/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.googlecode.android_scripting.facade;
import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import com.googlecode.android_scripting.jsonrpc.RpcReceiver;
import com.googlecode.android_scripting.rpc.Rpc;
import com.googlecode.android_scripting.rpc.RpcDefault;
import com.googlecode.android_scripting.rpc.RpcDeprecated;
import com.googlecode.android_scripting.rpc.RpcParameter;
import com.googlecode.android_scripting.rpc.RpcStartEvent;
import com.googlecode.android_scripting.rpc.RpcStopEvent;
import java.util.Arrays;
import java.util.List;
/**
* Exposes the SensorManager related functionality.
*
* Guidance notes
* For reasons of economy the sensors on smart phones are usually low cost and, therefore, low
* accuracy (usually represented by 10 bit data). The floating point data values obtained from
* sensor readings have up to 16 decimal places, the majority of which are noise. On many phones the
* accelerometer is limited (by the phone manufacturer) to a maximum reading of 2g. The magnetometer
* (which also provides orientation readings) is strongly affected by the presence of ferrous metals
* and can give large errors in vehicles, on board ship etc.
*
* Following a startSensingTimed(A,B) api call sensor events are entered into the Event Queue (see
* EventFacade). For the A parameter: 1 = All Sensors, 2 = Accelerometer, 3 = Magnetometer and 4 =
* Light. The B parameter is the minimum delay between recordings in milliseconds. To avoid
* duplicate readings the minimum delay should be 20 milliseconds. The light sensor will probably be
* much slower (taking about 1 second to register a change in light level). Note that if the light
* level is constant no sensor events will be registered by the light sensor.
*
* Following a startSensingThreshold(A,B,C) api call sensor events greater than a given threshold
* are entered into the Event Queue. For the A parameter: 1 = Orientation, 2 = Accelerometer, 3 =
* Magnetometer and 4 = Light. The B parameter is the integer value of the required threshold level.
* For orientation sensing the integer threshold value is in milliradians. Since orientation events
* can exceed the threshold value for long periods only crossing and return events are recorded. The
* C parameter is the required axis (XYZ) of the sensor: 0 = No axis, 1 = X, 2 = Y, 3 = X+Y, 4 = Z,
* 5= X+Z, 6 = Y+Z, 7 = X+Y+Z. For orientation X = azimuth, Y = pitch and Z = roll.
*
*
* Example (python)
*
*
* import android, time
* droid = android.Android()
* droid.startSensingTimed(1, 250)
* time.sleep(1)
* s1 = droid.readSensors().result
* s2 = droid.sensorsGetAccuracy().result
* s3 = droid.sensorsGetLight().result
* s4 = droid.sensorsReadAccelerometer().result
* s5 = droid.sensorsReadMagnetometer().result
* s6 = droid.sensorsReadOrientation().result
* droid.stopSensing()
*
*
* Returns:
* s1 = {u'accuracy': 3, u'pitch': -0.47323511242866517, u'xmag': 1.75, u'azimuth':
* -0.26701245009899138, u'zforce': 8.4718560000000007, u'yforce': 4.2495484000000001, u'time':
* 1297160391.2820001, u'ymag': -8.9375, u'zmag': -41.0625, u'roll': -0.031366908922791481,
* u'xforce': 0.23154590999999999}
* s2 = 3 (Highest accuracy)
* s3 = None ---(not available on many phones)
* s4 = [0.23154590999999999, 4.2495484000000001, 8.4718560000000007] ----(x, y, z accelerations)
* s5 = [1.75, -8.9375, -41.0625] -----(x, y, z magnetic readings)
* s6 = [-0.26701245009899138, -0.47323511242866517, -0.031366908922791481] ---(azimuth, pitch, roll
* in radians)
*
*/
public class SensorManagerFacade extends RpcReceiver {
private final EventFacade mEventFacade;
private final SensorManager mSensorManager;
private volatile Bundle mSensorReadings;
private volatile Integer mAccuracy;
private volatile Integer mSensorNumber;
private volatile Integer mXAxis = 0;
private volatile Integer mYAxis = 0;
private volatile Integer mZAxis = 0;
private volatile Integer mThreshing = 0;
private volatile Integer mThreshOrientation = 0;
private volatile Integer mXCrossed = 0;
private volatile Integer mYCrossed = 0;
private volatile Integer mZCrossed = 0;
private volatile Float mThreshold;
private volatile Float mXForce;
private volatile Float mYForce;
private volatile Float mZForce;
private volatile Float mXMag;
private volatile Float mYMag;
private volatile Float mZMag;
private volatile Float mLight;
private volatile Double mAzimuth;
private volatile Double mPitch;
private volatile Double mRoll;
private volatile Long mLastTime;
private volatile Long mDelayTime;
private SensorEventListener mSensorListener;
public SensorManagerFacade(FacadeManager manager) {
super(manager);
mEventFacade = manager.getReceiver(EventFacade.class);
mSensorManager = (SensorManager) manager.getService().getSystemService(Context.SENSOR_SERVICE);
}
@Rpc(description = "Starts recording sensor data to be available for polling.")
@RpcStartEvent("sensors")
public void startSensingTimed(
@RpcParameter(name = "sensorNumber", description = "1 = All, 2 = Accelerometer, 3 = Magnetometer and 4 = Light") Integer sensorNumber,
@RpcParameter(name = "delayTime", description = "Minimum time between readings in milliseconds") Integer delayTime) {
mSensorNumber = sensorNumber;
if (delayTime < 20) {
delayTime = 20;
}
mDelayTime = (long) (delayTime);
mLastTime = System.currentTimeMillis();
if (mSensorListener == null) {
mSensorListener = new SensorValuesCollector();
mSensorReadings = new Bundle();
switch (mSensorNumber) {
case 1:
for (Sensor sensor : mSensorManager.getSensorList(Sensor.TYPE_ALL)) {
mSensorManager.registerListener(mSensorListener, sensor,
SensorManager.SENSOR_DELAY_FASTEST);
}
break;
case 2:
for (Sensor sensor : mSensorManager.getSensorList(Sensor.TYPE_ACCELEROMETER)) {
mSensorManager.registerListener(mSensorListener, sensor,
SensorManager.SENSOR_DELAY_FASTEST);
}
break;
case 3:
for (Sensor sensor : mSensorManager.getSensorList(Sensor.TYPE_MAGNETIC_FIELD)) {
mSensorManager.registerListener(mSensorListener, sensor,
SensorManager.SENSOR_DELAY_FASTEST);
}
break;
case 4:
for (Sensor sensor : mSensorManager.getSensorList(Sensor.TYPE_LIGHT)) {
mSensorManager.registerListener(mSensorListener, sensor,
SensorManager.SENSOR_DELAY_FASTEST);
}
}
}
}
@Rpc(description = "Records to the Event Queue sensor data exceeding a chosen threshold.")
@RpcStartEvent("threshold")
public void startSensingThreshold(
@RpcParameter(name = "sensorNumber", description = "1 = Orientation, 2 = Accelerometer, 3 = Magnetometer and 4 = Light") Integer sensorNumber,
@RpcParameter(name = "threshold", description = "Threshold level for chosen sensor (integer)") Integer threshold,
@RpcParameter(name = "axis", description = "0 = No axis, 1 = X, 2 = Y, 3 = X+Y, 4 = Z, 5= X+Z, 6 = Y+Z, 7 = X+Y+Z") Integer axis) {
mSensorNumber = sensorNumber;
mXAxis = axis & 1;
mYAxis = axis & 2;
mZAxis = axis & 4;
if (mSensorNumber == 1) {
mThreshing = 0;
mThreshOrientation = 1;
mThreshold = ((float) threshold) / ((float) 1000);
} else {
mThreshing = 1;
mThreshold = (float) threshold;
}
startSensingTimed(mSensorNumber, 20);
}
@Rpc(description = "Returns the most recently recorded sensor data.")
public Bundle readSensors() {
if (mSensorReadings == null) {
return null;
}
synchronized (mSensorReadings) {
return new Bundle(mSensorReadings);
}
}
@Rpc(description = "Stops collecting sensor data.")
@RpcStopEvent("sensors")
public void stopSensing() {
mSensorManager.unregisterListener(mSensorListener);
mSensorListener = null;
mSensorReadings = null;
mThreshing = 0;
mThreshOrientation = 0;
}
@Rpc(description = "Returns the most recently received accuracy value.")
public Integer sensorsGetAccuracy() {
return mAccuracy;
}
@Rpc(description = "Returns the most recently received light value.")
public Float sensorsGetLight() {
return mLight;
}
@Rpc(description = "Returns the most recently received accelerometer values.", returns = "a List of Floats [(acceleration on the) X axis, Y axis, Z axis].")
public List sensorsReadAccelerometer() {
synchronized (mSensorReadings) {
return Arrays.asList(mXForce, mYForce, mZForce);
}
}
@Rpc(description = "Returns the most recently received magnetic field values.", returns = "a List of Floats [(magnetic field value for) X axis, Y axis, Z axis].")
public List sensorsReadMagnetometer() {
synchronized (mSensorReadings) {
return Arrays.asList(mXMag, mYMag, mZMag);
}
}
@Rpc(description = "Returns the most recently received orientation values.", returns = "a List of Doubles [azimuth, pitch, roll].")
public List sensorsReadOrientation() {
synchronized (mSensorReadings) {
return Arrays.asList(mAzimuth, mPitch, mRoll);
}
}
@Rpc(description = "Starts recording sensor data to be available for polling.")
@RpcDeprecated(value = "startSensingTimed or startSensingThreshhold", release = "4")
public void startSensing(
@RpcParameter(name = "sampleSize", description = "number of samples for calculating average readings") @RpcDefault("5") Integer sampleSize) {
if (mSensorListener == null) {
startSensingTimed(1, 220);
}
}
@Override
public void shutdown() {
stopSensing();
}
private class SensorValuesCollector implements SensorEventListener {
private final static int MATRIX_SIZE = 9;
private final RollingAverage mmAzimuth;
private final RollingAverage mmPitch;
private final RollingAverage mmRoll;
private float[] mmGeomagneticValues;
private float[] mmGravityValues;
private float[] mmR;
private float[] mmOrientation;
public SensorValuesCollector() {
mmAzimuth = new RollingAverage();
mmPitch = new RollingAverage();
mmRoll = new RollingAverage();
}
private void postEvent() {
mSensorReadings.putDouble("time", System.currentTimeMillis() / 1000.0);
mEventFacade.postEvent("sensors", mSensorReadings.clone());
}
@Override
public void onAccuracyChanged(Sensor sensor, int accuracy) {
if (mSensorReadings == null) {
return;
}
synchronized (mSensorReadings) {
mSensorReadings.putInt("accuracy", accuracy);
mAccuracy = accuracy;
}
}
@Override
public void onSensorChanged(SensorEvent event) {
if (mSensorReadings == null) {
return;
}
synchronized (mSensorReadings) {
switch (event.sensor.getType()) {
case Sensor.TYPE_ACCELEROMETER:
mXForce = event.values[0];
mYForce = event.values[1];
mZForce = event.values[2];
if (mThreshing == 0) {
mSensorReadings.putFloat("xforce", mXForce);
mSensorReadings.putFloat("yforce", mYForce);
mSensorReadings.putFloat("zforce", mZForce);
if ((mSensorNumber == 2) && (System.currentTimeMillis() > (mDelayTime + mLastTime))) {
mLastTime = System.currentTimeMillis();
postEvent();
}
}
if ((mThreshing == 1) && (mSensorNumber == 2)) {
if ((Math.abs(mXForce) > mThreshold) && (mXAxis == 1)) {
mSensorReadings.putFloat("xforce", mXForce);
postEvent();
}
if ((Math.abs(mYForce) > mThreshold) && (mYAxis == 2)) {
mSensorReadings.putFloat("yforce", mYForce);
postEvent();
}
if ((Math.abs(mZForce) > mThreshold) && (mZAxis == 4)) {
mSensorReadings.putFloat("zforce", mZForce);
postEvent();
}
}
mmGravityValues = event.values.clone();
break;
case Sensor.TYPE_MAGNETIC_FIELD:
mXMag = event.values[0];
mYMag = event.values[1];
mZMag = event.values[2];
if (mThreshing == 0) {
mSensorReadings.putFloat("xMag", mXMag);
mSensorReadings.putFloat("yMag", mYMag);
mSensorReadings.putFloat("zMag", mZMag);
if ((mSensorNumber == 3) && (System.currentTimeMillis() > (mDelayTime + mLastTime))) {
mLastTime = System.currentTimeMillis();
postEvent();
}
}
if ((mThreshing == 1) && (mSensorNumber == 3)) {
if ((Math.abs(mXMag) > mThreshold) && (mXAxis == 1)) {
mSensorReadings.putFloat("xforce", mXMag);
postEvent();
}
if ((Math.abs(mYMag) > mThreshold) && (mYAxis == 2)) {
mSensorReadings.putFloat("yforce", mYMag);
postEvent();
}
if ((Math.abs(mZMag) > mThreshold) && (mZAxis == 4)) {
mSensorReadings.putFloat("zforce", mZMag);
postEvent();
}
}
mmGeomagneticValues = event.values.clone();
break;
case Sensor.TYPE_LIGHT:
mLight = event.values[0];
if (mThreshing == 0) {
mSensorReadings.putFloat("light", mLight);
if ((mSensorNumber == 4) && (System.currentTimeMillis() > (mDelayTime + mLastTime))) {
mLastTime = System.currentTimeMillis();
postEvent();
}
}
if ((mThreshing == 1) && (mSensorNumber == 4)) {
if (mLight > mThreshold) {
mSensorReadings.putFloat("light", mLight);
postEvent();
}
}
break;
}
if (mSensorNumber == 1) {
if (mmGeomagneticValues != null && mmGravityValues != null) {
if (mmR == null) {
mmR = new float[MATRIX_SIZE];
}
if (SensorManager.getRotationMatrix(mmR, null, mmGravityValues, mmGeomagneticValues)) {
if (mmOrientation == null) {
mmOrientation = new float[3];
}
SensorManager.getOrientation(mmR, mmOrientation);
mmAzimuth.add(mmOrientation[0]);
mmPitch.add(mmOrientation[1]);
mmRoll.add(mmOrientation[2]);
mAzimuth = mmAzimuth.get();
mPitch = mmPitch.get();
mRoll = mmRoll.get();
if (mThreshOrientation == 0) {
mSensorReadings.putDouble("azimuth", mAzimuth);
mSensorReadings.putDouble("pitch", mPitch);
mSensorReadings.putDouble("roll", mRoll);
if ((mSensorNumber == 1) && (System.currentTimeMillis() > (mDelayTime + mLastTime))) {
mLastTime = System.currentTimeMillis();
postEvent();
}
}
if ((mThreshOrientation == 1) && (mSensorNumber == 1)) {
if ((mXAxis == 1) && (mXCrossed == 0)) {
if (Math.abs(mAzimuth) > ((double) mThreshold)) {
mSensorReadings.putDouble("azimuth", mAzimuth);
postEvent();
mXCrossed = 1;
}
}
if ((mXAxis == 1) && (mXCrossed == 1)) {
if (Math.abs(mAzimuth) < ((double) mThreshold)) {
mSensorReadings.putDouble("azimuth", mAzimuth);
postEvent();
mXCrossed = 0;
}
}
if ((mYAxis == 2) && (mYCrossed == 0)) {
if (Math.abs(mPitch) > ((double) mThreshold)) {
mSensorReadings.putDouble("pitch", mPitch);
postEvent();
mYCrossed = 1;
}
}
if ((mYAxis == 2) && (mYCrossed == 1)) {
if (Math.abs(mPitch) < ((double) mThreshold)) {
mSensorReadings.putDouble("pitch", mPitch);
postEvent();
mYCrossed = 0;
}
}
if ((mZAxis == 4) && (mZCrossed == 0)) {
if (Math.abs(mRoll) > ((double) mThreshold)) {
mSensorReadings.putDouble("roll", mRoll);
postEvent();
mZCrossed = 1;
}
}
if ((mZAxis == 4) && (mZCrossed == 1)) {
if (Math.abs(mRoll) < ((double) mThreshold)) {
mSensorReadings.putDouble("roll", mRoll);
postEvent();
mZCrossed = 0;
}
}
}
}
}
}
}
}
}
static class RollingAverage {
private final int mmSampleSize;
private final double mmData[];
private int mmIndex = 0;
private boolean mmFilled = false;
private double mmSum = 0.0;
public RollingAverage() {
mmSampleSize = 5;
mmData = new double[mmSampleSize];
}
public void add(double value) {
mmSum -= mmData[mmIndex];
mmData[mmIndex] = value;
mmSum += mmData[mmIndex];
++mmIndex;
mmIndex %= mmSampleSize;
mmFilled = (!mmFilled) ? mmIndex == 0 : mmFilled;
}
public double get() throws IllegalStateException {
if (!mmFilled && mmIndex == 0) {
throw new IllegalStateException("No values to average.");
}
return (mmFilled) ? (mmSum / mmSampleSize) : (mmSum / mmIndex);
}
}
}