// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "ParseHelper.h" #include #include #include "glslang.h" #include "preprocessor/SourceLocation.h" #include "ValidateSwitch.h" /////////////////////////////////////////////////////////////////////// // // Sub- vector and matrix fields // //////////////////////////////////////////////////////////////////////// namespace { bool IsVaryingOut(TQualifier qualifier) { switch(qualifier) { case EvqVaryingOut: case EvqSmoothOut: case EvqFlatOut: case EvqCentroidOut: case EvqVertexOut: return true; default: break; } return false; } bool IsVaryingIn(TQualifier qualifier) { switch(qualifier) { case EvqVaryingIn: case EvqSmoothIn: case EvqFlatIn: case EvqCentroidIn: case EvqFragmentIn: return true; default: break; } return false; } bool IsVarying(TQualifier qualifier) { return IsVaryingIn(qualifier) || IsVaryingOut(qualifier); } bool IsAssignment(TOperator op) { switch(op) { case EOpPostIncrement: case EOpPostDecrement: case EOpPreIncrement: case EOpPreDecrement: case EOpAssign: case EOpAddAssign: case EOpSubAssign: case EOpMulAssign: case EOpVectorTimesMatrixAssign: case EOpVectorTimesScalarAssign: case EOpMatrixTimesScalarAssign: case EOpMatrixTimesMatrixAssign: case EOpDivAssign: case EOpIModAssign: case EOpBitShiftLeftAssign: case EOpBitShiftRightAssign: case EOpBitwiseAndAssign: case EOpBitwiseXorAssign: case EOpBitwiseOrAssign: return true; default: return false; } } } // // Look at a '.' field selector string and change it into offsets // for a vector. // bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, const TSourceLoc &line) { fields.num = (int) compString.size(); if (fields.num > 4) { error(line, "illegal vector field selection", compString.c_str()); return false; } enum { exyzw, ergba, estpq } fieldSet[4]; for (int i = 0; i < fields.num; ++i) { switch (compString[i]) { case 'x': fields.offsets[i] = 0; fieldSet[i] = exyzw; break; case 'r': fields.offsets[i] = 0; fieldSet[i] = ergba; break; case 's': fields.offsets[i] = 0; fieldSet[i] = estpq; break; case 'y': fields.offsets[i] = 1; fieldSet[i] = exyzw; break; case 'g': fields.offsets[i] = 1; fieldSet[i] = ergba; break; case 't': fields.offsets[i] = 1; fieldSet[i] = estpq; break; case 'z': fields.offsets[i] = 2; fieldSet[i] = exyzw; break; case 'b': fields.offsets[i] = 2; fieldSet[i] = ergba; break; case 'p': fields.offsets[i] = 2; fieldSet[i] = estpq; break; case 'w': fields.offsets[i] = 3; fieldSet[i] = exyzw; break; case 'a': fields.offsets[i] = 3; fieldSet[i] = ergba; break; case 'q': fields.offsets[i] = 3; fieldSet[i] = estpq; break; default: error(line, "illegal vector field selection", compString.c_str()); return false; } } for (int i = 0; i < fields.num; ++i) { if (fields.offsets[i] >= vecSize) { error(line, "vector field selection out of range", compString.c_str()); return false; } if (i > 0) { if (fieldSet[i] != fieldSet[i-1]) { error(line, "illegal - vector component fields not from the same set", compString.c_str()); return false; } } } return true; } // // Look at a '.' field selector string and change it into offsets // for a matrix. // bool TParseContext::parseMatrixFields(const TString& compString, int matCols, int matRows, TMatrixFields& fields, const TSourceLoc &line) { fields.wholeRow = false; fields.wholeCol = false; fields.row = -1; fields.col = -1; if (compString.size() != 2) { error(line, "illegal length of matrix field selection", compString.c_str()); return false; } if (compString[0] == '_') { if (compString[1] < '0' || compString[1] > '3') { error(line, "illegal matrix field selection", compString.c_str()); return false; } fields.wholeCol = true; fields.col = compString[1] - '0'; } else if (compString[1] == '_') { if (compString[0] < '0' || compString[0] > '3') { error(line, "illegal matrix field selection", compString.c_str()); return false; } fields.wholeRow = true; fields.row = compString[0] - '0'; } else { if (compString[0] < '0' || compString[0] > '3' || compString[1] < '0' || compString[1] > '3') { error(line, "illegal matrix field selection", compString.c_str()); return false; } fields.row = compString[0] - '0'; fields.col = compString[1] - '0'; } if (fields.row >= matRows || fields.col >= matCols) { error(line, "matrix field selection out of range", compString.c_str()); return false; } return true; } /////////////////////////////////////////////////////////////////////// // // Errors // //////////////////////////////////////////////////////////////////////// // // Track whether errors have occurred. // void TParseContext::recover() { } // // Used by flex/bison to output all syntax and parsing errors. // void TParseContext::error(const TSourceLoc& loc, const char* reason, const char* token, const char* extraInfo) { pp::SourceLocation srcLoc(loc.first_file, loc.first_line); mDiagnostics.writeInfo(pp::Diagnostics::PP_ERROR, srcLoc, reason, token, extraInfo); } void TParseContext::warning(const TSourceLoc& loc, const char* reason, const char* token, const char* extraInfo) { pp::SourceLocation srcLoc(loc.first_file, loc.first_line); mDiagnostics.writeInfo(pp::Diagnostics::PP_WARNING, srcLoc, reason, token, extraInfo); } void TParseContext::trace(const char* str) { mDiagnostics.writeDebug(str); } // // Same error message for all places assignments don't work. // void TParseContext::assignError(const TSourceLoc &line, const char* op, TString left, TString right) { std::stringstream extraInfoStream; extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'"; std::string extraInfo = extraInfoStream.str(); error(line, "", op, extraInfo.c_str()); } // // Same error message for all places unary operations don't work. // void TParseContext::unaryOpError(const TSourceLoc &line, const char* op, TString operand) { std::stringstream extraInfoStream; extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand << " (or there is no acceptable conversion)"; std::string extraInfo = extraInfoStream.str(); error(line, " wrong operand type", op, extraInfo.c_str()); } // // Same error message for all binary operations don't work. // void TParseContext::binaryOpError(const TSourceLoc &line, const char* op, TString left, TString right) { std::stringstream extraInfoStream; extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)"; std::string extraInfo = extraInfoStream.str(); error(line, " wrong operand types ", op, extraInfo.c_str()); } bool TParseContext::precisionErrorCheck(const TSourceLoc &line, TPrecision precision, TBasicType type){ if (!mChecksPrecisionErrors) return false; switch( type ){ case EbtFloat: if( precision == EbpUndefined ){ error( line, "No precision specified for (float)", "" ); return true; } break; case EbtInt: if( precision == EbpUndefined ){ error( line, "No precision specified (int)", "" ); return true; } break; default: return false; } return false; } // // Both test and if necessary, spit out an error, to see if the node is really // an l-value that can be operated on this way. // // Returns true if the was an error. // bool TParseContext::lValueErrorCheck(const TSourceLoc &line, const char* op, TIntermTyped* node) { TIntermSymbol* symNode = node->getAsSymbolNode(); TIntermBinary* binaryNode = node->getAsBinaryNode(); if (binaryNode) { bool errorReturn; switch(binaryNode->getOp()) { case EOpIndexDirect: case EOpIndexIndirect: case EOpIndexDirectStruct: case EOpIndexDirectInterfaceBlock: return lValueErrorCheck(line, op, binaryNode->getLeft()); case EOpVectorSwizzle: errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft()); if (!errorReturn) { int offset[4] = {0,0,0,0}; TIntermTyped* rightNode = binaryNode->getRight(); TIntermAggregate *aggrNode = rightNode->getAsAggregate(); for (TIntermSequence::iterator p = aggrNode->getSequence().begin(); p != aggrNode->getSequence().end(); p++) { int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0); offset[value]++; if (offset[value] > 1) { error(line, " l-value of swizzle cannot have duplicate components", op); return true; } } } return errorReturn; default: break; } error(line, " l-value required", op); return true; } const char* symbol = 0; if (symNode != 0) symbol = symNode->getSymbol().c_str(); const char* message = 0; switch (node->getQualifier()) { case EvqConstExpr: message = "can't modify a const"; break; case EvqConstReadOnly: message = "can't modify a const"; break; case EvqAttribute: message = "can't modify an attribute"; break; case EvqFragmentIn: message = "can't modify an input"; break; case EvqVertexIn: message = "can't modify an input"; break; case EvqUniform: message = "can't modify a uniform"; break; case EvqSmoothIn: case EvqFlatIn: case EvqCentroidIn: case EvqVaryingIn: message = "can't modify a varying"; break; case EvqInput: message = "can't modify an input"; break; case EvqFragCoord: message = "can't modify gl_FragCoord"; break; case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break; case EvqPointCoord: message = "can't modify gl_PointCoord"; break; case EvqInstanceID: message = "can't modify gl_InstanceID"; break; case EvqVertexID: message = "can't modify gl_VertexID"; break; default: // // Type that can't be written to? // if(IsSampler(node->getBasicType())) { message = "can't modify a sampler"; } else if(node->getBasicType() == EbtVoid) { message = "can't modify void"; } } if (message == 0 && binaryNode == 0 && symNode == 0) { error(line, " l-value required", op); return true; } // // Everything else is okay, no error. // if (message == 0) return false; // // If we get here, we have an error and a message. // if (symNode) { std::stringstream extraInfoStream; extraInfoStream << "\"" << symbol << "\" (" << message << ")"; std::string extraInfo = extraInfoStream.str(); error(line, " l-value required", op, extraInfo.c_str()); } else { std::stringstream extraInfoStream; extraInfoStream << "(" << message << ")"; std::string extraInfo = extraInfoStream.str(); error(line, " l-value required", op, extraInfo.c_str()); } return true; } // // Both test, and if necessary spit out an error, to see if the node is really // a constant. // // Returns true if the was an error. // bool TParseContext::constErrorCheck(TIntermTyped* node) { if (node->getQualifier() == EvqConstExpr) return false; error(node->getLine(), "constant expression required", ""); return true; } // // Both test, and if necessary spit out an error, to see if the node is really // an integer. // // Returns true if the was an error. // bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token) { if (node->isScalarInt()) return false; error(node->getLine(), "integer expression required", token); return true; } // // Both test, and if necessary spit out an error, to see if we are currently // globally scoped. // // Returns true if the was an error. // bool TParseContext::globalErrorCheck(const TSourceLoc &line, bool global, const char* token) { if (global) return false; error(line, "only allowed at global scope", token); return true; } // // For now, keep it simple: if it starts "gl_", it's reserved, independent // of scope. Except, if the symbol table is at the built-in push-level, // which is when we are parsing built-ins. // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a // webgl shader. // // Returns true if there was an error. // bool TParseContext::reservedErrorCheck(const TSourceLoc &line, const TString& identifier) { static const char* reservedErrMsg = "reserved built-in name"; if (!symbolTable.atBuiltInLevel()) { if (identifier.compare(0, 3, "gl_") == 0) { error(line, reservedErrMsg, "gl_"); return true; } if (identifier.find("__") != TString::npos) { error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str()); return true; } } return false; } // // Make sure there is enough data provided to the constructor to build // something of the type of the constructor. Also returns the type of // the constructor. // // Returns true if there was an error in construction. // bool TParseContext::constructorErrorCheck(const TSourceLoc &line, TIntermNode* node, TFunction& function, TOperator op, TType* type) { *type = function.getReturnType(); bool constructingMatrix = false; switch(op) { case EOpConstructMat2: case EOpConstructMat2x3: case EOpConstructMat2x4: case EOpConstructMat3x2: case EOpConstructMat3: case EOpConstructMat3x4: case EOpConstructMat4x2: case EOpConstructMat4x3: case EOpConstructMat4: constructingMatrix = true; break; default: break; } // // Note: It's okay to have too many components available, but not okay to have unused // arguments. 'full' will go to true when enough args have been seen. If we loop // again, there is an extra argument, so 'overfull' will become true. // size_t size = 0; bool full = false; bool overFull = false; bool matrixInMatrix = false; bool arrayArg = false; for (size_t i = 0; i < function.getParamCount(); ++i) { const TParameter& param = function.getParam(i); size += param.type->getObjectSize(); if (constructingMatrix && param.type->isMatrix()) matrixInMatrix = true; if (full) overFull = true; if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize()) full = true; if (param.type->isArray()) arrayArg = true; } if(type->isArray()) { if(type->getArraySize() == 0) { type->setArraySize(function.getParamCount()); } else if(type->getArraySize() != (int)function.getParamCount()) { error(line, "array constructor needs one argument per array element", "constructor"); return true; } } if (arrayArg && op != EOpConstructStruct) { error(line, "constructing from a non-dereferenced array", "constructor"); return true; } if (matrixInMatrix && !type->isArray()) { if (function.getParamCount() != 1) { error(line, "constructing matrix from matrix can only take one argument", "constructor"); return true; } } if (overFull) { error(line, "too many arguments", "constructor"); return true; } if (op == EOpConstructStruct && !type->isArray() && type->getStruct()->fields().size() != function.getParamCount()) { error(line, "Number of constructor parameters does not match the number of structure fields", "constructor"); return true; } if (!type->isMatrix() || !matrixInMatrix) { if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) || (op == EOpConstructStruct && size < type->getObjectSize())) { error(line, "not enough data provided for construction", "constructor"); return true; } } TIntermTyped *typed = node ? node->getAsTyped() : 0; if (typed == 0) { error(line, "constructor argument does not have a type", "constructor"); return true; } if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) { error(line, "cannot convert a sampler", "constructor"); return true; } if (typed->getBasicType() == EbtVoid) { error(line, "cannot convert a void", "constructor"); return true; } return false; } // This function checks to see if a void variable has been declared and raise an error message for such a case // // returns true in case of an error // bool TParseContext::voidErrorCheck(const TSourceLoc &line, const TString& identifier, const TBasicType& type) { if(type == EbtVoid) { error(line, "illegal use of type 'void'", identifier.c_str()); return true; } return false; } // This function checks to see if the node (for the expression) contains a scalar boolean expression or not // // returns true in case of an error // bool TParseContext::boolErrorCheck(const TSourceLoc &line, const TIntermTyped* type) { if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) { error(line, "boolean expression expected", ""); return true; } return false; } // This function checks to see if the node (for the expression) contains a scalar boolean expression or not // // returns true in case of an error // bool TParseContext::boolErrorCheck(const TSourceLoc &line, const TPublicType& pType) { if (pType.type != EbtBool || pType.array || (pType.primarySize > 1) || (pType.secondarySize > 1)) { error(line, "boolean expression expected", ""); return true; } return false; } bool TParseContext::samplerErrorCheck(const TSourceLoc &line, const TPublicType& pType, const char* reason) { if (pType.type == EbtStruct) { if (containsSampler(*pType.userDef)) { error(line, reason, getBasicString(pType.type), "(structure contains a sampler)"); return true; } return false; } else if (IsSampler(pType.type)) { error(line, reason, getBasicString(pType.type)); return true; } return false; } bool TParseContext::structQualifierErrorCheck(const TSourceLoc &line, const TPublicType& pType) { switch(pType.qualifier) { case EvqVaryingOut: case EvqSmooth: case EvqFlat: case EvqCentroidOut: case EvqVaryingIn: case EvqSmoothIn: case EvqFlatIn: case EvqCentroidIn: case EvqAttribute: case EvqVertexIn: case EvqFragmentOut: if(pType.type == EbtStruct) { error(line, "cannot be used with a structure", getQualifierString(pType.qualifier)); return true; } break; default: break; } if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform")) return true; // check for layout qualifier issues if (pType.qualifier != EvqVertexIn && pType.qualifier != EvqFragmentOut && layoutLocationErrorCheck(line, pType.layoutQualifier)) { return true; } return false; } // These checks are common for all declarations starting a declarator list, and declarators that follow an empty // declaration. // bool TParseContext::singleDeclarationErrorCheck(const TPublicType &publicType, const TSourceLoc &identifierLocation) { switch(publicType.qualifier) { case EvqVaryingIn: case EvqVaryingOut: case EvqAttribute: case EvqVertexIn: case EvqFragmentOut: if(publicType.type == EbtStruct) { error(identifierLocation, "cannot be used with a structure", getQualifierString(publicType.qualifier)); return true; } default: break; } if(publicType.qualifier != EvqUniform && samplerErrorCheck(identifierLocation, publicType, "samplers must be uniform")) { return true; } // check for layout qualifier issues const TLayoutQualifier layoutQualifier = publicType.layoutQualifier; if(layoutQualifier.matrixPacking != EmpUnspecified) { error(identifierLocation, "layout qualifier", getMatrixPackingString(layoutQualifier.matrixPacking), "only valid for interface blocks"); return true; } if(layoutQualifier.blockStorage != EbsUnspecified) { error(identifierLocation, "layout qualifier", getBlockStorageString(layoutQualifier.blockStorage), "only valid for interface blocks"); return true; } if(publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut && layoutLocationErrorCheck(identifierLocation, publicType.layoutQualifier)) { return true; } return false; } bool TParseContext::layoutLocationErrorCheck(const TSourceLoc &location, const TLayoutQualifier &layoutQualifier) { if(layoutQualifier.location != -1) { error(location, "invalid layout qualifier:", "location", "only valid on program inputs and outputs"); return true; } return false; } bool TParseContext::locationDeclaratorListCheck(const TSourceLoc& line, const TPublicType &pType) { if(pType.layoutQualifier.location != -1) { error(line, "location must only be specified for a single input or output variable", "location"); return true; } return false; } bool TParseContext::parameterSamplerErrorCheck(const TSourceLoc &line, TQualifier qualifier, const TType& type) { if ((qualifier == EvqOut || qualifier == EvqInOut) && type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) { error(line, "samplers cannot be output parameters", type.getBasicString()); return true; } return false; } bool TParseContext::containsSampler(TType& type) { if (IsSampler(type.getBasicType())) return true; if (type.getBasicType() == EbtStruct || type.isInterfaceBlock()) { const TFieldList& fields = type.getStruct()->fields(); for(unsigned int i = 0; i < fields.size(); ++i) { if (containsSampler(*fields[i]->type())) return true; } } return false; } // // Do size checking for an array type's size. // // Returns true if there was an error. // bool TParseContext::arraySizeErrorCheck(const TSourceLoc &line, TIntermTyped* expr, int& size) { TIntermConstantUnion* constant = expr->getAsConstantUnion(); if (expr->getQualifier() != EvqConstExpr || constant == 0 || !constant->isScalarInt()) { error(line, "array size must be a constant integer expression", ""); return true; } if (constant->getBasicType() == EbtUInt) { unsigned int uintSize = constant->getUConst(0); if (uintSize > static_cast(std::numeric_limits::max())) { error(line, "array size too large", ""); size = 1; return true; } size = static_cast(uintSize); } else { size = constant->getIConst(0); if (size < 0) { error(line, "array size must be non-negative", ""); size = 1; return true; } } if(size == 0) { error(line, "array size must be greater than zero", ""); return true; } return false; } // // See if this qualifier can be an array. // // Returns true if there is an error. // bool TParseContext::arrayQualifierErrorCheck(const TSourceLoc &line, TPublicType type) { if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqVertexIn) || (type.qualifier == EvqConstExpr && mShaderVersion < 300)) { error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str()); return true; } return false; } // // See if this type can be an array. // // Returns true if there is an error. // bool TParseContext::arrayTypeErrorCheck(const TSourceLoc &line, TPublicType type) { // // Can the type be an array? // if (type.array) { error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str()); return true; } // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere. // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section 4.3.4). if(mShaderVersion >= 300 && type.type == EbtStruct && IsVarying(type.qualifier)) { error(line, "cannot declare arrays of structs of this qualifier", TType(type).getCompleteString().c_str()); return true; } return false; } bool TParseContext::arraySetMaxSize(TIntermSymbol *node, TType* type, int size, bool updateFlag, const TSourceLoc &line) { bool builtIn = false; TSymbol* symbol = symbolTable.find(node->getSymbol(), mShaderVersion, &builtIn); if (symbol == 0) { error(line, " undeclared identifier", node->getSymbol().c_str()); return true; } TVariable* variable = static_cast(symbol); type->setArrayInformationType(variable->getArrayInformationType()); variable->updateArrayInformationType(type); // special casing to test index value of gl_FragData. If the accessed index is >= gl_MaxDrawBuffers // its an error if (node->getSymbol() == "gl_FragData") { TSymbol* fragData = symbolTable.find("gl_MaxDrawBuffers", mShaderVersion, &builtIn); ASSERT(fragData); int fragDataValue = static_cast(fragData)->getConstPointer()[0].getIConst(); if (fragDataValue <= size) { error(line, "", "[", "gl_FragData can only have a max array size of up to gl_MaxDrawBuffers"); return true; } } // we dont want to update the maxArraySize when this flag is not set, we just want to include this // node type in the chain of node types so that its updated when a higher maxArraySize comes in. if (!updateFlag) return false; size++; variable->getType().setMaxArraySize(size); type->setMaxArraySize(size); TType* tt = type; while(tt->getArrayInformationType() != 0) { tt = tt->getArrayInformationType(); tt->setMaxArraySize(size); } return false; } // // Enforce non-initializer type/qualifier rules. // // Returns true if there was an error. // bool TParseContext::nonInitConstErrorCheck(const TSourceLoc &line, TString& identifier, TPublicType& type, bool array) { if (type.qualifier == EvqConstExpr) { // Make the qualifier make sense. type.qualifier = EvqTemporary; if (array) { error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str()); } else if (type.isStructureContainingArrays()) { error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str()); } else { error(line, "variables with qualifier 'const' must be initialized", identifier.c_str()); } return true; } return false; } // // Do semantic checking for a variable declaration that has no initializer, // and update the symbol table. // // Returns true if there was an error. // bool TParseContext::nonInitErrorCheck(const TSourceLoc &line, const TString& identifier, TPublicType& type) { if(type.qualifier == EvqConstExpr) { // Make the qualifier make sense. type.qualifier = EvqTemporary; // Generate informative error messages for ESSL1. // In ESSL3 arrays and structures containing arrays can be constant. if(mShaderVersion < 300 && type.isStructureContainingArrays()) { error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str()); } else { error(line, "variables with qualifier 'const' must be initialized", identifier.c_str()); } return true; } if(type.isUnsizedArray()) { error(line, "implicitly sized arrays need to be initialized", identifier.c_str()); return true; } return false; } // Do some simple checks that are shared between all variable declarations, // and update the symbol table. // // Returns true if declaring the variable succeeded. // bool TParseContext::declareVariable(const TSourceLoc &line, const TString &identifier, const TType &type, TVariable **variable) { ASSERT((*variable) == nullptr); // gl_LastFragData may be redeclared with a new precision qualifier if(type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0) { const TVariable *maxDrawBuffers = static_cast(symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion)); if(type.getArraySize() != maxDrawBuffers->getConstPointer()->getIConst()) { error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers", identifier.c_str()); return false; } } if(reservedErrorCheck(line, identifier)) return false; (*variable) = new TVariable(&identifier, type); if(!symbolTable.declare(**variable)) { error(line, "redefinition", identifier.c_str()); delete (*variable); (*variable) = nullptr; return false; } if(voidErrorCheck(line, identifier, type.getBasicType())) return false; return true; } bool TParseContext::paramErrorCheck(const TSourceLoc &line, TQualifier qualifier, TQualifier paramQualifier, TType* type) { if (qualifier != EvqConstReadOnly && qualifier != EvqTemporary) { error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier)); return true; } if (qualifier == EvqConstReadOnly && paramQualifier != EvqIn) { error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier)); return true; } if (qualifier == EvqConstReadOnly) type->setQualifier(EvqConstReadOnly); else type->setQualifier(paramQualifier); return false; } bool TParseContext::extensionErrorCheck(const TSourceLoc &line, const TString& extension) { const TExtensionBehavior& extBehavior = extensionBehavior(); TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str()); if (iter == extBehavior.end()) { error(line, "extension", extension.c_str(), "is not supported"); return true; } // In GLSL ES, an extension's default behavior is "disable". if (iter->second == EBhDisable || iter->second == EBhUndefined) { error(line, "extension", extension.c_str(), "is disabled"); return true; } if (iter->second == EBhWarn) { warning(line, "extension", extension.c_str(), "is being used"); return false; } return false; } bool TParseContext::functionCallLValueErrorCheck(const TFunction *fnCandidate, TIntermAggregate *aggregate) { for(size_t i = 0; i < fnCandidate->getParamCount(); ++i) { TQualifier qual = fnCandidate->getParam(i).type->getQualifier(); if(qual == EvqOut || qual == EvqInOut) { TIntermTyped *node = (aggregate->getSequence())[i]->getAsTyped(); if(lValueErrorCheck(node->getLine(), "assign", node)) { error(node->getLine(), "Constant value cannot be passed for 'out' or 'inout' parameters.", "Error"); recover(); return true; } } } return false; } void TParseContext::es3InvariantErrorCheck(const TQualifier qualifier, const TSourceLoc &invariantLocation) { switch(qualifier) { case EvqVaryingOut: case EvqSmoothOut: case EvqFlatOut: case EvqCentroidOut: case EvqVertexOut: case EvqFragmentOut: break; default: error(invariantLocation, "Only out variables can be invariant.", "invariant"); recover(); break; } } bool TParseContext::supportsExtension(const char* extension) { const TExtensionBehavior& extbehavior = extensionBehavior(); TExtensionBehavior::const_iterator iter = extbehavior.find(extension); return (iter != extbehavior.end()); } void TParseContext::handleExtensionDirective(const TSourceLoc &line, const char* extName, const char* behavior) { pp::SourceLocation loc(line.first_file, line.first_line); mDirectiveHandler.handleExtension(loc, extName, behavior); } void TParseContext::handlePragmaDirective(const TSourceLoc &line, const char* name, const char* value) { pp::SourceLocation loc(line.first_file, line.first_line); mDirectiveHandler.handlePragma(loc, name, value); } ///////////////////////////////////////////////////////////////////////////////// // // Non-Errors. // ///////////////////////////////////////////////////////////////////////////////// const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location, const TString *name, const TSymbol *symbol) { const TVariable *variable = nullptr; if(!symbol) { error(location, "undeclared identifier", name->c_str()); recover(); } else if(!symbol->isVariable()) { error(location, "variable expected", name->c_str()); recover(); } else { variable = static_cast(symbol); if(symbolTable.findBuiltIn(variable->getName(), mShaderVersion)) { recover(); } // Reject shaders using both gl_FragData and gl_FragColor TQualifier qualifier = variable->getType().getQualifier(); if(qualifier == EvqFragData) { mUsesFragData = true; } else if(qualifier == EvqFragColor) { mUsesFragColor = true; } // This validation is not quite correct - it's only an error to write to // both FragData and FragColor. For simplicity, and because users shouldn't // be rewarded for reading from undefined variables, return an error // if they are both referenced, rather than assigned. if(mUsesFragData && mUsesFragColor) { error(location, "cannot use both gl_FragData and gl_FragColor", name->c_str()); recover(); } } if(!variable) { TType type(EbtFloat, EbpUndefined); TVariable *fakeVariable = new TVariable(name, type); symbolTable.declare(*fakeVariable); variable = fakeVariable; } return variable; } // // Look up a function name in the symbol table, and make sure it is a function. // // Return the function symbol if found, otherwise 0. // const TFunction* TParseContext::findFunction(const TSourceLoc &line, TFunction* call, bool *builtIn) { // First find by unmangled name to check whether the function name has been // hidden by a variable name or struct typename. const TSymbol* symbol = symbolTable.find(call->getName(), mShaderVersion, builtIn); if (symbol == 0) { symbol = symbolTable.find(call->getMangledName(), mShaderVersion, builtIn); } if (symbol == 0) { error(line, "no matching overloaded function found", call->getName().c_str()); return nullptr; } if (!symbol->isFunction()) { error(line, "function name expected", call->getName().c_str()); return nullptr; } return static_cast(symbol); } // // Initializers show up in several places in the grammar. Have one set of // code to handle them here. // bool TParseContext::executeInitializer(const TSourceLoc& line, const TString& identifier, const TPublicType& pType, TIntermTyped *initializer, TIntermNode **intermNode) { ASSERT(intermNode != nullptr); TType type = TType(pType); if(type.isUnsizedArray()) { // We have not checked yet whether the initializer actually is an array or not. if(initializer->isArray()) { type.setArraySize(initializer->getArraySize()); } else { // Having a non-array initializer for an unsized array will result in an error later, // so we don't generate an error message here. type.setArraySize(1u); } } TVariable *variable = nullptr; if(!declareVariable(line, identifier, type, &variable)) { return true; } if(symbolTable.atGlobalLevel() && initializer->getQualifier() != EvqConstExpr) { error(line, "global variable initializers must be constant expressions", "="); return true; } // // identifier must be of type constant, a global, or a temporary // TQualifier qualifier = type.getQualifier(); if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConstExpr)) { error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString()); return true; } // // test for and propagate constant // if (qualifier == EvqConstExpr) { if (qualifier != initializer->getQualifier()) { std::stringstream extraInfoStream; extraInfoStream << "'" << variable->getType().getCompleteString() << "'"; std::string extraInfo = extraInfoStream.str(); error(line, " assigning non-constant to", "=", extraInfo.c_str()); variable->getType().setQualifier(EvqTemporary); return true; } if (type != initializer->getType()) { error(line, " non-matching types for const initializer ", variable->getType().getQualifierString()); variable->getType().setQualifier(EvqTemporary); return true; } if (initializer->getAsConstantUnion()) { variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer()); } else if (initializer->getAsSymbolNode()) { const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0); const TVariable* tVar = static_cast(symbol); ConstantUnion* constArray = tVar->getConstPointer(); variable->shareConstPointer(constArray); } } if (!variable->isConstant()) { TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line); *intermNode = createAssign(EOpInitialize, intermSymbol, initializer, line); if(*intermNode == nullptr) { assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); return true; } } else *intermNode = nullptr; return false; } TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier, bool invariant, TLayoutQualifier layoutQualifier, const TPublicType &typeSpecifier) { TPublicType returnType = typeSpecifier; returnType.qualifier = qualifier; returnType.invariant = invariant; returnType.layoutQualifier = layoutQualifier; if(typeSpecifier.array) { error(typeSpecifier.line, "not supported", "first-class array"); recover(); returnType.clearArrayness(); } if(mShaderVersion < 300) { if(typeSpecifier.array) { error(typeSpecifier.line, "not supported", "first-class array"); returnType.clearArrayness(); } if(qualifier == EvqAttribute && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt)) { error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier)); recover(); } if((qualifier == EvqVaryingIn || qualifier == EvqVaryingOut) && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt)) { error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier)); recover(); } } else { if(!returnType.layoutQualifier.isEmpty()) { globalErrorCheck(typeSpecifier.line, symbolTable.atGlobalLevel(), "layout"); } if(IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn || returnType.qualifier == EvqFragmentOut) { checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier, typeSpecifier.line); } } return returnType; } void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier, const TPublicType &type, const TSourceLoc &qualifierLocation) { // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere. if(type.type == EbtBool) { error(qualifierLocation, "cannot be bool", getQualifierString(qualifier)); } // Specific restrictions apply for vertex shader inputs and fragment shader outputs. switch(qualifier) { case EvqVertexIn: // ESSL 3.00 section 4.3.4 if(type.array) { error(qualifierLocation, "cannot be array", getQualifierString(qualifier)); } // Vertex inputs with a struct type are disallowed in singleDeclarationErrorCheck return; case EvqFragmentOut: // ESSL 3.00 section 4.3.6 if(type.isMatrix()) { error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier)); } // Fragment outputs with a struct type are disallowed in singleDeclarationErrorCheck return; default: break; } // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of // restrictions. bool typeContainsIntegers = (type.type == EbtInt || type.type == EbtUInt || type.isStructureContainingType(EbtInt) || type.isStructureContainingType(EbtUInt)); if(typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut) { error(qualifierLocation, "must use 'flat' interpolation here", getQualifierString(qualifier)); } if(type.type == EbtStruct) { // ESSL 3.00 sections 4.3.4 and 4.3.6. // These restrictions are only implied by the ESSL 3.00 spec, but // the ESSL 3.10 spec lists these restrictions explicitly. if(type.array) { error(qualifierLocation, "cannot be an array of structures", getQualifierString(qualifier)); } if(type.isStructureContainingArrays()) { error(qualifierLocation, "cannot be a structure containing an array", getQualifierString(qualifier)); } if(type.isStructureContainingType(EbtStruct)) { error(qualifierLocation, "cannot be a structure containing a structure", getQualifierString(qualifier)); } if(type.isStructureContainingType(EbtBool)) { error(qualifierLocation, "cannot be a structure containing a bool", getQualifierString(qualifier)); } } } TIntermAggregate *TParseContext::parseSingleDeclaration(TPublicType &publicType, const TSourceLoc &identifierOrTypeLocation, const TString &identifier) { TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierOrTypeLocation); bool emptyDeclaration = (identifier == ""); mDeferredSingleDeclarationErrorCheck = emptyDeclaration; if(emptyDeclaration) { if(publicType.isUnsizedArray()) { // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an error. // It is assumed that this applies to empty declarations as well. error(identifierOrTypeLocation, "empty array declaration needs to specify a size", identifier.c_str()); } } else { if(singleDeclarationErrorCheck(publicType, identifierOrTypeLocation)) recover(); if(nonInitErrorCheck(identifierOrTypeLocation, identifier, publicType)) recover(); TVariable *variable = nullptr; if(!declareVariable(identifierOrTypeLocation, identifier, TType(publicType), &variable)) recover(); if(variable && symbol) symbol->setId(variable->getUniqueId()); } return intermediate.makeAggregate(symbol, identifierOrTypeLocation); } TIntermAggregate *TParseContext::parseSingleArrayDeclaration(TPublicType &publicType, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &indexLocation, TIntermTyped *indexExpression) { mDeferredSingleDeclarationErrorCheck = false; if(singleDeclarationErrorCheck(publicType, identifierLocation)) recover(); if(nonInitErrorCheck(identifierLocation, identifier, publicType)) recover(); if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType)) { recover(); } TType arrayType(publicType); int size; if(arraySizeErrorCheck(identifierLocation, indexExpression, size)) { recover(); } // Make the type an array even if size check failed. // This ensures useless error messages regarding the variable's non-arrayness won't follow. arrayType.setArraySize(size); TVariable *variable = nullptr; if(!declareVariable(identifierLocation, identifier, arrayType, &variable)) recover(); TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation); if(variable && symbol) symbol->setId(variable->getUniqueId()); return intermediate.makeAggregate(symbol, identifierLocation); } TIntermAggregate *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &initLocation, TIntermTyped *initializer) { mDeferredSingleDeclarationErrorCheck = false; if(singleDeclarationErrorCheck(publicType, identifierLocation)) recover(); TIntermNode *intermNode = nullptr; if(!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode)) { // // Build intermediate representation // return intermNode ? intermediate.makeAggregate(intermNode, initLocation) : nullptr; } else { recover(); return nullptr; } } TIntermAggregate *TParseContext::parseSingleArrayInitDeclaration(TPublicType &publicType, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &indexLocation, TIntermTyped *indexExpression, const TSourceLoc &initLocation, TIntermTyped *initializer) { mDeferredSingleDeclarationErrorCheck = false; if(singleDeclarationErrorCheck(publicType, identifierLocation)) recover(); if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType)) { recover(); } TPublicType arrayType(publicType); int size = 0; // If indexExpression is nullptr, then the array will eventually get its size implicitly from the initializer. if(indexExpression != nullptr && arraySizeErrorCheck(identifierLocation, indexExpression, size)) { recover(); } // Make the type an array even if size check failed. // This ensures useless error messages regarding the variable's non-arrayness won't follow. arrayType.setArray(true, size); // initNode will correspond to the whole of "type b[n] = initializer". TIntermNode *initNode = nullptr; if(!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) { return initNode ? intermediate.makeAggregate(initNode, initLocation) : nullptr; } else { recover(); return nullptr; } } TIntermAggregate *TParseContext::parseInvariantDeclaration(const TSourceLoc &invariantLoc, const TSourceLoc &identifierLoc, const TString *identifier, const TSymbol *symbol) { // invariant declaration if(globalErrorCheck(invariantLoc, symbolTable.atGlobalLevel(), "invariant varying")) { recover(); } if(!symbol) { error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str()); recover(); return nullptr; } else { const TString kGlFrontFacing("gl_FrontFacing"); if(*identifier == kGlFrontFacing) { error(identifierLoc, "identifier should not be declared as invariant", identifier->c_str()); recover(); return nullptr; } symbolTable.addInvariantVarying(std::string(identifier->c_str())); const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol); ASSERT(variable); const TType &type = variable->getType(); TIntermSymbol *intermSymbol = intermediate.addSymbol(variable->getUniqueId(), *identifier, type, identifierLoc); TIntermAggregate *aggregate = intermediate.makeAggregate(intermSymbol, identifierLoc); aggregate->setOp(EOpInvariantDeclaration); return aggregate; } } TIntermAggregate *TParseContext::parseDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration, const TSourceLoc &identifierLocation, const TString &identifier) { // If the declaration starting this declarator list was empty (example: int,), some checks were not performed. if(mDeferredSingleDeclarationErrorCheck) { if(singleDeclarationErrorCheck(publicType, identifierLocation)) recover(); mDeferredSingleDeclarationErrorCheck = false; } if(locationDeclaratorListCheck(identifierLocation, publicType)) recover(); if(nonInitErrorCheck(identifierLocation, identifier, publicType)) recover(); TVariable *variable = nullptr; if(!declareVariable(identifierLocation, identifier, TType(publicType), &variable)) recover(); TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation); if(variable && symbol) symbol->setId(variable->getUniqueId()); return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation); } TIntermAggregate *TParseContext::parseArrayDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &arrayLocation, TIntermTyped *indexExpression) { // If the declaration starting this declarator list was empty (example: int,), some checks were not performed. if(mDeferredSingleDeclarationErrorCheck) { if(singleDeclarationErrorCheck(publicType, identifierLocation)) recover(); mDeferredSingleDeclarationErrorCheck = false; } if(locationDeclaratorListCheck(identifierLocation, publicType)) recover(); if(nonInitErrorCheck(identifierLocation, identifier, publicType)) recover(); if(arrayTypeErrorCheck(arrayLocation, publicType) || arrayQualifierErrorCheck(arrayLocation, publicType)) { recover(); } else { TType arrayType = TType(publicType); int size; if(arraySizeErrorCheck(arrayLocation, indexExpression, size)) { recover(); } arrayType.setArraySize(size); TVariable *variable = nullptr; if(!declareVariable(identifierLocation, identifier, arrayType, &variable)) recover(); TIntermSymbol *symbol = intermediate.addSymbol(0, identifier, arrayType, identifierLocation); if(variable && symbol) symbol->setId(variable->getUniqueId()); return intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation); } return nullptr; } TIntermAggregate *TParseContext::parseInitDeclarator(const TPublicType &publicType, TIntermAggregate *aggregateDeclaration, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &initLocation, TIntermTyped *initializer) { // If the declaration starting this declarator list was empty (example: int,), some checks were not performed. if(mDeferredSingleDeclarationErrorCheck) { if(singleDeclarationErrorCheck(publicType, identifierLocation)) recover(); mDeferredSingleDeclarationErrorCheck = false; } if(locationDeclaratorListCheck(identifierLocation, publicType)) recover(); TIntermNode *intermNode = nullptr; if(!executeInitializer(identifierLocation, identifier, publicType, initializer, &intermNode)) { // // build the intermediate representation // if(intermNode) { return intermediate.growAggregate(aggregateDeclaration, intermNode, initLocation); } else { return aggregateDeclaration; } } else { recover(); return nullptr; } } TIntermAggregate *TParseContext::parseArrayInitDeclarator(const TPublicType &publicType, TIntermAggregate *aggregateDeclaration, const TSourceLoc &identifierLocation, const TString &identifier, const TSourceLoc &indexLocation, TIntermTyped *indexExpression, const TSourceLoc &initLocation, TIntermTyped *initializer) { // If the declaration starting this declarator list was empty (example: int,), some checks were not performed. if(mDeferredSingleDeclarationErrorCheck) { if(singleDeclarationErrorCheck(publicType, identifierLocation)) recover(); mDeferredSingleDeclarationErrorCheck = false; } if(locationDeclaratorListCheck(identifierLocation, publicType)) recover(); if(arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType)) { recover(); } TPublicType arrayType(publicType); int size = 0; // If indexExpression is nullptr, then the array will eventually get its size implicitly from the initializer. if(indexExpression != nullptr && arraySizeErrorCheck(identifierLocation, indexExpression, size)) { recover(); } // Make the type an array even if size check failed. // This ensures useless error messages regarding the variable's non-arrayness won't follow. arrayType.setArray(true, size); // initNode will correspond to the whole of "b[n] = initializer". TIntermNode *initNode = nullptr; if(!executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) { if(initNode) { return intermediate.growAggregate(aggregateDeclaration, initNode, initLocation); } else { return aggregateDeclaration; } } else { recover(); return nullptr; } } void TParseContext::parseGlobalLayoutQualifier(const TPublicType &typeQualifier) { if(mShaderVersion < 300) { error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 only", "layout"); recover(); return; } if(typeQualifier.qualifier != EvqUniform) { error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "global layout must be uniform"); recover(); return; } const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier; ASSERT(!layoutQualifier.isEmpty()); if(layoutLocationErrorCheck(typeQualifier.line, typeQualifier.layoutQualifier)) { recover(); return; } if(layoutQualifier.matrixPacking != EmpUnspecified) { mDefaultMatrixPacking = layoutQualifier.matrixPacking; } if(layoutQualifier.blockStorage != EbsUnspecified) { mDefaultBlockStorage = layoutQualifier.blockStorage; } } TIntermAggregate *TParseContext::addFunctionPrototypeDeclaration(const TFunction &function, const TSourceLoc &location) { // Note: symbolTableFunction could be the same as function if this is the first declaration. // Either way the instance in the symbol table is used to track whether the function is declared // multiple times. TFunction *symbolTableFunction = static_cast(symbolTable.find(function.getMangledName(), getShaderVersion())); if(symbolTableFunction->hasPrototypeDeclaration() && mShaderVersion == 100) { // ESSL 1.00.17 section 4.2.7. // Doesn't apply to ESSL 3.00.4: see section 4.2.3. error(location, "duplicate function prototype declarations are not allowed", "function"); recover(); } symbolTableFunction->setHasPrototypeDeclaration(); TIntermAggregate *prototype = new TIntermAggregate; prototype->setType(function.getReturnType()); prototype->setName(function.getMangledName()); for(size_t i = 0; i < function.getParamCount(); i++) { const TParameter ¶m = function.getParam(i); if(param.name != 0) { TVariable variable(param.name, *param.type); TIntermSymbol *paramSymbol = intermediate.addSymbol( variable.getUniqueId(), variable.getName(), variable.getType(), location); prototype = intermediate.growAggregate(prototype, paramSymbol, location); } else { TIntermSymbol *paramSymbol = intermediate.addSymbol(0, "", *param.type, location); prototype = intermediate.growAggregate(prototype, paramSymbol, location); } } prototype->setOp(EOpPrototype); symbolTable.pop(); if(!symbolTable.atGlobalLevel()) { // ESSL 3.00.4 section 4.2.4. error(location, "local function prototype declarations are not allowed", "function"); recover(); } return prototype; } TIntermAggregate *TParseContext::addFunctionDefinition(const TFunction &function, TIntermAggregate *functionPrototype, TIntermAggregate *functionBody, const TSourceLoc &location) { //?? Check that all paths return a value if return type != void ? // May be best done as post process phase on intermediate code if(mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue) { error(location, "function does not return a value:", "", function.getName().c_str()); recover(); } TIntermAggregate *aggregate = intermediate.growAggregate(functionPrototype, functionBody, location); intermediate.setAggregateOperator(aggregate, EOpFunction, location); aggregate->setName(function.getMangledName().c_str()); aggregate->setType(function.getReturnType()); // store the pragma information for debug and optimize and other vendor specific // information. This information can be queried from the parse tree aggregate->setOptimize(pragma().optimize); aggregate->setDebug(pragma().debug); if(functionBody && functionBody->getAsAggregate()) aggregate->setEndLine(functionBody->getAsAggregate()->getEndLine()); symbolTable.pop(); return aggregate; } void TParseContext::parseFunctionPrototype(const TSourceLoc &location, TFunction *function, TIntermAggregate **aggregateOut) { const TSymbol *builtIn = symbolTable.findBuiltIn(function->getMangledName(), getShaderVersion()); if(builtIn) { error(location, "built-in functions cannot be redefined", function->getName().c_str()); recover(); } TFunction *prevDec = static_cast(symbolTable.find(function->getMangledName(), getShaderVersion())); // // Note: 'prevDec' could be 'function' if this is the first time we've seen function // as it would have just been put in the symbol table. Otherwise, we're looking up // an earlier occurance. // if(prevDec->isDefined()) { // Then this function already has a body. error(location, "function already has a body", function->getName().c_str()); recover(); } prevDec->setDefined(); // // Overload the unique ID of the definition to be the same unique ID as the declaration. // Eventually we will probably want to have only a single definition and just swap the // arguments to be the definition's arguments. // function->setUniqueId(prevDec->getUniqueId()); // Raise error message if main function takes any parameters or return anything other than void if(function->getName() == "main") { if(function->getParamCount() > 0) { error(location, "function cannot take any parameter(s)", function->getName().c_str()); recover(); } if(function->getReturnType().getBasicType() != EbtVoid) { error(location, "", function->getReturnType().getBasicString(), "main function cannot return a value"); recover(); } } // // Remember the return type for later checking for RETURN statements. // mCurrentFunctionType = &(prevDec->getReturnType()); mFunctionReturnsValue = false; // // Insert parameters into the symbol table. // If the parameter has no name, it's not an error, just don't insert it // (could be used for unused args). // // Also, accumulate the list of parameters into the HIL, so lower level code // knows where to find parameters. // TIntermAggregate *paramNodes = new TIntermAggregate; for(size_t i = 0; i < function->getParamCount(); i++) { const TParameter ¶m = function->getParam(i); if(param.name != 0) { TVariable *variable = new TVariable(param.name, *param.type); // // Insert the parameters with name in the symbol table. // if(!symbolTable.declare(*variable)) { error(location, "redefinition", variable->getName().c_str()); recover(); paramNodes = intermediate.growAggregate( paramNodes, intermediate.addSymbol(0, "", *param.type, location), location); continue; } // // Add the parameter to the HIL // TIntermSymbol *symbol = intermediate.addSymbol( variable->getUniqueId(), variable->getName(), variable->getType(), location); paramNodes = intermediate.growAggregate(paramNodes, symbol, location); } else { paramNodes = intermediate.growAggregate( paramNodes, intermediate.addSymbol(0, "", *param.type, location), location); } } intermediate.setAggregateOperator(paramNodes, EOpParameters, location); *aggregateOut = paramNodes; setLoopNestingLevel(0); } TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function) { // // We don't know at this point whether this is a function definition or a prototype. // The definition production code will check for redefinitions. // In the case of ESSL 1.00 the prototype production code will also check for redeclarations. // // Return types and parameter qualifiers must match in all redeclarations, so those are checked // here. // TFunction *prevDec = static_cast(symbolTable.find(function->getMangledName(), getShaderVersion())); if(getShaderVersion() >= 300 && symbolTable.hasUnmangledBuiltIn(function->getName().c_str())) { // With ESSL 3.00, names of built-in functions cannot be redeclared as functions. // Therefore overloading or redefining builtin functions is an error. error(location, "Name of a built-in function cannot be redeclared as function", function->getName().c_str()); } else if(prevDec) { if(prevDec->getReturnType() != function->getReturnType()) { error(location, "overloaded functions must have the same return type", function->getReturnType().getBasicString()); recover(); } for(size_t i = 0; i < prevDec->getParamCount(); ++i) { if(prevDec->getParam(i).type->getQualifier() != function->getParam(i).type->getQualifier()) { error(location, "overloaded functions must have the same parameter qualifiers", function->getParam(i).type->getQualifierString()); recover(); } } } // // Check for previously declared variables using the same name. // TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion()); if(prevSym) { if(!prevSym->isFunction()) { error(location, "redefinition", function->getName().c_str(), "function"); recover(); } } // We're at the inner scope level of the function's arguments and body statement. // Add the function prototype to the surrounding scope instead. symbolTable.getOuterLevel()->insert(*function); // // If this is a redeclaration, it could also be a definition, in which case, we want to use the // variable names from this one, and not the one that's // being redeclared. So, pass back up this declaration, not the one in the symbol table. // return function; } TFunction *TParseContext::addConstructorFunc(const TPublicType &publicTypeIn) { TPublicType publicType = publicTypeIn; TOperator op = EOpNull; if(publicType.userDef) { op = EOpConstructStruct; } else { op = TypeToConstructorOperator(TType(publicType)); if(op == EOpNull) { error(publicType.line, "cannot construct this type", getBasicString(publicType.type)); recover(); publicType.type = EbtFloat; op = EOpConstructFloat; } } TString tempString; TType type(publicType); return new TFunction(&tempString, type, op); } // This function is used to test for the correctness of the parameters passed to various constructor functions // and also convert them to the right datatype if it is allowed and required. // // Returns 0 for an error or the constructed node (aggregate or typed) for no error. // TIntermTyped* TParseContext::addConstructor(TIntermNode* arguments, const TType* type, TOperator op, TFunction* fnCall, const TSourceLoc &line) { TIntermAggregate *aggregateArguments = arguments->getAsAggregate(); if(!aggregateArguments) { aggregateArguments = new TIntermAggregate; aggregateArguments->getSequence().push_back(arguments); } if(type->isArray()) { // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of // the array. for(TIntermNode *&argNode : aggregateArguments->getSequence()) { const TType &argType = argNode->getAsTyped()->getType(); // It has already been checked that the argument is not an array. ASSERT(!argType.isArray()); if(!argType.sameElementType(*type)) { error(line, "Array constructor argument has an incorrect type", "Error"); return nullptr; } } } else if(op == EOpConstructStruct) { const TFieldList &fields = type->getStruct()->fields(); TIntermSequence &args = aggregateArguments->getSequence(); for(size_t i = 0; i < fields.size(); i++) { if(args[i]->getAsTyped()->getType() != *fields[i]->type()) { error(line, "Structure constructor arguments do not match structure fields", "Error"); recover(); return nullptr; } } } // Turn the argument list itself into a constructor TIntermAggregate *constructor = intermediate.setAggregateOperator(aggregateArguments, op, line); TIntermTyped *constConstructor = foldConstConstructor(constructor, *type); if(constConstructor) { return constConstructor; } return constructor; } TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type) { aggrNode->setType(type); if (aggrNode->isConstantFoldable()) { bool returnVal = false; ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()]; if (aggrNode->getSequence().size() == 1) { returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type, true); } else { returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type); } if (returnVal) return nullptr; return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine()); } return nullptr; } // // This function returns the tree representation for the vector field(s) being accessed from contant vector. // If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is // returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol // node or it could be the intermediate tree representation of accessing fields in a constant structure or column of // a constant matrix. // TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, const TSourceLoc &line) { TIntermTyped* typedNode; TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); ConstantUnion *unionArray; if (tempConstantNode) { unionArray = tempConstantNode->getUnionArrayPointer(); if (!unionArray) { return node; } } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error error(line, "Cannot offset into the vector", "Error"); recover(); return nullptr; } ConstantUnion* constArray = new ConstantUnion[fields.num]; int objSize = static_cast(node->getType().getObjectSize()); for (int i = 0; i < fields.num; i++) { if (fields.offsets[i] >= objSize) { std::stringstream extraInfoStream; extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'"; std::string extraInfo = extraInfoStream.str(); error(line, "", "[", extraInfo.c_str()); recover(); fields.offsets[i] = 0; } constArray[i] = unionArray[fields.offsets[i]]; } typedNode = intermediate.addConstantUnion(constArray, node->getType(), line); return typedNode; } // // This function returns the column being accessed from a constant matrix. The values are retrieved from // the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input // to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a // constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure) // TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, const TSourceLoc &line) { TIntermTyped* typedNode; TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); if (index >= node->getType().getNominalSize()) { std::stringstream extraInfoStream; extraInfoStream << "matrix field selection out of range '" << index << "'"; std::string extraInfo = extraInfoStream.str(); error(line, "", "[", extraInfo.c_str()); recover(); index = 0; } if (tempConstantNode) { ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer(); int size = tempConstantNode->getType().getNominalSize(); typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line); } else { error(line, "Cannot offset into the matrix", "Error"); recover(); return nullptr; } return typedNode; } // // This function returns an element of an array accessed from a constant array. The values are retrieved from // the symbol table and parse-tree is built for the type of the element. The input // to the function could either be a symbol node (a[0] where a is a constant array)that represents a // constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure) // TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, const TSourceLoc &line) { TIntermTyped* typedNode; TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion(); TType arrayElementType = node->getType(); arrayElementType.clearArrayness(); if (index >= node->getType().getArraySize()) { std::stringstream extraInfoStream; extraInfoStream << "array field selection out of range '" << index << "'"; std::string extraInfo = extraInfoStream.str(); error(line, "", "[", extraInfo.c_str()); recover(); index = 0; } size_t arrayElementSize = arrayElementType.getObjectSize(); if (tempConstantNode) { ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer(); typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line); } else { error(line, "Cannot offset into the array", "Error"); recover(); return nullptr; } return typedNode; } // // This function returns the value of a particular field inside a constant structure from the symbol table. // If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr // function and returns the parse-tree with the values of the embedded/nested struct. // TIntermTyped* TParseContext::addConstStruct(const TString& identifier, TIntermTyped* node, const TSourceLoc &line) { const TFieldList &fields = node->getType().getStruct()->fields(); TIntermTyped *typedNode; size_t instanceSize = 0; TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion(); for(size_t index = 0; index < fields.size(); ++index) { if (fields[index]->name() == identifier) { break; } else { instanceSize += fields[index]->type()->getObjectSize(); } } if (tempConstantNode) { ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer(); typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function } else { error(line, "Cannot offset into the structure", "Error"); recover(); return nullptr; } return typedNode; } // // Interface/uniform blocks // TIntermAggregate* TParseContext::addInterfaceBlock(const TPublicType& typeQualifier, const TSourceLoc& nameLine, const TString& blockName, TFieldList* fieldList, const TString* instanceName, const TSourceLoc& instanceLine, TIntermTyped* arrayIndex, const TSourceLoc& arrayIndexLine) { if(reservedErrorCheck(nameLine, blockName)) recover(); if(typeQualifier.qualifier != EvqUniform) { error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "interface blocks must be uniform"); recover(); } TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier; if(layoutLocationErrorCheck(typeQualifier.line, blockLayoutQualifier)) { recover(); } if(blockLayoutQualifier.matrixPacking == EmpUnspecified) { blockLayoutQualifier.matrixPacking = mDefaultMatrixPacking; } if(blockLayoutQualifier.blockStorage == EbsUnspecified) { blockLayoutQualifier.blockStorage = mDefaultBlockStorage; } TSymbol* blockNameSymbol = new TSymbol(&blockName); if(!symbolTable.declare(*blockNameSymbol)) { error(nameLine, "redefinition", blockName.c_str(), "interface block name"); recover(); } // check for sampler types and apply layout qualifiers for(size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) { TField* field = (*fieldList)[memberIndex]; TType* fieldType = field->type(); if(IsSampler(fieldType->getBasicType())) { error(field->line(), "unsupported type", fieldType->getBasicString(), "sampler types are not allowed in interface blocks"); recover(); } const TQualifier qualifier = fieldType->getQualifier(); switch(qualifier) { case EvqGlobal: case EvqUniform: break; default: error(field->line(), "invalid qualifier on interface block member", getQualifierString(qualifier)); recover(); break; } // check layout qualifiers TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier(); if(layoutLocationErrorCheck(field->line(), fieldLayoutQualifier)) { recover(); } if(fieldLayoutQualifier.blockStorage != EbsUnspecified) { error(field->line(), "invalid layout qualifier:", getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here"); recover(); } if(fieldLayoutQualifier.matrixPacking == EmpUnspecified) { fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking; } else if(!fieldType->isMatrix()) { error(field->line(), "invalid layout qualifier:", getMatrixPackingString(fieldLayoutQualifier.matrixPacking), "can only be used on matrix types"); recover(); } fieldType->setLayoutQualifier(fieldLayoutQualifier); } // add array index int arraySize = 0; if(arrayIndex) { if(arraySizeErrorCheck(arrayIndexLine, arrayIndex, arraySize)) recover(); } TInterfaceBlock* interfaceBlock = new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier); TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier, arraySize); TString symbolName = ""; int symbolId = 0; if(!instanceName) { // define symbols for the members of the interface block for(size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) { TField* field = (*fieldList)[memberIndex]; TType* fieldType = field->type(); // set parent pointer of the field variable fieldType->setInterfaceBlock(interfaceBlock); TVariable* fieldVariable = new TVariable(&field->name(), *fieldType); fieldVariable->setQualifier(typeQualifier.qualifier); if(!symbolTable.declare(*fieldVariable)) { error(field->line(), "redefinition", field->name().c_str(), "interface block member name"); recover(); } } } else { // add a symbol for this interface block TVariable* instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false); instanceTypeDef->setQualifier(typeQualifier.qualifier); if(!symbolTable.declare(*instanceTypeDef)) { error(instanceLine, "redefinition", instanceName->c_str(), "interface block instance name"); recover(); } symbolId = instanceTypeDef->getUniqueId(); symbolName = instanceTypeDef->getName(); } TIntermAggregate *aggregate = intermediate.makeAggregate(intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line), nameLine); aggregate->setOp(EOpDeclaration); exitStructDeclaration(); return aggregate; } // // Parse an array index expression // TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc &location, TIntermTyped *indexExpression) { TIntermTyped *indexedExpression = nullptr; if(!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector()) { if(baseExpression->getAsSymbolNode()) { error(location, " left of '[' is not of type array, matrix, or vector ", baseExpression->getAsSymbolNode()->getSymbol().c_str()); } else { error(location, " left of '[' is not of type array, matrix, or vector ", "expression"); } recover(); } TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion(); if(indexExpression->getQualifier() == EvqConstExpr && indexConstantUnion) { int index = indexConstantUnion->getIConst(0); if(index < 0) { std::stringstream infoStream; infoStream << index; std::string info = infoStream.str(); error(location, "negative index", info.c_str()); recover(); index = 0; } if(baseExpression->getType().getQualifier() == EvqConstExpr) { if(baseExpression->isArray()) { // constant folding for arrays indexedExpression = addConstArrayNode(index, baseExpression, location); } else if(baseExpression->isVector()) { // constant folding for vectors TVectorFields fields; fields.num = 1; fields.offsets[0] = index; // need to do it this way because v.xy sends fields integer array indexedExpression = addConstVectorNode(fields, baseExpression, location); } else if(baseExpression->isMatrix()) { // constant folding for matrices indexedExpression = addConstMatrixNode(index, baseExpression, location); } } else { int safeIndex = -1; if(baseExpression->isArray()) { if(index >= baseExpression->getType().getArraySize()) { std::stringstream extraInfoStream; extraInfoStream << "array index out of range '" << index << "'"; std::string extraInfo = extraInfoStream.str(); error(location, "", "[", extraInfo.c_str()); recover(); safeIndex = baseExpression->getType().getArraySize() - 1; } } else if((baseExpression->isVector() || baseExpression->isMatrix()) && baseExpression->getType().getNominalSize() <= index) { std::stringstream extraInfoStream; extraInfoStream << "field selection out of range '" << index << "'"; std::string extraInfo = extraInfoStream.str(); error(location, "", "[", extraInfo.c_str()); recover(); safeIndex = baseExpression->getType().getNominalSize() - 1; } // Don't modify the data of the previous constant union, because it can point // to builtins, like gl_MaxDrawBuffers. Instead use a new sanitized object. if(safeIndex != -1) { ConstantUnion *safeConstantUnion = new ConstantUnion(); safeConstantUnion->setIConst(safeIndex); indexConstantUnion->replaceConstantUnion(safeConstantUnion); } indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location); } } else { if(baseExpression->isInterfaceBlock()) { error(location, "", "[", "array indexes for interface blocks arrays must be constant integral expressions"); recover(); } else if(baseExpression->getQualifier() == EvqFragmentOut) { error(location, "", "[", "array indexes for fragment outputs must be constant integral expressions"); recover(); } indexedExpression = intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location); } if(indexedExpression == 0) { ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setFConst(0.0f); indexedExpression = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConstExpr), location); } else if(baseExpression->isArray()) { const TType &baseType = baseExpression->getType(); if(baseType.getStruct()) { TType copyOfType(baseType.getStruct()); indexedExpression->setType(copyOfType); } else if(baseType.isInterfaceBlock()) { TType copyOfType(baseType.getInterfaceBlock(), EvqTemporary, baseType.getLayoutQualifier(), 0); indexedExpression->setType(copyOfType); } else { indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, static_cast(baseExpression->getNominalSize()), static_cast(baseExpression->getSecondarySize()))); } if(baseExpression->getType().getQualifier() == EvqConstExpr) { indexedExpression->getTypePointer()->setQualifier(EvqConstExpr); } } else if(baseExpression->isMatrix()) { TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary; indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier, static_cast(baseExpression->getSecondarySize()))); } else if(baseExpression->isVector()) { TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary; indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier)); } else { indexedExpression->setType(baseExpression->getType()); } return indexedExpression; } TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, const TSourceLoc &dotLocation, const TString &fieldString, const TSourceLoc &fieldLocation) { TIntermTyped *indexedExpression = nullptr; if(baseExpression->isArray()) { error(fieldLocation, "cannot apply dot operator to an array", "."); recover(); } if(baseExpression->isVector()) { TVectorFields fields; if(!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields, fieldLocation)) { fields.num = 1; fields.offsets[0] = 0; recover(); } if(baseExpression->getAsConstantUnion()) { // constant folding for vector fields indexedExpression = addConstVectorNode(fields, baseExpression, fieldLocation); if(indexedExpression == 0) { recover(); indexedExpression = baseExpression; } else { indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqConstExpr, (unsigned char)(fieldString).size())); } } else { TString vectorString = fieldString; TIntermTyped *index = intermediate.addSwizzle(fields, fieldLocation); indexedExpression = intermediate.addIndex(EOpVectorSwizzle, baseExpression, index, dotLocation); indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), baseExpression->getQualifier() == EvqConstExpr ? EvqConstExpr : EvqTemporary, (unsigned char)vectorString.size())); } } else if(baseExpression->isMatrix()) { TMatrixFields fields; if(!parseMatrixFields(fieldString, baseExpression->getNominalSize(), baseExpression->getSecondarySize(), fields, fieldLocation)) { fields.wholeRow = false; fields.wholeCol = false; fields.row = 0; fields.col = 0; recover(); } if(fields.wholeRow || fields.wholeCol) { error(dotLocation, " non-scalar fields not implemented yet", "."); recover(); ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setIConst(0); TIntermTyped *index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConstExpr), fieldLocation); indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, index, dotLocation); indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, static_cast(baseExpression->getNominalSize()), static_cast(baseExpression->getSecondarySize()))); } else { ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setIConst(fields.col * baseExpression->getSecondarySize() + fields.row); TIntermTyped *index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConstExpr), fieldLocation); indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, index, dotLocation); indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision())); } } else if(baseExpression->getBasicType() == EbtStruct) { bool fieldFound = false; const TFieldList &fields = baseExpression->getType().getStruct()->fields(); if(fields.empty()) { error(dotLocation, "structure has no fields", "Internal Error"); recover(); indexedExpression = baseExpression; } else { unsigned int i; for(i = 0; i < fields.size(); ++i) { if(fields[i]->name() == fieldString) { fieldFound = true; break; } } if(fieldFound) { if(baseExpression->getType().getQualifier() == EvqConstExpr) { indexedExpression = addConstStruct(fieldString, baseExpression, dotLocation); if(indexedExpression == 0) { recover(); indexedExpression = baseExpression; } else { indexedExpression->setType(*fields[i]->type()); // change the qualifier of the return type, not of the structure field // as the structure definition is shared between various structures. indexedExpression->getTypePointer()->setQualifier(EvqConstExpr); } } else { TIntermTyped *index = TIntermTyped::CreateIndexNode(i); index->setLine(fieldLocation); indexedExpression = intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index, dotLocation); indexedExpression->setType(*fields[i]->type()); } } else { error(dotLocation, " no such field in structure", fieldString.c_str()); recover(); indexedExpression = baseExpression; } } } else if(baseExpression->isInterfaceBlock()) { bool fieldFound = false; const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields(); if(fields.empty()) { error(dotLocation, "interface block has no fields", "Internal Error"); recover(); indexedExpression = baseExpression; } else { unsigned int i; for(i = 0; i < fields.size(); ++i) { if(fields[i]->name() == fieldString) { fieldFound = true; break; } } if(fieldFound) { ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setIConst(i); TIntermTyped *index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation); indexedExpression = intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index, dotLocation); indexedExpression->setType(*fields[i]->type()); } else { error(dotLocation, " no such field in interface block", fieldString.c_str()); recover(); indexedExpression = baseExpression; } } } else { if(mShaderVersion < 300) { error(dotLocation, " field selection requires structure, vector, or matrix on left hand side", fieldString.c_str()); } else { error(dotLocation, " field selection requires structure, vector, matrix, or interface block on left hand side", fieldString.c_str()); } recover(); indexedExpression = baseExpression; } return indexedExpression; } TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine) { TLayoutQualifier qualifier; qualifier.location = -1; qualifier.matrixPacking = EmpUnspecified; qualifier.blockStorage = EbsUnspecified; if(qualifierType == "shared") { qualifier.blockStorage = EbsShared; } else if(qualifierType == "packed") { qualifier.blockStorage = EbsPacked; } else if(qualifierType == "std140") { qualifier.blockStorage = EbsStd140; } else if(qualifierType == "row_major") { qualifier.matrixPacking = EmpRowMajor; } else if(qualifierType == "column_major") { qualifier.matrixPacking = EmpColumnMajor; } else if(qualifierType == "location") { error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "location requires an argument"); recover(); } else { error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str()); recover(); } return qualifier; } TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine, const TString &intValueString, int intValue, const TSourceLoc& intValueLine) { TLayoutQualifier qualifier; qualifier.location = -1; qualifier.matrixPacking = EmpUnspecified; qualifier.blockStorage = EbsUnspecified; if (qualifierType != "location") { error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "only location may have arguments"); recover(); } else { // must check that location is non-negative if (intValue < 0) { error(intValueLine, "out of range:", intValueString.c_str(), "location must be non-negative"); recover(); } else { qualifier.location = intValue; } } return qualifier; } TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, TLayoutQualifier rightQualifier) { TLayoutQualifier joinedQualifier = leftQualifier; if (rightQualifier.location != -1) { joinedQualifier.location = rightQualifier.location; } if(rightQualifier.matrixPacking != EmpUnspecified) { joinedQualifier.matrixPacking = rightQualifier.matrixPacking; } if(rightQualifier.blockStorage != EbsUnspecified) { joinedQualifier.blockStorage = rightQualifier.blockStorage; } return joinedQualifier; } TPublicType TParseContext::joinInterpolationQualifiers(const TSourceLoc &interpolationLoc, TQualifier interpolationQualifier, const TSourceLoc &storageLoc, TQualifier storageQualifier) { TQualifier mergedQualifier = EvqSmoothIn; if(storageQualifier == EvqFragmentIn) { if(interpolationQualifier == EvqSmooth) mergedQualifier = EvqSmoothIn; else if(interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatIn; else UNREACHABLE(interpolationQualifier); } else if(storageQualifier == EvqCentroidIn) { if(interpolationQualifier == EvqSmooth) mergedQualifier = EvqCentroidIn; else if(interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatIn; else UNREACHABLE(interpolationQualifier); } else if(storageQualifier == EvqVertexOut) { if(interpolationQualifier == EvqSmooth) mergedQualifier = EvqSmoothOut; else if(interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatOut; else UNREACHABLE(interpolationQualifier); } else if(storageQualifier == EvqCentroidOut) { if(interpolationQualifier == EvqSmooth) mergedQualifier = EvqCentroidOut; else if(interpolationQualifier == EvqFlat) mergedQualifier = EvqFlatOut; else UNREACHABLE(interpolationQualifier); } else { error(interpolationLoc, "interpolation qualifier requires a fragment 'in' or vertex 'out' storage qualifier", getQualifierString(interpolationQualifier)); recover(); mergedQualifier = storageQualifier; } TPublicType type; type.setBasic(EbtVoid, mergedQualifier, storageLoc); return type; } TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier, TFieldList *fieldList) { if(voidErrorCheck(typeSpecifier.line, (*fieldList)[0]->name(), typeSpecifier.type)) { recover(); } for(unsigned int i = 0; i < fieldList->size(); ++i) { // // Careful not to replace already known aspects of type, like array-ness // TType *type = (*fieldList)[i]->type(); type->setBasicType(typeSpecifier.type); type->setNominalSize(typeSpecifier.primarySize); type->setSecondarySize(typeSpecifier.secondarySize); type->setPrecision(typeSpecifier.precision); type->setQualifier(typeSpecifier.qualifier); type->setLayoutQualifier(typeSpecifier.layoutQualifier); // don't allow arrays of arrays if(type->isArray()) { if(arrayTypeErrorCheck(typeSpecifier.line, typeSpecifier)) recover(); } if(typeSpecifier.array) type->setArraySize(typeSpecifier.arraySize); if(typeSpecifier.userDef) { type->setStruct(typeSpecifier.userDef->getStruct()); } if(structNestingErrorCheck(typeSpecifier.line, *(*fieldList)[i])) { recover(); } } return fieldList; } TPublicType TParseContext::addStructure(const TSourceLoc &structLine, const TSourceLoc &nameLine, const TString *structName, TFieldList *fieldList) { TStructure *structure = new TStructure(structName, fieldList); TType *structureType = new TType(structure); // Store a bool in the struct if we're at global scope, to allow us to // skip the local struct scoping workaround in HLSL. structure->setUniqueId(TSymbolTableLevel::nextUniqueId()); structure->setAtGlobalScope(symbolTable.atGlobalLevel()); if(!structName->empty()) { if(reservedErrorCheck(nameLine, *structName)) { recover(); } TVariable *userTypeDef = new TVariable(structName, *structureType, true); if(!symbolTable.declare(*userTypeDef)) { error(nameLine, "redefinition", structName->c_str(), "struct"); recover(); } } // ensure we do not specify any storage qualifiers on the struct members for(unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++) { const TField &field = *(*fieldList)[typeListIndex]; const TQualifier qualifier = field.type()->getQualifier(); switch(qualifier) { case EvqGlobal: case EvqTemporary: break; default: error(field.line(), "invalid qualifier on struct member", getQualifierString(qualifier)); recover(); break; } } TPublicType publicType; publicType.setBasic(EbtStruct, EvqTemporary, structLine); publicType.userDef = structureType; exitStructDeclaration(); return publicType; } bool TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString& identifier) { ++mStructNestingLevel; // Embedded structure definitions are not supported per GLSL ES spec. // They aren't allowed in GLSL either, but we need to detect this here // so we don't rely on the GLSL compiler to catch it. if (mStructNestingLevel > 1) { error(line, "", "Embedded struct definitions are not allowed"); return true; } return false; } void TParseContext::exitStructDeclaration() { --mStructNestingLevel; } bool TParseContext::structNestingErrorCheck(const TSourceLoc &line, const TField &field) { static const int kWebGLMaxStructNesting = 4; if(field.type()->getBasicType() != EbtStruct) { return false; } // We're already inside a structure definition at this point, so add // one to the field's struct nesting. if(1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) { std::stringstream reasonStream; reasonStream << "Reference of struct type " << field.type()->getStruct()->name().c_str() << " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting; std::string reason = reasonStream.str(); error(line, reason.c_str(), field.name().c_str(), ""); return true; } return false; } TIntermTyped *TParseContext::createUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc, const TType *funcReturnType) { if(child == nullptr) { return nullptr; } switch(op) { case EOpLogicalNot: if(child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() || child->isVector()) { return nullptr; } break; case EOpBitwiseNot: if((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) || child->isMatrix() || child->isArray()) { return nullptr; } break; case EOpPostIncrement: case EOpPreIncrement: case EOpPostDecrement: case EOpPreDecrement: case EOpNegative: if(child->getBasicType() == EbtStruct || child->getBasicType() == EbtBool || child->isArray()) { return nullptr; } // Operators for built-ins are already type checked against their prototype. default: break; } return intermediate.addUnaryMath(op, child, loc, funcReturnType); } TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc) { TIntermTyped *node = createUnaryMath(op, child, loc, nullptr); if(node == nullptr) { unaryOpError(loc, getOperatorString(op), child->getCompleteString()); recover(); return child; } return node; } TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op, TIntermTyped *child, const TSourceLoc &loc) { if(lValueErrorCheck(loc, getOperatorString(op), child)) recover(); return addUnaryMath(op, child, loc); } bool TParseContext::binaryOpCommonCheck(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { if(left->isArray() || right->isArray()) { if(mShaderVersion < 300) { error(loc, "Invalid operation for arrays", getOperatorString(op)); return false; } if(left->isArray() != right->isArray()) { error(loc, "array / non-array mismatch", getOperatorString(op)); return false; } switch(op) { case EOpEqual: case EOpNotEqual: case EOpAssign: case EOpInitialize: break; default: error(loc, "Invalid operation for arrays", getOperatorString(op)); return false; } // At this point, size of implicitly sized arrays should be resolved. if(left->getArraySize() != right->getArraySize()) { error(loc, "array size mismatch", getOperatorString(op)); return false; } } // Check ops which require integer / ivec parameters bool isBitShift = false; switch(op) { case EOpBitShiftLeft: case EOpBitShiftRight: case EOpBitShiftLeftAssign: case EOpBitShiftRightAssign: // Unsigned can be bit-shifted by signed and vice versa, but we need to // check that the basic type is an integer type. isBitShift = true; if(!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType())) { return false; } break; case EOpBitwiseAnd: case EOpBitwiseXor: case EOpBitwiseOr: case EOpBitwiseAndAssign: case EOpBitwiseXorAssign: case EOpBitwiseOrAssign: // It is enough to check the type of only one operand, since later it // is checked that the operand types match. if(!IsInteger(left->getBasicType())) { return false; } break; default: break; } // GLSL ES 1.00 and 3.00 do not support implicit type casting. // So the basic type should usually match. if(!isBitShift && left->getBasicType() != right->getBasicType()) { return false; } // Check that type sizes match exactly on ops that require that. // Also check restrictions for structs that contain arrays or samplers. switch(op) { case EOpAssign: case EOpInitialize: case EOpEqual: case EOpNotEqual: // ESSL 1.00 sections 5.7, 5.8, 5.9 if(mShaderVersion < 300 && left->getType().isStructureContainingArrays()) { error(loc, "undefined operation for structs containing arrays", getOperatorString(op)); return false; } // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7, // we interpret the spec so that this extends to structs containing samplers, // similarly to ESSL 1.00 spec. if((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) && left->getType().isStructureContainingSamplers()) { error(loc, "undefined operation for structs containing samplers", getOperatorString(op)); return false; } case EOpLessThan: case EOpGreaterThan: case EOpLessThanEqual: case EOpGreaterThanEqual: if((left->getNominalSize() != right->getNominalSize()) || (left->getSecondarySize() != right->getSecondarySize())) { return false; } break; case EOpAdd: case EOpSub: case EOpDiv: case EOpIMod: case EOpBitShiftLeft: case EOpBitShiftRight: case EOpBitwiseAnd: case EOpBitwiseXor: case EOpBitwiseOr: case EOpAddAssign: case EOpSubAssign: case EOpDivAssign: case EOpIModAssign: case EOpBitShiftLeftAssign: case EOpBitShiftRightAssign: case EOpBitwiseAndAssign: case EOpBitwiseXorAssign: case EOpBitwiseOrAssign: if((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix())) { return false; } // Are the sizes compatible? if(left->getNominalSize() != right->getNominalSize() || left->getSecondarySize() != right->getSecondarySize()) { // If the nominal sizes of operands do not match: // One of them must be a scalar. if(!left->isScalar() && !right->isScalar()) return false; // In the case of compound assignment other than multiply-assign, // the right side needs to be a scalar. Otherwise a vector/matrix // would be assigned to a scalar. A scalar can't be shifted by a // vector either. if(!right->isScalar() && (IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight)) return false; } break; default: break; } return true; } TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init, TIntermAggregate *statementList, const TSourceLoc &loc) { TBasicType switchType = init->getBasicType(); if((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() || init->isVector()) { error(init->getLine(), "init-expression in a switch statement must be a scalar integer", "switch"); recover(); return nullptr; } if(statementList) { if(!ValidateSwitch::validate(switchType, this, statementList, loc)) { recover(); return nullptr; } } TIntermSwitch *node = intermediate.addSwitch(init, statementList, loc); if(node == nullptr) { error(loc, "erroneous switch statement", "switch"); recover(); return nullptr; } return node; } TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc) { if(mSwitchNestingLevel == 0) { error(loc, "case labels need to be inside switch statements", "case"); recover(); return nullptr; } if(condition == nullptr) { error(loc, "case label must have a condition", "case"); recover(); return nullptr; } if((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) || condition->isMatrix() || condition->isArray() || condition->isVector()) { error(condition->getLine(), "case label must be a scalar integer", "case"); recover(); } TIntermConstantUnion *conditionConst = condition->getAsConstantUnion(); if(conditionConst == nullptr) { error(condition->getLine(), "case label must be constant", "case"); recover(); } TIntermCase *node = intermediate.addCase(condition, loc); if(node == nullptr) { error(loc, "erroneous case statement", "case"); recover(); return nullptr; } return node; } TIntermCase *TParseContext::addDefault(const TSourceLoc &loc) { if(mSwitchNestingLevel == 0) { error(loc, "default labels need to be inside switch statements", "default"); recover(); return nullptr; } TIntermCase *node = intermediate.addCase(nullptr, loc); if(node == nullptr) { error(loc, "erroneous default statement", "default"); recover(); return nullptr; } return node; } TIntermTyped *TParseContext::createAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { if(binaryOpCommonCheck(op, left, right, loc)) { return intermediate.addAssign(op, left, right, loc); } return nullptr; } TIntermTyped *TParseContext::addAssign(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { TIntermTyped *node = createAssign(op, left, right, loc); if(node == nullptr) { assignError(loc, "assign", left->getCompleteString(), right->getCompleteString()); recover(); return left; } return node; } TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { if(!binaryOpCommonCheck(op, left, right, loc)) return nullptr; switch(op) { case EOpEqual: case EOpNotEqual: break; case EOpLessThan: case EOpGreaterThan: case EOpLessThanEqual: case EOpGreaterThanEqual: ASSERT(!left->isArray() && !right->isArray()); if(left->isMatrix() || left->isVector() || left->getBasicType() == EbtStruct) { return nullptr; } break; case EOpLogicalOr: case EOpLogicalXor: case EOpLogicalAnd: ASSERT(!left->isArray() && !right->isArray()); if(left->getBasicType() != EbtBool || left->isMatrix() || left->isVector()) { return nullptr; } break; case EOpAdd: case EOpSub: case EOpDiv: case EOpMul: ASSERT(!left->isArray() && !right->isArray()); if(left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool) { return nullptr; } break; case EOpIMod: ASSERT(!left->isArray() && !right->isArray()); // Note that this is only for the % operator, not for mod() if(left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat) { return nullptr; } break; // Note that for bitwise ops, type checking is done in promote() to // share code between ops and compound assignment default: break; } return intermediate.addBinaryMath(op, left, right, loc); } TIntermTyped *TParseContext::addBinaryMath(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); if(node == 0) { binaryOpError(loc, getOperatorString(op), left->getCompleteString(), right->getCompleteString()); recover(); return left; } return node; } TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op, TIntermTyped *left, TIntermTyped *right, const TSourceLoc &loc) { TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); if(node == 0) { binaryOpError(loc, getOperatorString(op), left->getCompleteString(), right->getCompleteString()); recover(); ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setBConst(false); return intermediate.addConstantUnion(unionArray, TType(EbtBool, EbpUndefined, EvqConstExpr), loc); } return node; } TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc) { switch(op) { case EOpContinue: if(mLoopNestingLevel <= 0) { error(loc, "continue statement only allowed in loops", ""); recover(); } break; case EOpBreak: if(mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0) { error(loc, "break statement only allowed in loops and switch statements", ""); recover(); } break; case EOpReturn: if(mCurrentFunctionType->getBasicType() != EbtVoid) { error(loc, "non-void function must return a value", "return"); recover(); } break; default: // No checks for discard break; } return intermediate.addBranch(op, loc); } TIntermBranch *TParseContext::addBranch(TOperator op, TIntermTyped *returnValue, const TSourceLoc &loc) { ASSERT(op == EOpReturn); mFunctionReturnsValue = true; if(mCurrentFunctionType->getBasicType() == EbtVoid) { error(loc, "void function cannot return a value", "return"); recover(); } else if(*mCurrentFunctionType != returnValue->getType()) { error(loc, "function return is not matching type:", "return"); recover(); } return intermediate.addBranch(op, returnValue, loc); } TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall, TIntermNode *paramNode, TIntermNode *thisNode, const TSourceLoc &loc, bool *fatalError) { *fatalError = false; TOperator op = fnCall->getBuiltInOp(); TIntermTyped *callNode = nullptr; if(thisNode != nullptr) { ConstantUnion *unionArray = new ConstantUnion[1]; int arraySize = 0; TIntermTyped *typedThis = thisNode->getAsTyped(); if(fnCall->getName() != "length") { error(loc, "invalid method", fnCall->getName().c_str()); recover(); } else if(paramNode != nullptr) { error(loc, "method takes no parameters", "length"); recover(); } else if(typedThis == nullptr || !typedThis->isArray()) { error(loc, "length can only be called on arrays", "length"); recover(); } else { arraySize = typedThis->getArraySize(); if(typedThis->getAsSymbolNode() == nullptr) { // This code path can be hit with expressions like these: // (a = b).length() // (func()).length() // (int[3](0, 1, 2)).length() // ESSL 3.00 section 5.9 defines expressions so that this is not actually a valid expression. // It allows "An array name with the length method applied" in contrast to GLSL 4.4 spec section 5.9 // which allows "An array, vector or matrix expression with the length method applied". error(loc, "length can only be called on array names, not on array expressions", "length"); recover(); } } unionArray->setIConst(arraySize); callNode = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConstExpr), loc); } else if(op != EOpNull) { // // Then this should be a constructor. // Don't go through the symbol table for constructors. // Their parameters will be verified algorithmically. // TType type(EbtVoid, EbpUndefined); // use this to get the type back if(!constructorErrorCheck(loc, paramNode, *fnCall, op, &type)) { // // It's a constructor, of type 'type'. // callNode = addConstructor(paramNode, &type, op, fnCall, loc); } if(callNode == nullptr) { recover(); callNode = intermediate.setAggregateOperator(nullptr, op, loc); } } else { // // Not a constructor. Find it in the symbol table. // const TFunction *fnCandidate; bool builtIn; fnCandidate = findFunction(loc, fnCall, &builtIn); if(fnCandidate) { // // A declared function. // if(builtIn && !fnCandidate->getExtension().empty() && extensionErrorCheck(loc, fnCandidate->getExtension())) { recover(); } op = fnCandidate->getBuiltInOp(); if(builtIn && op != EOpNull) { // // A function call mapped to a built-in operation. // if(fnCandidate->getParamCount() == 1) { // // Treat it like a built-in unary operator. // callNode = createUnaryMath(op, paramNode->getAsTyped(), loc, &fnCandidate->getReturnType()); if(callNode == nullptr) { std::stringstream extraInfoStream; extraInfoStream << "built in unary operator function. Type: " << static_cast(paramNode)->getCompleteString(); std::string extraInfo = extraInfoStream.str(); error(paramNode->getLine(), " wrong operand type", "Internal Error", extraInfo.c_str()); *fatalError = true; return nullptr; } } else { TIntermAggregate *aggregate = intermediate.setAggregateOperator(paramNode, op, loc); aggregate->setType(fnCandidate->getReturnType()); // Some built-in functions have out parameters too. functionCallLValueErrorCheck(fnCandidate, aggregate); callNode = aggregate; if(fnCandidate->getParamCount() == 2) { TIntermSequence ¶meters = paramNode->getAsAggregate()->getSequence(); TIntermTyped *left = parameters[0]->getAsTyped(); TIntermTyped *right = parameters[1]->getAsTyped(); TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion(); TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion(); if (leftTempConstant && rightTempConstant) { TIntermTyped *typedReturnNode = leftTempConstant->fold(op, rightTempConstant, infoSink()); if(typedReturnNode) { callNode = typedReturnNode; } } } } } else { // This is a real function call TIntermAggregate *aggregate = intermediate.setAggregateOperator(paramNode, EOpFunctionCall, loc); aggregate->setType(fnCandidate->getReturnType()); // this is how we know whether the given function is a builtIn function or a user defined function // if builtIn == false, it's a userDefined -> could be an overloaded builtIn function also // if builtIn == true, it's definitely a builtIn function with EOpNull if(!builtIn) aggregate->setUserDefined(); aggregate->setName(fnCandidate->getMangledName()); callNode = aggregate; functionCallLValueErrorCheck(fnCandidate, aggregate); } } else { // error message was put out by findFunction() // Put on a dummy node for error recovery ConstantUnion *unionArray = new ConstantUnion[1]; unionArray->setFConst(0.0f); callNode = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpUndefined, EvqConstExpr), loc); recover(); } } delete fnCall; return callNode; } TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond, TIntermTyped *trueBlock, TIntermTyped *falseBlock, const TSourceLoc &loc) { if(boolErrorCheck(loc, cond)) recover(); if(trueBlock->getType() != falseBlock->getType()) { binaryOpError(loc, ":", trueBlock->getCompleteString(), falseBlock->getCompleteString()); recover(); return falseBlock; } // ESSL1 sections 5.2 and 5.7: // ESSL3 section 5.7: // Ternary operator is not among the operators allowed for structures/arrays. if(trueBlock->isArray() || trueBlock->getBasicType() == EbtStruct) { error(loc, "ternary operator is not allowed for structures or arrays", ":"); recover(); return falseBlock; } return intermediate.addSelection(cond, trueBlock, falseBlock, loc); } // // Parse an array of strings using yyparse. // // Returns 0 for success. // int PaParseStrings(int count, const char* const string[], const int length[], TParseContext* context) { if ((count == 0) || !string) return 1; if (glslang_initialize(context)) return 1; int error = glslang_scan(count, string, length, context); if (!error) error = glslang_parse(context); glslang_finalize(context); return (error == 0) && (context->numErrors() == 0) ? 0 : 1; }