 because count divs means count+1 intervals. int entry = random->nextULessThan(count + 1); // We don't have an entry to to store the count after the last div if (entry < count) { divs[entry]++; } } // 3) Now convert the counts between divs to pixel indices, incorporating the subset's offset. int offset = subsetStart; for (int i = 0; i < count; ++i) { divs[i] += offset; offset = divs[i]; } } GR_DRAW_OP_TEST_DEFINE(NonAALatticeOp) { SkCanvas::Lattice lattice; int imgW, imgH; // We loop because our random lattice code can produce an invalid lattice in the case where // there is a single div separator in both x and y and both are aligned with the left and top // edge of the image subset, respectively. std::unique_ptr xdivs; std::unique_ptr ydivs; std::unique_ptr flags; SkIRect subset; do { imgW = random->nextRangeU(1, 1000); imgH = random->nextRangeU(1, 1000); if (random->nextBool()) { subset.fLeft = random->nextULessThan(imgW); subset.fRight = random->nextRangeU(subset.fLeft + 1, imgW); subset.fTop = random->nextULessThan(imgH); subset.fBottom = random->nextRangeU(subset.fTop + 1, imgH); } else { subset.setXYWH(0, 0, imgW, imgH); } // SkCanvas::Lattice allows bounds to be null. However, SkCanvas creates a temp Lattice with a // non-null bounds before creating a SkLatticeIter since SkLatticeIter requires a bounds. lattice.fBounds = ⊂ lattice.fXCount = random->nextRangeU(1, subset.width()); lattice.fYCount = random->nextRangeU(1, subset.height()); xdivs.reset(new int[lattice.fXCount]); ydivs.reset(new int[lattice.fYCount]); init_random_divs(xdivs.get(), lattice.fXCount, subset.fLeft, subset.fRight, random); init_random_divs(ydivs.get(), lattice.fYCount, subset.fTop, subset.fBottom, random); lattice.fXDivs = xdivs.get(); lattice.fYDivs = ydivs.get(); bool hasFlags = random->nextBool(); if (hasFlags) { int n = (lattice.fXCount + 1) * (lattice.fYCount + 1); flags.reset(new SkCanvas::Lattice::Flags[n]); for (int i = 0; i < n; ++i) { flags[i] = random->nextBool() ? SkCanvas::Lattice::kTransparent_Flags : (SkCanvas::Lattice::Flags)0; } lattice.fFlags = flags.get(); } else { lattice.fFlags = nullptr; } } while (!SkLatticeIter::Valid(imgW, imgH, lattice)); SkRect dst; dst.fLeft = random->nextRangeScalar(-2000.5f, 1000.f); dst.fTop = random->nextRangeScalar(-2000.5f, 1000.f); dst.fRight = dst.fLeft + random->nextRangeScalar(0.5f, 1000.f); dst.fBottom = dst.fTop + random->nextRangeScalar(0.5f, 1000.f); std::unique_ptr iter(new SkLatticeIter(lattice, dst)); SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random); return NonAALatticeOp::Make(std::move(paint), viewMatrix, imgW, imgH, std::move(iter), dst); } #endif