// Copyright 2015 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // This file contains an implementation of a VP9 bitstream parser. // // VERBOSE level: // 1 something wrong in bitstream // 2 parsing steps // 3 parsed values (selected) #include "vp9_parser.h" #include #include "base/bind.h" #include "base/logging.h" #include "base/macros.h" #include "base/numerics/safe_conversions.h" #include "vp9_compressed_header_parser.h" #include "vp9_uncompressed_header_parser.h" namespace media { bool Vp9FrameHeader::IsKeyframe() const { // When show_existing_frame is true, the frame header does not precede an // actual frame to be decoded, so frame_type does not apply (and is not read // from the stream). return !show_existing_frame && frame_type == KEYFRAME; } bool Vp9FrameHeader::IsIntra() const { return !show_existing_frame && (frame_type == KEYFRAME || intra_only); } Vp9Parser::FrameInfo::FrameInfo(const uint8_t* ptr, off_t size) : ptr(ptr), size(size) {} bool Vp9FrameContext::IsValid() const { // probs should be in [1, 255] range. static_assert(sizeof(Vp9Prob) == 1, "following checks assuming Vp9Prob is single byte"); if (memchr(tx_probs_8x8, 0, sizeof(tx_probs_8x8))) return false; if (memchr(tx_probs_16x16, 0, sizeof(tx_probs_16x16))) return false; if (memchr(tx_probs_32x32, 0, sizeof(tx_probs_32x32))) return false; for (auto& a : coef_probs) { for (auto& ai : a) { for (auto& aj : ai) { for (auto& ak : aj) { int max_l = (ak == aj[0]) ? 3 : 6; for (int l = 0; l < max_l; l++) { for (auto& x : ak[l]) { if (x == 0) return false; } } } } } } if (memchr(skip_prob, 0, sizeof(skip_prob))) return false; if (memchr(inter_mode_probs, 0, sizeof(inter_mode_probs))) return false; if (memchr(interp_filter_probs, 0, sizeof(interp_filter_probs))) return false; if (memchr(is_inter_prob, 0, sizeof(is_inter_prob))) return false; if (memchr(comp_mode_prob, 0, sizeof(comp_mode_prob))) return false; if (memchr(single_ref_prob, 0, sizeof(single_ref_prob))) return false; if (memchr(comp_ref_prob, 0, sizeof(comp_ref_prob))) return false; if (memchr(y_mode_probs, 0, sizeof(y_mode_probs))) return false; if (memchr(uv_mode_probs, 0, sizeof(uv_mode_probs))) return false; if (memchr(partition_probs, 0, sizeof(partition_probs))) return false; if (memchr(mv_joint_probs, 0, sizeof(mv_joint_probs))) return false; if (memchr(mv_sign_prob, 0, sizeof(mv_sign_prob))) return false; if (memchr(mv_class_probs, 0, sizeof(mv_class_probs))) return false; if (memchr(mv_class0_bit_prob, 0, sizeof(mv_class0_bit_prob))) return false; if (memchr(mv_bits_prob, 0, sizeof(mv_bits_prob))) return false; if (memchr(mv_class0_fr_probs, 0, sizeof(mv_class0_fr_probs))) return false; if (memchr(mv_fr_probs, 0, sizeof(mv_fr_probs))) return false; if (memchr(mv_class0_hp_prob, 0, sizeof(mv_class0_hp_prob))) return false; if (memchr(mv_hp_prob, 0, sizeof(mv_hp_prob))) return false; return true; } Vp9Parser::Context::Vp9FrameContextManager::Vp9FrameContextManager() : weak_ptr_factory_(this) {} Vp9Parser::Context::Vp9FrameContextManager::~Vp9FrameContextManager() {} const Vp9FrameContext& Vp9Parser::Context::Vp9FrameContextManager::frame_context() const { DCHECK(initialized_); DCHECK(!needs_client_update_); return frame_context_; } void Vp9Parser::Context::Vp9FrameContextManager::Reset() { initialized_ = false; needs_client_update_ = false; weak_ptr_factory_.InvalidateWeakPtrs(); } void Vp9Parser::Context::Vp9FrameContextManager::SetNeedsClientUpdate() { DCHECK(!needs_client_update_); initialized_ = true; needs_client_update_ = true; } Vp9Parser::ContextRefreshCallback Vp9Parser::Context::Vp9FrameContextManager::GetUpdateCb() { if (needs_client_update_) return base::Bind(&Vp9FrameContextManager::UpdateFromClient, weak_ptr_factory_.GetWeakPtr()); else return Vp9Parser::ContextRefreshCallback(); } void Vp9Parser::Context::Vp9FrameContextManager::Update( const Vp9FrameContext& frame_context) { // DCHECK because we can trust values from our parser. DCHECK(frame_context.IsValid()); initialized_ = true; frame_context_ = frame_context; // For frame context we are updating, it may be still awaiting previous // ContextRefreshCallback. Because we overwrite the value of context here and // previous ContextRefreshCallback no longer matters, invalidate the weak ptr // to prevent previous ContextRefreshCallback run. // With this optimization, we may be able to parse more frames while previous // are still decoding. weak_ptr_factory_.InvalidateWeakPtrs(); needs_client_update_ = false; } void Vp9Parser::Context::Vp9FrameContextManager::UpdateFromClient( const Vp9FrameContext& frame_context) { DVLOG(2) << "Got external frame_context update"; DCHECK(needs_client_update_); if (!frame_context.IsValid()) { DLOG(ERROR) << "Invalid prob value in frame_context"; return; } needs_client_update_ = false; initialized_ = true; frame_context_ = frame_context; } void Vp9Parser::Context::Reset() { memset(&segmentation_, 0, sizeof(segmentation_)); memset(&loop_filter_, 0, sizeof(loop_filter_)); memset(&ref_slots_, 0, sizeof(ref_slots_)); for (auto& manager : frame_context_managers_) manager.Reset(); } void Vp9Parser::Context::MarkFrameContextForUpdate(size_t frame_context_idx) { DCHECK_LT(frame_context_idx, arraysize(frame_context_managers_)); frame_context_managers_[frame_context_idx].SetNeedsClientUpdate(); } void Vp9Parser::Context::UpdateFrameContext( size_t frame_context_idx, const Vp9FrameContext& frame_context) { DCHECK_LT(frame_context_idx, arraysize(frame_context_managers_)); frame_context_managers_[frame_context_idx].Update(frame_context); } const Vp9Parser::ReferenceSlot& Vp9Parser::Context::GetRefSlot( size_t ref_type) const { DCHECK_LT(ref_type, arraysize(ref_slots_)); return ref_slots_[ref_type]; } void Vp9Parser::Context::UpdateRefSlot( size_t ref_type, const Vp9Parser::ReferenceSlot& ref_slot) { DCHECK_LT(ref_type, arraysize(ref_slots_)); ref_slots_[ref_type] = ref_slot; } Vp9Parser::Vp9Parser(bool parsing_compressed_header) : parsing_compressed_header_(parsing_compressed_header) { Reset(); } Vp9Parser::~Vp9Parser() {} void Vp9Parser::SetStream(const uint8_t* stream, off_t stream_size) { DCHECK(stream); stream_ = stream; bytes_left_ = stream_size; frames_.clear(); } void Vp9Parser::Reset() { stream_ = nullptr; bytes_left_ = 0; frames_.clear(); curr_frame_info_.Reset(); context_.Reset(); } Vp9Parser::Result Vp9Parser::ParseNextFrame(Vp9FrameHeader* fhdr) { DCHECK(fhdr); DVLOG(2) << "ParseNextFrame"; // If |curr_frame_info_| is valid, uncompressed header was parsed into // |curr_frame_header_| and we are awaiting context update to proceed with // compressed header parsing. if (!curr_frame_info_.IsValid()) { if (frames_.empty()) { // No frames to be decoded, if there is no more stream, request more. if (!stream_) return kEOStream; // New stream to be parsed, parse it and fill frames_. frames_ = ParseSuperframe(); if (frames_.empty()) { DVLOG(1) << "Failed parsing superframes"; return kInvalidStream; } } curr_frame_info_ = frames_.front(); frames_.pop_front(); memset(&curr_frame_header_, 0, sizeof(curr_frame_header_)); Vp9UncompressedHeaderParser uncompressed_parser(&context_); if (!uncompressed_parser.Parse(curr_frame_info_.ptr, curr_frame_info_.size, &curr_frame_header_)) return kInvalidStream; if (curr_frame_header_.header_size_in_bytes == 0) { // Verify padding bits are zero. for (off_t i = curr_frame_header_.uncompressed_header_size; i < curr_frame_info_.size; i++) { if (curr_frame_info_.ptr[i] != 0) { DVLOG(1) << "Padding bits are not zeros."; return kInvalidStream; } } *fhdr = curr_frame_header_; curr_frame_info_.Reset(); return kOk; } if (curr_frame_header_.uncompressed_header_size + curr_frame_header_.header_size_in_bytes > base::checked_cast(curr_frame_info_.size)) { DVLOG(1) << "header_size_in_bytes=" << curr_frame_header_.header_size_in_bytes << " is larger than bytes left in buffer: " << curr_frame_info_.size - curr_frame_header_.uncompressed_header_size; return kInvalidStream; } } if (parsing_compressed_header_) { size_t frame_context_idx = curr_frame_header_.frame_context_idx; const Context::Vp9FrameContextManager& context_to_load = context_.frame_context_managers_[frame_context_idx]; if (!context_to_load.initialized()) { // 8.2 Frame order constraints // must load an initialized set of probabilities. DVLOG(1) << "loading uninitialized frame context, index=" << frame_context_idx; return kInvalidStream; } if (context_to_load.needs_client_update()) { DVLOG(3) << "waiting frame_context_idx=" << frame_context_idx << " to update"; return kAwaitingRefresh; } curr_frame_header_.initial_frame_context = curr_frame_header_.frame_context = context_to_load.frame_context(); Vp9CompressedHeaderParser compressed_parser; if (!compressed_parser.Parse( curr_frame_info_.ptr + curr_frame_header_.uncompressed_header_size, curr_frame_header_.header_size_in_bytes, &curr_frame_header_)) { return kInvalidStream; } if (curr_frame_header_.refresh_frame_context) { // In frame parallel mode, we can refresh the context without decoding // tile data. if (curr_frame_header_.frame_parallel_decoding_mode) { context_.UpdateFrameContext(frame_context_idx, curr_frame_header_.frame_context); } else { context_.MarkFrameContextForUpdate(frame_context_idx); } } } SetupSegmentationDequant(); SetupLoopFilter(); UpdateSlots(); *fhdr = curr_frame_header_; curr_frame_info_.Reset(); return kOk; } Vp9Parser::ContextRefreshCallback Vp9Parser::GetContextRefreshCb( size_t frame_context_idx) { DCHECK_LT(frame_context_idx, arraysize(context_.frame_context_managers_)); auto& frame_context_manager = context_.frame_context_managers_[frame_context_idx]; return frame_context_manager.GetUpdateCb(); } // Annex B Superframes std::deque Vp9Parser::ParseSuperframe() { const uint8_t* stream = stream_; off_t bytes_left = bytes_left_; // Make sure we don't parse stream_ more than once. stream_ = nullptr; bytes_left_ = 0; if (bytes_left < 1) return std::deque(); // If this is a superframe, the last byte in the stream will contain the // superframe marker. If not, the whole buffer contains a single frame. uint8_t marker = *(stream + bytes_left - 1); if ((marker & 0xe0) != 0xc0) { return {FrameInfo(stream, bytes_left)}; } DVLOG(1) << "Parsing a superframe"; // The bytes immediately before the superframe marker constitute superframe // index, which stores information about sizes of each frame in it. // Calculate its size and set index_ptr to the beginning of it. size_t num_frames = (marker & 0x7) + 1; size_t mag = ((marker >> 3) & 0x3) + 1; off_t index_size = 2 + mag * num_frames; if (bytes_left < index_size) return std::deque(); const uint8_t* index_ptr = stream + bytes_left - index_size; if (marker != *index_ptr) return std::deque(); ++index_ptr; bytes_left -= index_size; // Parse frame information contained in the index and add a pointer to and // size of each frame to frames. std::deque frames; for (size_t i = 0; i < num_frames; ++i) { uint32_t size = 0; for (size_t j = 0; j < mag; ++j) { size |= *index_ptr << (j * 8); ++index_ptr; } if (base::checked_cast(size) > bytes_left) { DVLOG(1) << "Not enough data in the buffer for frame " << i; return std::deque(); } frames.push_back(FrameInfo(stream, size)); stream += size; bytes_left -= size; DVLOG(1) << "Frame " << i << ", size: " << size; } return frames; } // 8.6.1 const size_t QINDEX_RANGE = 256; const int16_t kDcQLookup[QINDEX_RANGE] = { 4, 8, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 32, 32, 33, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 48, 49, 50, 51, 52, 53, 53, 54, 55, 56, 57, 57, 58, 59, 60, 61, 62, 62, 63, 64, 65, 66, 66, 67, 68, 69, 70, 70, 71, 72, 73, 74, 74, 75, 76, 77, 78, 78, 79, 80, 81, 81, 82, 83, 84, 85, 85, 87, 88, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110, 111, 113, 114, 116, 117, 118, 120, 121, 123, 125, 127, 129, 131, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 161, 164, 166, 169, 172, 174, 177, 180, 182, 185, 187, 190, 192, 195, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 230, 233, 237, 240, 243, 247, 250, 253, 257, 261, 265, 269, 272, 276, 280, 284, 288, 292, 296, 300, 304, 309, 313, 317, 322, 326, 330, 335, 340, 344, 349, 354, 359, 364, 369, 374, 379, 384, 389, 395, 400, 406, 411, 417, 423, 429, 435, 441, 447, 454, 461, 467, 475, 482, 489, 497, 505, 513, 522, 530, 539, 549, 559, 569, 579, 590, 602, 614, 626, 640, 654, 668, 684, 700, 717, 736, 755, 775, 796, 819, 843, 869, 896, 925, 955, 988, 1022, 1058, 1098, 1139, 1184, 1232, 1282, 1336, }; const int16_t kAcQLookup[QINDEX_RANGE] = { 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191, 194, 197, 200, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 311, 317, 323, 329, 335, 341, 347, 353, 359, 366, 373, 380, 387, 394, 401, 408, 416, 424, 432, 440, 448, 456, 465, 474, 483, 492, 501, 510, 520, 530, 540, 550, 560, 571, 582, 593, 604, 615, 627, 639, 651, 663, 676, 689, 702, 715, 729, 743, 757, 771, 786, 801, 816, 832, 848, 864, 881, 898, 915, 933, 951, 969, 988, 1007, 1026, 1046, 1066, 1087, 1108, 1129, 1151, 1173, 1196, 1219, 1243, 1267, 1292, 1317, 1343, 1369, 1396, 1423, 1451, 1479, 1508, 1537, 1567, 1597, 1628, 1660, 1692, 1725, 1759, 1793, 1828, }; static_assert(arraysize(kDcQLookup) == arraysize(kAcQLookup), "quantizer lookup arrays of incorrect size"); static size_t ClampQ(size_t q) { return std::min(std::max(static_cast(0), q), arraysize(kDcQLookup) - 1); } // 8.6.1 Dequantization functions size_t Vp9Parser::GetQIndex(const Vp9QuantizationParams& quant, size_t segid) const { const Vp9SegmentationParams& segmentation = context_.segmentation(); if (segmentation.FeatureEnabled(segid, Vp9SegmentationParams::SEG_LVL_ALT_Q)) { int16_t feature_data = segmentation.FeatureData(segid, Vp9SegmentationParams::SEG_LVL_ALT_Q); size_t q_index = segmentation.abs_or_delta_update ? feature_data : quant.base_q_idx + feature_data; return ClampQ(q_index); } return quant.base_q_idx; } // 8.6.1 Dequantization functions void Vp9Parser::SetupSegmentationDequant() { const Vp9QuantizationParams& quant = curr_frame_header_.quant_params; Vp9SegmentationParams& segmentation = context_.segmentation_; DLOG_IF(ERROR, curr_frame_header_.bit_depth > 8) << "bit_depth > 8 is not supported " "yet, kDcQLookup and kAcQLookup " "need extended"; if (segmentation.enabled) { for (size_t i = 0; i < Vp9SegmentationParams::kNumSegments; ++i) { const size_t q_index = GetQIndex(quant, i); segmentation.y_dequant[i][0] = kDcQLookup[ClampQ(q_index + quant.delta_q_y_dc)]; segmentation.y_dequant[i][1] = kAcQLookup[ClampQ(q_index)]; segmentation.uv_dequant[i][0] = kDcQLookup[ClampQ(q_index + quant.delta_q_uv_dc)]; segmentation.uv_dequant[i][1] = kAcQLookup[ClampQ(q_index + quant.delta_q_uv_ac)]; } } else { const size_t q_index = quant.base_q_idx; segmentation.y_dequant[0][0] = kDcQLookup[ClampQ(q_index + quant.delta_q_y_dc)]; segmentation.y_dequant[0][1] = kAcQLookup[ClampQ(q_index)]; segmentation.uv_dequant[0][0] = kDcQLookup[ClampQ(q_index + quant.delta_q_uv_dc)]; segmentation.uv_dequant[0][1] = kAcQLookup[ClampQ(q_index + quant.delta_q_uv_ac)]; } } static int ClampLf(int lf) { const int kMaxLoopFilterLevel = 63; return std::min(std::max(0, lf), kMaxLoopFilterLevel); } // 8.8.1 Loop filter frame init process void Vp9Parser::SetupLoopFilter() { Vp9LoopFilterParams& loop_filter = context_.loop_filter_; if (!loop_filter.level) return; int scale = loop_filter.level < 32 ? 1 : 2; for (size_t i = 0; i < Vp9SegmentationParams::kNumSegments; ++i) { int level = loop_filter.level; const Vp9SegmentationParams& segmentation = context_.segmentation(); if (segmentation.FeatureEnabled(i, Vp9SegmentationParams::SEG_LVL_ALT_LF)) { int feature_data = segmentation.FeatureData(i, Vp9SegmentationParams::SEG_LVL_ALT_LF); level = ClampLf(segmentation.abs_or_delta_update ? feature_data : level + feature_data); } if (!loop_filter.delta_enabled) { memset(loop_filter.lvl[i], level, sizeof(loop_filter.lvl[i])); } else { loop_filter.lvl[i][Vp9RefType::VP9_FRAME_INTRA][0] = ClampLf( level + loop_filter.ref_deltas[Vp9RefType::VP9_FRAME_INTRA] * scale); loop_filter.lvl[i][Vp9RefType::VP9_FRAME_INTRA][1] = 0; for (size_t type = Vp9RefType::VP9_FRAME_LAST; type < Vp9RefType::VP9_FRAME_MAX; ++type) { for (size_t mode = 0; mode < Vp9LoopFilterParams::kNumModeDeltas; ++mode) { loop_filter.lvl[i][type][mode] = ClampLf(level + loop_filter.ref_deltas[type] * scale + loop_filter.mode_deltas[mode] * scale); } } } } } void Vp9Parser::UpdateSlots() { // 8.10 Reference frame update process for (size_t i = 0; i < kVp9NumRefFrames; i++) { if (curr_frame_header_.RefreshFlag(i)) { ReferenceSlot ref_slot; ref_slot.initialized = true; ref_slot.frame_width = curr_frame_header_.frame_width; ref_slot.frame_height = curr_frame_header_.frame_height; ref_slot.subsampling_x = curr_frame_header_.subsampling_x; ref_slot.subsampling_y = curr_frame_header_.subsampling_y; ref_slot.bit_depth = curr_frame_header_.bit_depth; ref_slot.profile = curr_frame_header_.profile; ref_slot.color_space = curr_frame_header_.color_space; context_.UpdateRefSlot(i, ref_slot); } } } } // namespace media