// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_ARM64 #include "src/code-stubs.h" #include "src/api-arguments.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/ic/handler-compiler.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" #include "src/isolate.h" #include "src/regexp/jsregexp.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/runtime/runtime.h" #include "src/arm64/code-stubs-arm64.h" #include "src/arm64/frames-arm64.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) { __ Mov(x5, Operand(x0, LSL, kPointerSizeLog2)); __ Str(x1, MemOperand(jssp, x5)); __ Push(x1); __ Push(x2); __ Add(x0, x0, Operand(3)); __ TailCallRuntime(Runtime::kNewArray); } void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm, ExternalReference miss) { // Update the static counter each time a new code stub is generated. isolate()->counters()->code_stubs()->Increment(); CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor(); int param_count = descriptor.GetRegisterParameterCount(); { // Call the runtime system in a fresh internal frame. FrameScope scope(masm, StackFrame::INTERNAL); DCHECK((param_count == 0) || x0.Is(descriptor.GetRegisterParameter(param_count - 1))); // Push arguments MacroAssembler::PushPopQueue queue(masm); for (int i = 0; i < param_count; ++i) { queue.Queue(descriptor.GetRegisterParameter(i)); } queue.PushQueued(); __ CallExternalReference(miss, param_count); } __ Ret(); } void DoubleToIStub::Generate(MacroAssembler* masm) { Label done; Register input = source(); Register result = destination(); DCHECK(is_truncating()); DCHECK(result.Is64Bits()); DCHECK(jssp.Is(masm->StackPointer())); int double_offset = offset(); DoubleRegister double_scratch = d0; // only used if !skip_fastpath() Register scratch1 = GetAllocatableRegisterThatIsNotOneOf(input, result); Register scratch2 = GetAllocatableRegisterThatIsNotOneOf(input, result, scratch1); __ Push(scratch1, scratch2); // Account for saved regs if input is jssp. if (input.is(jssp)) double_offset += 2 * kPointerSize; if (!skip_fastpath()) { __ Push(double_scratch); if (input.is(jssp)) double_offset += 1 * kDoubleSize; __ Ldr(double_scratch, MemOperand(input, double_offset)); // Try to convert with a FPU convert instruction. This handles all // non-saturating cases. __ TryConvertDoubleToInt64(result, double_scratch, &done); __ Fmov(result, double_scratch); } else { __ Ldr(result, MemOperand(input, double_offset)); } // If we reach here we need to manually convert the input to an int32. // Extract the exponent. Register exponent = scratch1; __ Ubfx(exponent, result, HeapNumber::kMantissaBits, HeapNumber::kExponentBits); // It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since // the mantissa gets shifted completely out of the int32_t result. __ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32); __ CzeroX(result, ge); __ B(ge, &done); // The Fcvtzs sequence handles all cases except where the conversion causes // signed overflow in the int64_t target. Since we've already handled // exponents >= 84, we can guarantee that 63 <= exponent < 84. if (masm->emit_debug_code()) { __ Cmp(exponent, HeapNumber::kExponentBias + 63); // Exponents less than this should have been handled by the Fcvt case. __ Check(ge, kUnexpectedValue); } // Isolate the mantissa bits, and set the implicit '1'. Register mantissa = scratch2; __ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits); __ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits); // Negate the mantissa if necessary. __ Tst(result, kXSignMask); __ Cneg(mantissa, mantissa, ne); // Shift the mantissa bits in the correct place. We know that we have to shift // it left here, because exponent >= 63 >= kMantissaBits. __ Sub(exponent, exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits); __ Lsl(result, mantissa, exponent); __ Bind(&done); if (!skip_fastpath()) { __ Pop(double_scratch); } __ Pop(scratch2, scratch1); __ Ret(); } // See call site for description. static void EmitIdenticalObjectComparison(MacroAssembler* masm, Register left, Register right, Register scratch, FPRegister double_scratch, Label* slow, Condition cond) { DCHECK(!AreAliased(left, right, scratch)); Label not_identical, return_equal, heap_number; Register result = x0; __ Cmp(right, left); __ B(ne, ¬_identical); // Test for NaN. Sadly, we can't just compare to factory::nan_value(), // so we do the second best thing - test it ourselves. // They are both equal and they are not both Smis so both of them are not // Smis. If it's not a heap number, then return equal. Register right_type = scratch; if ((cond == lt) || (cond == gt)) { // Call runtime on identical JSObjects. Otherwise return equal. __ JumpIfObjectType(right, right_type, right_type, FIRST_JS_RECEIVER_TYPE, slow, ge); // Call runtime on identical symbols since we need to throw a TypeError. __ Cmp(right_type, SYMBOL_TYPE); __ B(eq, slow); } else if (cond == eq) { __ JumpIfHeapNumber(right, &heap_number); } else { __ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE, &heap_number); // Comparing JS objects with <=, >= is complicated. __ Cmp(right_type, FIRST_JS_RECEIVER_TYPE); __ B(ge, slow); // Call runtime on identical symbols since we need to throw a TypeError. __ Cmp(right_type, SYMBOL_TYPE); __ B(eq, slow); // Normally here we fall through to return_equal, but undefined is // special: (undefined == undefined) == true, but // (undefined <= undefined) == false! See ECMAScript 11.8.5. if ((cond == le) || (cond == ge)) { __ Cmp(right_type, ODDBALL_TYPE); __ B(ne, &return_equal); __ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal); if (cond == le) { // undefined <= undefined should fail. __ Mov(result, GREATER); } else { // undefined >= undefined should fail. __ Mov(result, LESS); } __ Ret(); } } __ Bind(&return_equal); if (cond == lt) { __ Mov(result, GREATER); // Things aren't less than themselves. } else if (cond == gt) { __ Mov(result, LESS); // Things aren't greater than themselves. } else { __ Mov(result, EQUAL); // Things are <=, >=, ==, === themselves. } __ Ret(); // Cases lt and gt have been handled earlier, and case ne is never seen, as // it is handled in the parser (see Parser::ParseBinaryExpression). We are // only concerned with cases ge, le and eq here. if ((cond != lt) && (cond != gt)) { DCHECK((cond == ge) || (cond == le) || (cond == eq)); __ Bind(&heap_number); // Left and right are identical pointers to a heap number object. Return // non-equal if the heap number is a NaN, and equal otherwise. Comparing // the number to itself will set the overflow flag iff the number is NaN. __ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset)); __ Fcmp(double_scratch, double_scratch); __ B(vc, &return_equal); // Not NaN, so treat as normal heap number. if (cond == le) { __ Mov(result, GREATER); } else { __ Mov(result, LESS); } __ Ret(); } // No fall through here. if (FLAG_debug_code) { __ Unreachable(); } __ Bind(¬_identical); } // See call site for description. static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register left, Register right, Register left_type, Register right_type, Register scratch) { DCHECK(!AreAliased(left, right, left_type, right_type, scratch)); if (masm->emit_debug_code()) { // We assume that the arguments are not identical. __ Cmp(left, right); __ Assert(ne, kExpectedNonIdenticalObjects); } // If either operand is a JS object or an oddball value, then they are not // equal since their pointers are different. // There is no test for undetectability in strict equality. STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); Label right_non_object; __ Cmp(right_type, FIRST_JS_RECEIVER_TYPE); __ B(lt, &right_non_object); // Return non-zero - x0 already contains a non-zero pointer. DCHECK(left.is(x0) || right.is(x0)); Label return_not_equal; __ Bind(&return_not_equal); __ Ret(); __ Bind(&right_non_object); // Check for oddballs: true, false, null, undefined. __ Cmp(right_type, ODDBALL_TYPE); // If right is not ODDBALL, test left. Otherwise, set eq condition. __ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne); // If right or left is not ODDBALL, test left >= FIRST_JS_RECEIVER_TYPE. // Otherwise, right or left is ODDBALL, so set a ge condition. __ Ccmp(left_type, FIRST_JS_RECEIVER_TYPE, NVFlag, ne); __ B(ge, &return_not_equal); // Internalized strings are unique, so they can only be equal if they are the // same object. We have already tested that case, so if left and right are // both internalized strings, they cannot be equal. STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); __ Orr(scratch, left_type, right_type); __ TestAndBranchIfAllClear( scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal); } // See call site for description. static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register left, Register right, FPRegister left_d, FPRegister right_d, Label* slow, bool strict) { DCHECK(!AreAliased(left_d, right_d)); DCHECK((left.is(x0) && right.is(x1)) || (right.is(x0) && left.is(x1))); Register result = x0; Label right_is_smi, done; __ JumpIfSmi(right, &right_is_smi); // Left is the smi. Check whether right is a heap number. if (strict) { // If right is not a number and left is a smi, then strict equality cannot // succeed. Return non-equal. Label is_heap_number; __ JumpIfHeapNumber(right, &is_heap_number); // Register right is a non-zero pointer, which is a valid NOT_EQUAL result. if (!right.is(result)) { __ Mov(result, NOT_EQUAL); } __ Ret(); __ Bind(&is_heap_number); } else { // Smi compared non-strictly with a non-smi, non-heap-number. Call the // runtime. __ JumpIfNotHeapNumber(right, slow); } // Left is the smi. Right is a heap number. Load right value into right_d, and // convert left smi into double in left_d. __ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset)); __ SmiUntagToDouble(left_d, left); __ B(&done); __ Bind(&right_is_smi); // Right is a smi. Check whether the non-smi left is a heap number. if (strict) { // If left is not a number and right is a smi then strict equality cannot // succeed. Return non-equal. Label is_heap_number; __ JumpIfHeapNumber(left, &is_heap_number); // Register left is a non-zero pointer, which is a valid NOT_EQUAL result. if (!left.is(result)) { __ Mov(result, NOT_EQUAL); } __ Ret(); __ Bind(&is_heap_number); } else { // Smi compared non-strictly with a non-smi, non-heap-number. Call the // runtime. __ JumpIfNotHeapNumber(left, slow); } // Right is the smi. Left is a heap number. Load left value into left_d, and // convert right smi into double in right_d. __ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset)); __ SmiUntagToDouble(right_d, right); // Fall through to both_loaded_as_doubles. __ Bind(&done); } // Fast negative check for internalized-to-internalized equality or receiver // equality. Also handles the undetectable receiver to null/undefined // comparison. // See call site for description. static void EmitCheckForInternalizedStringsOrObjects( MacroAssembler* masm, Register left, Register right, Register left_map, Register right_map, Register left_type, Register right_type, Label* possible_strings, Label* runtime_call) { DCHECK(!AreAliased(left, right, left_map, right_map, left_type, right_type)); Register result = x0; DCHECK(left.is(x0) || right.is(x0)); Label object_test, return_equal, return_unequal, undetectable; STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); // TODO(all): reexamine this branch sequence for optimisation wrt branch // prediction. __ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test); __ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings); __ Tbnz(left_type, MaskToBit(kIsNotStringMask), runtime_call); __ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings); // Both are internalized. We already checked they weren't the same pointer so // they are not equal. Return non-equal by returning the non-zero object // pointer in x0. __ Ret(); __ Bind(&object_test); Register left_bitfield = left_type; Register right_bitfield = right_type; __ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset)); __ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset)); __ Tbnz(right_bitfield, MaskToBit(1 << Map::kIsUndetectable), &undetectable); __ Tbnz(left_bitfield, MaskToBit(1 << Map::kIsUndetectable), &return_unequal); __ CompareInstanceType(right_map, right_type, FIRST_JS_RECEIVER_TYPE); __ B(lt, runtime_call); __ CompareInstanceType(left_map, left_type, FIRST_JS_RECEIVER_TYPE); __ B(lt, runtime_call); __ Bind(&return_unequal); // Return non-equal by returning the non-zero object pointer in x0. __ Ret(); __ Bind(&undetectable); __ Tbz(left_bitfield, MaskToBit(1 << Map::kIsUndetectable), &return_unequal); // If both sides are JSReceivers, then the result is false according to // the HTML specification, which says that only comparisons with null or // undefined are affected by special casing for document.all. __ CompareInstanceType(right_map, right_type, ODDBALL_TYPE); __ B(eq, &return_equal); __ CompareInstanceType(left_map, left_type, ODDBALL_TYPE); __ B(ne, &return_unequal); __ Bind(&return_equal); __ Mov(result, EQUAL); __ Ret(); } static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input, CompareICState::State expected, Label* fail) { Label ok; if (expected == CompareICState::SMI) { __ JumpIfNotSmi(input, fail); } else if (expected == CompareICState::NUMBER) { __ JumpIfSmi(input, &ok); __ JumpIfNotHeapNumber(input, fail); } // We could be strict about internalized/non-internalized here, but as long as // hydrogen doesn't care, the stub doesn't have to care either. __ Bind(&ok); } void CompareICStub::GenerateGeneric(MacroAssembler* masm) { Register lhs = x1; Register rhs = x0; Register result = x0; Condition cond = GetCondition(); Label miss; CompareICStub_CheckInputType(masm, lhs, left(), &miss); CompareICStub_CheckInputType(masm, rhs, right(), &miss); Label slow; // Call builtin. Label not_smis, both_loaded_as_doubles; Label not_two_smis, smi_done; __ JumpIfEitherNotSmi(lhs, rhs, ¬_two_smis); __ SmiUntag(lhs); __ Sub(result, lhs, Operand::UntagSmi(rhs)); __ Ret(); __ Bind(¬_two_smis); // NOTICE! This code is only reached after a smi-fast-case check, so it is // certain that at least one operand isn't a smi. // Handle the case where the objects are identical. Either returns the answer // or goes to slow. Only falls through if the objects were not identical. EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond); // If either is a smi (we know that at least one is not a smi), then they can // only be strictly equal if the other is a HeapNumber. __ JumpIfBothNotSmi(lhs, rhs, ¬_smis); // Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that // can: // 1) Return the answer. // 2) Branch to the slow case. // 3) Fall through to both_loaded_as_doubles. // In case 3, we have found out that we were dealing with a number-number // comparison. The double values of the numbers have been loaded, right into // rhs_d, left into lhs_d. FPRegister rhs_d = d0; FPRegister lhs_d = d1; EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, &slow, strict()); __ Bind(&both_loaded_as_doubles); // The arguments have been converted to doubles and stored in rhs_d and // lhs_d. Label nan; __ Fcmp(lhs_d, rhs_d); __ B(vs, &nan); // Overflow flag set if either is NaN. STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1)); __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL). __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0. __ Ret(); __ Bind(&nan); // Left and/or right is a NaN. Load the result register with whatever makes // the comparison fail, since comparisons with NaN always fail (except ne, // which is filtered out at a higher level.) DCHECK(cond != ne); if ((cond == lt) || (cond == le)) { __ Mov(result, GREATER); } else { __ Mov(result, LESS); } __ Ret(); __ Bind(¬_smis); // At this point we know we are dealing with two different objects, and // neither of them is a smi. The objects are in rhs_ and lhs_. // Load the maps and types of the objects. Register rhs_map = x10; Register rhs_type = x11; Register lhs_map = x12; Register lhs_type = x13; __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); if (strict()) { // This emits a non-equal return sequence for some object types, or falls // through if it was not lucky. EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14); } Label check_for_internalized_strings; Label flat_string_check; // Check for heap number comparison. Branch to earlier double comparison code // if they are heap numbers, otherwise, branch to internalized string check. __ Cmp(rhs_type, HEAP_NUMBER_TYPE); __ B(ne, &check_for_internalized_strings); __ Cmp(lhs_map, rhs_map); // If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat // string check. __ B(ne, &flat_string_check); // Both lhs_ and rhs_ are heap numbers. Load them and branch to the double // comparison code. __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset)); __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset)); __ B(&both_loaded_as_doubles); __ Bind(&check_for_internalized_strings); // In the strict case, the EmitStrictTwoHeapObjectCompare already took care // of internalized strings. if ((cond == eq) && !strict()) { // Returns an answer for two internalized strings or two detectable objects. // Otherwise branches to the string case or not both strings case. EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map, lhs_type, rhs_type, &flat_string_check, &slow); } // Check for both being sequential one-byte strings, // and inline if that is the case. __ Bind(&flat_string_check); __ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x14, x15, &slow); __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, x10, x11); if (cond == eq) { StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11, x12); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11, x12, x13); } // Never fall through to here. if (FLAG_debug_code) { __ Unreachable(); } __ Bind(&slow); if (cond == eq) { { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(cp); __ Call(strict() ? isolate()->builtins()->StrictEqual() : isolate()->builtins()->Equal(), RelocInfo::CODE_TARGET); __ Pop(cp); } // Turn true into 0 and false into some non-zero value. STATIC_ASSERT(EQUAL == 0); __ LoadRoot(x1, Heap::kTrueValueRootIndex); __ Sub(x0, x0, x1); __ Ret(); } else { __ Push(lhs, rhs); int ncr; // NaN compare result if ((cond == lt) || (cond == le)) { ncr = GREATER; } else { DCHECK((cond == gt) || (cond == ge)); // remaining cases ncr = LESS; } __ Mov(x10, Smi::FromInt(ncr)); __ Push(x10); // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ TailCallRuntime(Runtime::kCompare); } __ Bind(&miss); GenerateMiss(masm); } void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { CPURegList saved_regs = kCallerSaved; CPURegList saved_fp_regs = kCallerSavedFP; // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. // We don't care if MacroAssembler scratch registers are corrupted. saved_regs.Remove(*(masm->TmpList())); saved_fp_regs.Remove(*(masm->FPTmpList())); __ PushCPURegList(saved_regs); if (save_doubles()) { __ PushCPURegList(saved_fp_regs); } AllowExternalCallThatCantCauseGC scope(masm); __ Mov(x0, ExternalReference::isolate_address(isolate())); __ CallCFunction( ExternalReference::store_buffer_overflow_function(isolate()), 1, 0); if (save_doubles()) { __ PopCPURegList(saved_fp_regs); } __ PopCPURegList(saved_regs); __ Ret(); } void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( Isolate* isolate) { StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); stub1.GetCode(); StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); stub2.GetCode(); } void StoreRegistersStateStub::Generate(MacroAssembler* masm) { MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); UseScratchRegisterScope temps(masm); Register saved_lr = temps.UnsafeAcquire(to_be_pushed_lr()); Register return_address = temps.AcquireX(); __ Mov(return_address, lr); // Restore lr with the value it had before the call to this stub (the value // which must be pushed). __ Mov(lr, saved_lr); __ PushSafepointRegisters(); __ Ret(return_address); } void RestoreRegistersStateStub::Generate(MacroAssembler* masm) { MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); UseScratchRegisterScope temps(masm); Register return_address = temps.AcquireX(); // Preserve the return address (lr will be clobbered by the pop). __ Mov(return_address, lr); __ PopSafepointRegisters(); __ Ret(return_address); } void MathPowStub::Generate(MacroAssembler* masm) { // Stack on entry: // jssp[0]: Exponent (as a tagged value). // jssp[1]: Base (as a tagged value). // // The (tagged) result will be returned in x0, as a heap number. Register exponent_tagged = MathPowTaggedDescriptor::exponent(); DCHECK(exponent_tagged.is(x11)); Register exponent_integer = MathPowIntegerDescriptor::exponent(); DCHECK(exponent_integer.is(x12)); Register saved_lr = x19; FPRegister result_double = d0; FPRegister base_double = d0; FPRegister exponent_double = d1; FPRegister base_double_copy = d2; FPRegister scratch1_double = d6; FPRegister scratch0_double = d7; // A fast-path for integer exponents. Label exponent_is_smi, exponent_is_integer; // Allocate a heap number for the result, and return it. Label done; // Unpack the inputs. if (exponent_type() == TAGGED) { __ JumpIfSmi(exponent_tagged, &exponent_is_smi); __ Ldr(exponent_double, FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset)); } // Handle double (heap number) exponents. if (exponent_type() != INTEGER) { // Detect integer exponents stored as doubles and handle those in the // integer fast-path. __ TryRepresentDoubleAsInt64(exponent_integer, exponent_double, scratch0_double, &exponent_is_integer); { AllowExternalCallThatCantCauseGC scope(masm); __ Mov(saved_lr, lr); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 0, 2); __ Mov(lr, saved_lr); __ B(&done); } // Handle SMI exponents. __ Bind(&exponent_is_smi); // x10 base_tagged The tagged base (input). // x11 exponent_tagged The tagged exponent (input). // d1 base_double The base as a double. __ SmiUntag(exponent_integer, exponent_tagged); } __ Bind(&exponent_is_integer); // x10 base_tagged The tagged base (input). // x11 exponent_tagged The tagged exponent (input). // x12 exponent_integer The exponent as an integer. // d1 base_double The base as a double. // Find abs(exponent). For negative exponents, we can find the inverse later. Register exponent_abs = x13; __ Cmp(exponent_integer, 0); __ Cneg(exponent_abs, exponent_integer, mi); // x13 exponent_abs The value of abs(exponent_integer). // Repeatedly multiply to calculate the power. // result = 1.0; // For each bit n (exponent_integer{n}) { // if (exponent_integer{n}) { // result *= base; // } // base *= base; // if (remaining bits in exponent_integer are all zero) { // break; // } // } Label power_loop, power_loop_entry, power_loop_exit; __ Fmov(scratch1_double, base_double); __ Fmov(base_double_copy, base_double); __ Fmov(result_double, 1.0); __ B(&power_loop_entry); __ Bind(&power_loop); __ Fmul(scratch1_double, scratch1_double, scratch1_double); __ Lsr(exponent_abs, exponent_abs, 1); __ Cbz(exponent_abs, &power_loop_exit); __ Bind(&power_loop_entry); __ Tbz(exponent_abs, 0, &power_loop); __ Fmul(result_double, result_double, scratch1_double); __ B(&power_loop); __ Bind(&power_loop_exit); // If the exponent was positive, result_double holds the result. __ Tbz(exponent_integer, kXSignBit, &done); // The exponent was negative, so find the inverse. __ Fmov(scratch0_double, 1.0); __ Fdiv(result_double, scratch0_double, result_double); // ECMA-262 only requires Math.pow to return an 'implementation-dependent // approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow // to calculate the subnormal value 2^-1074. This method of calculating // negative powers doesn't work because 2^1074 overflows to infinity. To // catch this corner-case, we bail out if the result was 0. (This can only // occur if the divisor is infinity or the base is zero.) __ Fcmp(result_double, 0.0); __ B(&done, ne); AllowExternalCallThatCantCauseGC scope(masm); __ Mov(saved_lr, lr); __ Fmov(base_double, base_double_copy); __ Scvtf(exponent_double, exponent_integer); __ CallCFunction(ExternalReference::power_double_double_function(isolate()), 0, 2); __ Mov(lr, saved_lr); __ Bind(&done); __ Ret(); } void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { // It is important that the following stubs are generated in this order // because pregenerated stubs can only call other pregenerated stubs. // RecordWriteStub uses StoreBufferOverflowStub, which in turn uses // CEntryStub. CEntryStub::GenerateAheadOfTime(isolate); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); StubFailureTrampolineStub::GenerateAheadOfTime(isolate); CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate); CreateAllocationSiteStub::GenerateAheadOfTime(isolate); CreateWeakCellStub::GenerateAheadOfTime(isolate); BinaryOpICStub::GenerateAheadOfTime(isolate); StoreRegistersStateStub::GenerateAheadOfTime(isolate); RestoreRegistersStateStub::GenerateAheadOfTime(isolate); BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); StoreFastElementStub::GenerateAheadOfTime(isolate); } void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) { StoreRegistersStateStub stub(isolate); stub.GetCode(); } void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) { RestoreRegistersStateStub stub(isolate); stub.GetCode(); } void CodeStub::GenerateFPStubs(Isolate* isolate) { // Floating-point code doesn't get special handling in ARM64, so there's // nothing to do here. USE(isolate); } bool CEntryStub::NeedsImmovableCode() { // CEntryStub stores the return address on the stack before calling into // C++ code. In some cases, the VM accesses this address, but it is not used // when the C++ code returns to the stub because LR holds the return address // in AAPCS64. If the stub is moved (perhaps during a GC), we could end up // returning to dead code. // TODO(jbramley): Whilst this is the only analysis that makes sense, I can't // find any comment to confirm this, and I don't hit any crashes whatever // this function returns. The anaylsis should be properly confirmed. return true; } void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { CEntryStub stub(isolate, 1, kDontSaveFPRegs); stub.GetCode(); CEntryStub stub_fp(isolate, 1, kSaveFPRegs); stub_fp.GetCode(); } void CEntryStub::Generate(MacroAssembler* masm) { // The Abort mechanism relies on CallRuntime, which in turn relies on // CEntryStub, so until this stub has been generated, we have to use a // fall-back Abort mechanism. // // Note that this stub must be generated before any use of Abort. MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); ASM_LOCATION("CEntryStub::Generate entry"); ProfileEntryHookStub::MaybeCallEntryHook(masm); // Register parameters: // x0: argc (including receiver, untagged) // x1: target // If argv_in_register(): // x11: argv (pointer to first argument) // // The stack on entry holds the arguments and the receiver, with the receiver // at the highest address: // // jssp]argc-1]: receiver // jssp[argc-2]: arg[argc-2] // ... ... // jssp[1]: arg[1] // jssp[0]: arg[0] // // The arguments are in reverse order, so that arg[argc-2] is actually the // first argument to the target function and arg[0] is the last. DCHECK(jssp.Is(__ StackPointer())); const Register& argc_input = x0; const Register& target_input = x1; // Calculate argv, argc and the target address, and store them in // callee-saved registers so we can retry the call without having to reload // these arguments. // TODO(jbramley): If the first call attempt succeeds in the common case (as // it should), then we might be better off putting these parameters directly // into their argument registers, rather than using callee-saved registers and // preserving them on the stack. const Register& argv = x21; const Register& argc = x22; const Register& target = x23; // Derive argv from the stack pointer so that it points to the first argument // (arg[argc-2]), or just below the receiver in case there are no arguments. // - Adjust for the arg[] array. Register temp_argv = x11; if (!argv_in_register()) { __ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2)); // - Adjust for the receiver. __ Sub(temp_argv, temp_argv, 1 * kPointerSize); } // Reserve three slots to preserve x21-x23 callee-saved registers. If the // result size is too large to be returned in registers then also reserve // space for the return value. int extra_stack_space = 3 + (result_size() <= 2 ? 0 : result_size()); // Enter the exit frame. FrameScope scope(masm, StackFrame::MANUAL); __ EnterExitFrame( save_doubles(), x10, extra_stack_space, is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); DCHECK(csp.Is(__ StackPointer())); // Poke callee-saved registers into reserved space. __ Poke(argv, 1 * kPointerSize); __ Poke(argc, 2 * kPointerSize); __ Poke(target, 3 * kPointerSize); if (result_size() > 2) { // Save the location of the return value into x8 for call. __ Add(x8, __ StackPointer(), Operand(4 * kPointerSize)); } // We normally only keep tagged values in callee-saved registers, as they // could be pushed onto the stack by called stubs and functions, and on the // stack they can confuse the GC. However, we're only calling C functions // which can push arbitrary data onto the stack anyway, and so the GC won't // examine that part of the stack. __ Mov(argc, argc_input); __ Mov(target, target_input); __ Mov(argv, temp_argv); // x21 : argv // x22 : argc // x23 : call target // // The stack (on entry) holds the arguments and the receiver, with the // receiver at the highest address: // // argv[8]: receiver // argv -> argv[0]: arg[argc-2] // ... ... // argv[...]: arg[1] // argv[...]: arg[0] // // Immediately below (after) this is the exit frame, as constructed by // EnterExitFrame: // fp[8]: CallerPC (lr) // fp -> fp[0]: CallerFP (old fp) // fp[-8]: Space reserved for SPOffset. // fp[-16]: CodeObject() // csp[...]: Saved doubles, if saved_doubles is true. // csp[32]: Alignment padding, if necessary. // csp[24]: Preserved x23 (used for target). // csp[16]: Preserved x22 (used for argc). // csp[8]: Preserved x21 (used for argv). // csp -> csp[0]: Space reserved for the return address. // // After a successful call, the exit frame, preserved registers (x21-x23) and // the arguments (including the receiver) are dropped or popped as // appropriate. The stub then returns. // // After an unsuccessful call, the exit frame and suchlike are left // untouched, and the stub either throws an exception by jumping to one of // the exception_returned label. DCHECK(csp.Is(__ StackPointer())); // Prepare AAPCS64 arguments to pass to the builtin. __ Mov(x0, argc); __ Mov(x1, argv); __ Mov(x2, ExternalReference::isolate_address(isolate())); Label return_location; __ Adr(x12, &return_location); __ Poke(x12, 0); if (__ emit_debug_code()) { // Verify that the slot below fp[kSPOffset]-8 points to the return location // (currently in x12). UseScratchRegisterScope temps(masm); Register temp = temps.AcquireX(); __ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset)); __ Ldr(temp, MemOperand(temp, -static_cast(kXRegSize))); __ Cmp(temp, x12); __ Check(eq, kReturnAddressNotFoundInFrame); } // Call the builtin. __ Blr(target); __ Bind(&return_location); if (result_size() > 2) { DCHECK_EQ(3, result_size()); // Read result values stored on stack. __ Ldr(x0, MemOperand(__ StackPointer(), 4 * kPointerSize)); __ Ldr(x1, MemOperand(__ StackPointer(), 5 * kPointerSize)); __ Ldr(x2, MemOperand(__ StackPointer(), 6 * kPointerSize)); } // Result returned in x0, x1:x0 or x2:x1:x0 - do not destroy these registers! // x0 result0 The return code from the call. // x1 result1 For calls which return ObjectPair or ObjectTriple. // x2 result2 For calls which return ObjectTriple. // x21 argv // x22 argc // x23 target const Register& result = x0; // Check result for exception sentinel. Label exception_returned; __ CompareRoot(result, Heap::kExceptionRootIndex); __ B(eq, &exception_returned); // The call succeeded, so unwind the stack and return. // Restore callee-saved registers x21-x23. __ Mov(x11, argc); __ Peek(argv, 1 * kPointerSize); __ Peek(argc, 2 * kPointerSize); __ Peek(target, 3 * kPointerSize); __ LeaveExitFrame(save_doubles(), x10, true); DCHECK(jssp.Is(__ StackPointer())); if (!argv_in_register()) { // Drop the remaining stack slots and return from the stub. __ Drop(x11); } __ AssertFPCRState(); __ Ret(); // The stack pointer is still csp if we aren't returning, and the frame // hasn't changed (except for the return address). __ SetStackPointer(csp); // Handling of exception. __ Bind(&exception_returned); ExternalReference pending_handler_context_address( Isolate::kPendingHandlerContextAddress, isolate()); ExternalReference pending_handler_code_address( Isolate::kPendingHandlerCodeAddress, isolate()); ExternalReference pending_handler_offset_address( Isolate::kPendingHandlerOffsetAddress, isolate()); ExternalReference pending_handler_fp_address( Isolate::kPendingHandlerFPAddress, isolate()); ExternalReference pending_handler_sp_address( Isolate::kPendingHandlerSPAddress, isolate()); // Ask the runtime for help to determine the handler. This will set x0 to // contain the current pending exception, don't clobber it. ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler, isolate()); DCHECK(csp.Is(masm->StackPointer())); { FrameScope scope(masm, StackFrame::MANUAL); __ Mov(x0, 0); // argc. __ Mov(x1, 0); // argv. __ Mov(x2, ExternalReference::isolate_address(isolate())); __ CallCFunction(find_handler, 3); } // We didn't execute a return case, so the stack frame hasn't been updated // (except for the return address slot). However, we don't need to initialize // jssp because the throw method will immediately overwrite it when it // unwinds the stack. __ SetStackPointer(jssp); // Retrieve the handler context, SP and FP. __ Mov(cp, Operand(pending_handler_context_address)); __ Ldr(cp, MemOperand(cp)); __ Mov(jssp, Operand(pending_handler_sp_address)); __ Ldr(jssp, MemOperand(jssp)); __ Mov(csp, jssp); __ Mov(fp, Operand(pending_handler_fp_address)); __ Ldr(fp, MemOperand(fp)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (cp == 0) for non-JS frames. Label not_js_frame; __ Cbz(cp, ¬_js_frame); __ Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ Bind(¬_js_frame); // Compute the handler entry address and jump to it. __ Mov(x10, Operand(pending_handler_code_address)); __ Ldr(x10, MemOperand(x10)); __ Mov(x11, Operand(pending_handler_offset_address)); __ Ldr(x11, MemOperand(x11)); __ Add(x10, x10, Code::kHeaderSize - kHeapObjectTag); __ Add(x10, x10, x11); __ Br(x10); } // This is the entry point from C++. 5 arguments are provided in x0-x4. // See use of the CALL_GENERATED_CODE macro for example in src/execution.cc. // Input: // x0: code entry. // x1: function. // x2: receiver. // x3: argc. // x4: argv. // Output: // x0: result. void JSEntryStub::Generate(MacroAssembler* masm) { DCHECK(jssp.Is(__ StackPointer())); Register code_entry = x0; // Enable instruction instrumentation. This only works on the simulator, and // will have no effect on the model or real hardware. __ EnableInstrumentation(); Label invoke, handler_entry, exit; // Push callee-saved registers and synchronize the system stack pointer (csp) // and the JavaScript stack pointer (jssp). // // We must not write to jssp until after the PushCalleeSavedRegisters() // call, since jssp is itself a callee-saved register. __ SetStackPointer(csp); __ PushCalleeSavedRegisters(); __ Mov(jssp, csp); __ SetStackPointer(jssp); ProfileEntryHookStub::MaybeCallEntryHook(masm); // Set up the reserved register for 0.0. __ Fmov(fp_zero, 0.0); // Build an entry frame (see layout below). StackFrame::Type marker = type(); int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used. __ Mov(x13, bad_frame_pointer); __ Mov(x12, StackFrame::TypeToMarker(marker)); __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate())); __ Ldr(x10, MemOperand(x11)); __ Push(x13, x12, xzr, x10); // Set up fp. __ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset); // Push the JS entry frame marker. Also set js_entry_sp if this is the // outermost JS call. Label non_outermost_js, done; ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); __ Mov(x10, ExternalReference(js_entry_sp)); __ Ldr(x11, MemOperand(x10)); __ Cbnz(x11, &non_outermost_js); __ Str(fp, MemOperand(x10)); __ Mov(x12, StackFrame::OUTERMOST_JSENTRY_FRAME); __ Push(x12); __ B(&done); __ Bind(&non_outermost_js); // We spare one instruction by pushing xzr since the marker is 0. DCHECK(StackFrame::INNER_JSENTRY_FRAME == 0); __ Push(xzr); __ Bind(&done); // The frame set up looks like this: // jssp[0] : JS entry frame marker. // jssp[1] : C entry FP. // jssp[2] : stack frame marker. // jssp[3] : stack frmae marker. // jssp[4] : bad frame pointer 0xfff...ff <- fp points here. // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ B(&invoke); // Prevent the constant pool from being emitted between the record of the // handler_entry position and the first instruction of the sequence here. // There is no risk because Assembler::Emit() emits the instruction before // checking for constant pool emission, but we do not want to depend on // that. { Assembler::BlockPoolsScope block_pools(masm); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushTryHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate()))); } __ Str(code_entry, MemOperand(x10)); __ LoadRoot(x0, Heap::kExceptionRootIndex); __ B(&exit); // Invoke: Link this frame into the handler chain. __ Bind(&invoke); __ PushStackHandler(); // If an exception not caught by another handler occurs, this handler // returns control to the code after the B(&invoke) above, which // restores all callee-saved registers (including cp and fp) to their // saved values before returning a failure to C. // Invoke the function by calling through the JS entry trampoline builtin. // Notice that we cannot store a reference to the trampoline code directly in // this stub, because runtime stubs are not traversed when doing GC. // Expected registers by Builtins::JSEntryTrampoline // x0: code entry. // x1: function. // x2: receiver. // x3: argc. // x4: argv. ExternalReference entry(type() == StackFrame::ENTRY_CONSTRUCT ? Builtins::kJSConstructEntryTrampoline : Builtins::kJSEntryTrampoline, isolate()); __ Mov(x10, entry); // Call the JSEntryTrampoline. __ Ldr(x11, MemOperand(x10)); // Dereference the address. __ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag); __ Blr(x12); // Unlink this frame from the handler chain. __ PopStackHandler(); __ Bind(&exit); // x0 holds the result. // The stack pointer points to the top of the entry frame pushed on entry from // C++ (at the beginning of this stub): // jssp[0] : JS entry frame marker. // jssp[1] : C entry FP. // jssp[2] : stack frame marker. // jssp[3] : stack frmae marker. // jssp[4] : bad frame pointer 0xfff...ff <- fp points here. // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; __ Pop(x10); __ Cmp(x10, StackFrame::OUTERMOST_JSENTRY_FRAME); __ B(ne, &non_outermost_js_2); __ Mov(x11, ExternalReference(js_entry_sp)); __ Str(xzr, MemOperand(x11)); __ Bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ Pop(x10); __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate())); __ Str(x10, MemOperand(x11)); // Reset the stack to the callee saved registers. __ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes); // Restore the callee-saved registers and return. DCHECK(jssp.Is(__ StackPointer())); __ Mov(csp, jssp); __ SetStackPointer(csp); __ PopCalleeSavedRegisters(); // After this point, we must not modify jssp because it is a callee-saved // register which we have just restored. __ Ret(); } void RegExpExecStub::Generate(MacroAssembler* masm) { #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExec); #else // V8_INTERPRETED_REGEXP // Stack frame on entry. // jssp[0]: last_match_info (expected JSArray) // jssp[8]: previous index // jssp[16]: subject string // jssp[24]: JSRegExp object Label runtime; // Use of registers for this function. // Variable registers: // x10-x13 used as scratch registers // w0 string_type type of subject string // x2 jsstring_length subject string length // x3 jsregexp_object JSRegExp object // w4 string_encoding Latin1 or UC16 // w5 sliced_string_offset if the string is a SlicedString // offset to the underlying string // w6 string_representation groups attributes of the string: // - is a string // - type of the string // - is a short external string Register string_type = w0; Register jsstring_length = x2; Register jsregexp_object = x3; Register string_encoding = w4; Register sliced_string_offset = w5; Register string_representation = w6; // These are in callee save registers and will be preserved by the call // to the native RegExp code, as this code is called using the normal // C calling convention. When calling directly from generated code the // native RegExp code will not do a GC and therefore the content of // these registers are safe to use after the call. // x19 subject subject string // x20 regexp_data RegExp data (FixedArray) // x21 last_match_info_elements info relative to the last match // (FixedArray) // x22 code_object generated regexp code Register subject = x19; Register regexp_data = x20; Register last_match_info_elements = x21; Register code_object = x22; // Stack frame. // jssp[00]: last_match_info (JSArray) // jssp[08]: previous index // jssp[16]: subject string // jssp[24]: JSRegExp object const int kLastMatchInfoOffset = 0 * kPointerSize; const int kPreviousIndexOffset = 1 * kPointerSize; const int kSubjectOffset = 2 * kPointerSize; const int kJSRegExpOffset = 3 * kPointerSize; // Ensure that a RegExp stack is allocated. ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address(isolate()); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(isolate()); __ Mov(x10, address_of_regexp_stack_memory_size); __ Ldr(x10, MemOperand(x10)); __ Cbz(x10, &runtime); // Check that the first argument is a JSRegExp object. DCHECK(jssp.Is(__ StackPointer())); __ Peek(jsregexp_object, kJSRegExpOffset); __ JumpIfSmi(jsregexp_object, &runtime); __ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime); // Check that the RegExp has been compiled (data contains a fixed array). __ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset)); if (FLAG_debug_code) { STATIC_ASSERT(kSmiTag == 0); __ Tst(regexp_data, kSmiTagMask); __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected); __ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE); __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); } // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); __ Cmp(x10, Smi::FromInt(JSRegExp::IRREGEXP)); __ B(ne, &runtime); // Check that the number of captures fit in the static offsets vector buffer. // We have always at least one capture for the whole match, plus additional // ones due to capturing parentheses. A capture takes 2 registers. // The number of capture registers then is (number_of_captures + 1) * 2. __ Ldrsw(x10, UntagSmiFieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Check (number_of_captures + 1) * 2 <= offsets vector size // number_of_captures * 2 <= offsets vector size - 2 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); __ Add(x10, x10, x10); __ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2); __ B(hi, &runtime); // Initialize offset for possibly sliced string. __ Mov(sliced_string_offset, 0); DCHECK(jssp.Is(__ StackPointer())); __ Peek(subject, kSubjectOffset); __ JumpIfSmi(subject, &runtime); __ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset)); // Handle subject string according to its encoding and representation: // (1) Sequential string? If yes, go to (4). // (2) Sequential or cons? If not, go to (5). // (3) Cons string. If the string is flat, replace subject with first string // and go to (1). Otherwise bail out to runtime. // (4) Sequential string. Load regexp code according to encoding. // (E) Carry on. /// [...] // Deferred code at the end of the stub: // (5) Long external string? If not, go to (7). // (6) External string. Make it, offset-wise, look like a sequential string. // Go to (4). // (7) Short external string or not a string? If yes, bail out to runtime. // (8) Sliced or thin string. Replace subject with parent. Go to (1). Label check_underlying; // (1) Label seq_string; // (4) Label not_seq_nor_cons; // (5) Label external_string; // (6) Label not_long_external; // (7) __ Bind(&check_underlying); __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); // (1) Sequential string? If yes, go to (4). __ And(string_representation, string_type, kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask); // We depend on the fact that Strings of type // SeqString and not ShortExternalString are defined // by the following pattern: // string_type: 0XX0 XX00 // ^ ^ ^^ // | | || // | | is a SeqString // | is not a short external String // is a String STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); STATIC_ASSERT(kShortExternalStringTag != 0); __ Cbz(string_representation, &seq_string); // Go to (4). // (2) Sequential or cons? If not, go to (5). STATIC_ASSERT(kConsStringTag < kExternalStringTag); STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); STATIC_ASSERT(kThinStringTag > kExternalStringTag); STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); __ Cmp(string_representation, kExternalStringTag); __ B(ge, ¬_seq_nor_cons); // Go to (5). // (3) Cons string. Check that it's flat. __ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset)); __ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime); // Replace subject with first string. __ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); __ B(&check_underlying); // (4) Sequential string. Load regexp code according to encoding. __ Bind(&seq_string); // Check that the third argument is a positive smi less than the subject // string length. A negative value will be greater (unsigned comparison). DCHECK(jssp.Is(__ StackPointer())); __ Peek(x10, kPreviousIndexOffset); __ JumpIfNotSmi(x10, &runtime); __ Cmp(jsstring_length, x10); __ B(ls, &runtime); // Argument 2 (x1): We need to load argument 2 (the previous index) into x1 // before entering the exit frame. __ SmiUntag(x1, x10); // The fourth bit determines the string encoding in string_type. STATIC_ASSERT(kOneByteStringTag == 0x08); STATIC_ASSERT(kTwoByteStringTag == 0x00); STATIC_ASSERT(kStringEncodingMask == 0x08); // Find the code object based on the assumptions above. // kDataOneByteCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset // of kPointerSize to reach the latter. STATIC_ASSERT(JSRegExp::kDataOneByteCodeOffset + kPointerSize == JSRegExp::kDataUC16CodeOffset); __ Mov(x10, kPointerSize); // We will need the encoding later: Latin1 = 0x08 // UC16 = 0x00 __ Ands(string_encoding, string_type, kStringEncodingMask); __ CzeroX(x10, ne); __ Add(x10, regexp_data, x10); __ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataOneByteCodeOffset)); // (E) Carry on. String handling is done. // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // a smi (code flushing support). __ JumpIfSmi(code_object, &runtime); // All checks done. Now push arguments for native regexp code. __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, x10, x11); // Isolates: note we add an additional parameter here (isolate pointer). __ EnterExitFrame(false, x10, 1); DCHECK(csp.Is(__ StackPointer())); // We have 9 arguments to pass to the regexp code, therefore we have to pass // one on the stack and the rest as registers. // Note that the placement of the argument on the stack isn't standard // AAPCS64: // csp[0]: Space for the return address placed by DirectCEntryStub. // csp[8]: Argument 9, the current isolate address. __ Mov(x10, ExternalReference::isolate_address(isolate())); __ Poke(x10, kPointerSize); Register length = w11; Register previous_index_in_bytes = w12; Register start = x13; // Load start of the subject string. __ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag); // Load the length from the original subject string from the previous stack // frame. Therefore we have to use fp, which points exactly to two pointer // sizes below the previous sp. (Because creating a new stack frame pushes // the previous fp onto the stack and decrements sp by 2 * kPointerSize.) __ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); __ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset)); // Handle UC16 encoding, two bytes make one character. // string_encoding: if Latin1: 0x08 // if UC16: 0x00 STATIC_ASSERT(kStringEncodingMask == 0x08); __ Ubfx(string_encoding, string_encoding, 3, 1); __ Eor(string_encoding, string_encoding, 1); // string_encoding: if Latin1: 0 // if UC16: 1 // Convert string positions from characters to bytes. // Previous index is in x1. __ Lsl(previous_index_in_bytes, w1, string_encoding); __ Lsl(length, length, string_encoding); __ Lsl(sliced_string_offset, sliced_string_offset, string_encoding); // Argument 1 (x0): Subject string. __ Mov(x0, subject); // Argument 2 (x1): Previous index, already there. // Argument 3 (x2): Get the start of input. // Start of input = start of string + previous index + substring offset // (0 if the string // is not sliced). __ Add(w10, previous_index_in_bytes, sliced_string_offset); __ Add(x2, start, Operand(w10, UXTW)); // Argument 4 (x3): // End of input = start of input + (length of input - previous index) __ Sub(w10, length, previous_index_in_bytes); __ Add(x3, x2, Operand(w10, UXTW)); // Argument 5 (x4): static offsets vector buffer. __ Mov(x4, ExternalReference::address_of_static_offsets_vector(isolate())); // Argument 6 (x5): Set the number of capture registers to zero to force // global regexps to behave as non-global. This stub is not used for global // regexps. __ Mov(x5, 0); // Argument 7 (x6): Start (high end) of backtracking stack memory area. __ Mov(x10, address_of_regexp_stack_memory_address); __ Ldr(x10, MemOperand(x10)); __ Mov(x11, address_of_regexp_stack_memory_size); __ Ldr(x11, MemOperand(x11)); __ Add(x6, x10, x11); // Argument 8 (x7): Indicate that this is a direct call from JavaScript. __ Mov(x7, 1); // Locate the code entry and call it. __ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag); DirectCEntryStub stub(isolate()); stub.GenerateCall(masm, code_object); __ LeaveExitFrame(false, x10, true); // The generated regexp code returns an int32 in w0. Label failure, exception; __ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure); __ CompareAndBranch(w0, NativeRegExpMacroAssembler::EXCEPTION, eq, &exception); __ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime); // Success: process the result from the native regexp code. Register number_of_capture_registers = x12; // Calculate number of capture registers (number_of_captures + 1) * 2 // and store it in the last match info. __ Ldrsw(x10, UntagSmiFieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); __ Add(x10, x10, x10); __ Add(number_of_capture_registers, x10, 2); // Check that the last match info is a FixedArray. DCHECK(jssp.Is(__ StackPointer())); __ Peek(last_match_info_elements, kLastMatchInfoOffset); __ JumpIfSmi(last_match_info_elements, &runtime); // Check that the object has fast elements. __ Ldr(x10, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); __ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime); // Check that the last match info has space for the capture registers and the // additional information (overhead). // (number_of_captures + 1) * 2 + overhead <= last match info size // (number_of_captures * 2) + 2 + overhead <= last match info size // number_of_capture_registers + overhead <= last match info size __ Ldrsw(x10, UntagSmiFieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); __ Add(x11, number_of_capture_registers, RegExpMatchInfo::kLastMatchOverhead); __ Cmp(x11, x10); __ B(gt, &runtime); // Store the capture count. __ SmiTag(x10, number_of_capture_registers); __ Str(x10, FieldMemOperand(last_match_info_elements, RegExpMatchInfo::kNumberOfCapturesOffset)); // Store last subject and last input. __ Str(subject, FieldMemOperand(last_match_info_elements, RegExpMatchInfo::kLastSubjectOffset)); // Use x10 as the subject string in order to only need // one RecordWriteStub. __ Mov(x10, subject); __ RecordWriteField(last_match_info_elements, RegExpMatchInfo::kLastSubjectOffset, x10, x11, kLRHasNotBeenSaved, kDontSaveFPRegs); __ Str(subject, FieldMemOperand(last_match_info_elements, RegExpMatchInfo::kLastInputOffset)); __ Mov(x10, subject); __ RecordWriteField(last_match_info_elements, RegExpMatchInfo::kLastInputOffset, x10, x11, kLRHasNotBeenSaved, kDontSaveFPRegs); Register last_match_offsets = x13; Register offsets_vector_index = x14; Register current_offset = x15; // Get the static offsets vector filled by the native regexp code // and fill the last match info. ExternalReference address_of_static_offsets_vector = ExternalReference::address_of_static_offsets_vector(isolate()); __ Mov(offsets_vector_index, address_of_static_offsets_vector); Label next_capture, done; // Capture register counter starts from number of capture registers and // iterates down to zero (inclusive). __ Add(last_match_offsets, last_match_info_elements, RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag); __ Bind(&next_capture); __ Subs(number_of_capture_registers, number_of_capture_registers, 2); __ B(mi, &done); // Read two 32 bit values from the static offsets vector buffer into // an X register __ Ldr(current_offset, MemOperand(offsets_vector_index, kWRegSize * 2, PostIndex)); // Store the smi values in the last match info. __ SmiTag(x10, current_offset); // Clearing the 32 bottom bits gives us a Smi. STATIC_ASSERT(kSmiTag == 0); __ Bic(x11, current_offset, kSmiShiftMask); __ Stp(x10, x11, MemOperand(last_match_offsets, kXRegSize * 2, PostIndex)); __ B(&next_capture); __ Bind(&done); // Return last match info. __ Mov(x0, last_match_info_elements); // Drop the 4 arguments of the stub from the stack. __ Drop(4); __ Ret(); __ Bind(&exception); Register exception_value = x0; // A stack overflow (on the backtrack stack) may have occured // in the RegExp code but no exception has been created yet. // If there is no pending exception, handle that in the runtime system. __ Mov(x10, Operand(isolate()->factory()->the_hole_value())); __ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate()))); __ Ldr(exception_value, MemOperand(x11)); __ Cmp(x10, exception_value); __ B(eq, &runtime); // For exception, throw the exception again. __ TailCallRuntime(Runtime::kRegExpExecReThrow); __ Bind(&failure); __ Mov(x0, Operand(isolate()->factory()->null_value())); // Drop the 4 arguments of the stub from the stack. __ Drop(4); __ Ret(); __ Bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExec); // Deferred code for string handling. // (5) Long external string? If not, go to (7). __ Bind(¬_seq_nor_cons); // Compare flags are still set. __ B(ne, ¬_long_external); // Go to (7). // (6) External string. Make it, offset-wise, look like a sequential string. __ Bind(&external_string); if (masm->emit_debug_code()) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset)); __ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset)); __ Tst(x10, kIsIndirectStringMask); __ Check(eq, kExternalStringExpectedButNotFound); __ And(x10, x10, kStringRepresentationMask); __ Cmp(x10, 0); __ Check(ne, kExternalStringExpectedButNotFound); } __ Ldr(subject, FieldMemOperand(subject, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag); __ B(&seq_string); // Go to (4). // (7) If this is a short external string or not a string, bail out to // runtime. __ Bind(¬_long_external); STATIC_ASSERT(kShortExternalStringTag != 0); __ TestAndBranchIfAnySet(string_representation, kShortExternalStringMask | kIsNotStringMask, &runtime); // (8) Sliced or thin string. Replace subject with parent. Label thin_string; __ Cmp(string_representation, kThinStringTag); __ B(eq, &thin_string); __ Ldr(sliced_string_offset, UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset)); __ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); __ B(&check_underlying); // Go to (1). __ bind(&thin_string); __ Ldr(subject, FieldMemOperand(subject, ThinString::kActualOffset)); __ B(&check_underlying); // Go to (1). #endif } static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub, Register argc, Register function, Register feedback_vector, Register index, Register new_target) { FrameScope scope(masm, StackFrame::INTERNAL); // Number-of-arguments register must be smi-tagged to call out. __ SmiTag(argc); __ Push(argc, function, feedback_vector, index); __ Push(cp); DCHECK(feedback_vector.Is(x2) && index.Is(x3)); __ CallStub(stub); __ Pop(cp); __ Pop(index, feedback_vector, function, argc); __ SmiUntag(argc); } static void GenerateRecordCallTarget(MacroAssembler* masm, Register argc, Register function, Register feedback_vector, Register index, Register new_target, Register scratch1, Register scratch2, Register scratch3) { ASM_LOCATION("GenerateRecordCallTarget"); DCHECK(!AreAliased(scratch1, scratch2, scratch3, argc, function, feedback_vector, index, new_target)); // Cache the called function in a feedback vector slot. Cache states are // uninitialized, monomorphic (indicated by a JSFunction), and megamorphic. // argc : number of arguments to the construct function // function : the function to call // feedback_vector : the feedback vector // index : slot in feedback vector (smi) Label initialize, done, miss, megamorphic, not_array_function; DCHECK_EQ(*FeedbackVector::MegamorphicSentinel(masm->isolate()), masm->isolate()->heap()->megamorphic_symbol()); DCHECK_EQ(*FeedbackVector::UninitializedSentinel(masm->isolate()), masm->isolate()->heap()->uninitialized_symbol()); // Load the cache state. Register feedback = scratch1; Register feedback_map = scratch2; Register feedback_value = scratch3; __ Add(feedback, feedback_vector, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); __ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize)); // A monomorphic cache hit or an already megamorphic state: invoke the // function without changing the state. // We don't know if feedback value is a WeakCell or a Symbol, but it's // harmless to read at this position in a symbol (see static asserts in // feedback-vector.h). Label check_allocation_site; __ Ldr(feedback_value, FieldMemOperand(feedback, WeakCell::kValueOffset)); __ Cmp(function, feedback_value); __ B(eq, &done); __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex); __ B(eq, &done); __ Ldr(feedback_map, FieldMemOperand(feedback, HeapObject::kMapOffset)); __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex); __ B(ne, &check_allocation_site); // If the weak cell is cleared, we have a new chance to become monomorphic. __ JumpIfSmi(feedback_value, &initialize); __ B(&megamorphic); __ bind(&check_allocation_site); // If we came here, we need to see if we are the array function. // If we didn't have a matching function, and we didn't find the megamorph // sentinel, then we have in the slot either some other function or an // AllocationSite. __ JumpIfNotRoot(feedback_map, Heap::kAllocationSiteMapRootIndex, &miss); // Make sure the function is the Array() function __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, scratch1); __ Cmp(function, scratch1); __ B(ne, &megamorphic); __ B(&done); __ Bind(&miss); // A monomorphic miss (i.e, here the cache is not uninitialized) goes // megamorphic. __ JumpIfRoot(scratch1, Heap::kuninitialized_symbolRootIndex, &initialize); // MegamorphicSentinel is an immortal immovable object (undefined) so no // write-barrier is needed. __ Bind(&megamorphic); __ Add(scratch1, feedback_vector, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); __ LoadRoot(scratch2, Heap::kmegamorphic_symbolRootIndex); __ Str(scratch2, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); __ B(&done); // An uninitialized cache is patched with the function or sentinel to // indicate the ElementsKind if function is the Array constructor. __ Bind(&initialize); // Make sure the function is the Array() function __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, scratch1); __ Cmp(function, scratch1); __ B(ne, ¬_array_function); // The target function is the Array constructor, // Create an AllocationSite if we don't already have it, store it in the // slot. CreateAllocationSiteStub create_stub(masm->isolate()); CallStubInRecordCallTarget(masm, &create_stub, argc, function, feedback_vector, index, new_target); __ B(&done); __ Bind(¬_array_function); CreateWeakCellStub weak_cell_stub(masm->isolate()); CallStubInRecordCallTarget(masm, &weak_cell_stub, argc, function, feedback_vector, index, new_target); __ Bind(&done); // Increment the call count for all function calls. __ Add(scratch1, feedback_vector, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); __ Add(scratch1, scratch1, Operand(FixedArray::kHeaderSize + kPointerSize)); __ Ldr(scratch2, FieldMemOperand(scratch1, 0)); __ Add(scratch2, scratch2, Operand(Smi::FromInt(1))); __ Str(scratch2, FieldMemOperand(scratch1, 0)); } void CallConstructStub::Generate(MacroAssembler* masm) { ASM_LOCATION("CallConstructStub::Generate"); // x0 : number of arguments // x1 : the function to call // x2 : feedback vector // x3 : slot in feedback vector (Smi, for RecordCallTarget) Register function = x1; Label non_function; // Check that the function is not a smi. __ JumpIfSmi(function, &non_function); // Check that the function is a JSFunction. Register object_type = x10; __ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE, &non_function); GenerateRecordCallTarget(masm, x0, function, x2, x3, x4, x5, x11, x12); __ Add(x5, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2)); Label feedback_register_initialized; // Put the AllocationSite from the feedback vector into x2, or undefined. __ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize)); __ Ldr(x5, FieldMemOperand(x2, AllocationSite::kMapOffset)); __ JumpIfRoot(x5, Heap::kAllocationSiteMapRootIndex, &feedback_register_initialized); __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); __ bind(&feedback_register_initialized); __ AssertUndefinedOrAllocationSite(x2, x5); __ Mov(x3, function); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ Ldr(x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(x4, FieldMemOperand(x4, SharedFunctionInfo::kConstructStubOffset)); __ Add(x4, x4, Code::kHeaderSize - kHeapObjectTag); __ Br(x4); __ Bind(&non_function); __ Mov(x3, function); __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { // If the receiver is a smi trigger the non-string case. if (check_mode_ == RECEIVER_IS_UNKNOWN) { __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_); } // If the index is non-smi trigger the non-smi case. __ JumpIfNotSmi(index_, &index_not_smi_); __ Bind(&got_smi_index_); // Check for index out of range. __ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset)); __ Cmp(result_, Operand::UntagSmi(index_)); __ B(ls, index_out_of_range_); __ SmiUntag(index_); StringCharLoadGenerator::Generate(masm, object_, index_.W(), result_, &call_runtime_); __ SmiTag(result_); __ Bind(&exit_); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, EmbedMode embed_mode, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); __ Bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ JumpIfNotHeapNumber(index_, index_not_number_); call_helper.BeforeCall(masm); if (embed_mode == PART_OF_IC_HANDLER) { __ Push(LoadWithVectorDescriptor::VectorRegister(), LoadWithVectorDescriptor::SlotRegister(), object_, index_); } else { // Save object_ on the stack and pass index_ as argument for runtime call. __ Push(object_, index_); } __ CallRuntime(Runtime::kNumberToSmi); // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ Mov(index_, x0); if (embed_mode == PART_OF_IC_HANDLER) { __ Pop(object_, LoadWithVectorDescriptor::SlotRegister(), LoadWithVectorDescriptor::VectorRegister()); } else { __ Pop(object_); } // Reload the instance type. __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. __ JumpIfNotSmi(index_, index_out_of_range_); // Otherwise, return to the fast path. __ B(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ Bind(&call_runtime_); call_helper.BeforeCall(masm); __ SmiTag(index_); __ Push(object_, index_); __ CallRuntime(Runtime::kStringCharCodeAtRT); __ Mov(result_, x0); call_helper.AfterCall(masm); __ B(&exit_); __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); } void CompareICStub::GenerateBooleans(MacroAssembler* masm) { // Inputs are in x0 (lhs) and x1 (rhs). DCHECK_EQ(CompareICState::BOOLEAN, state()); ASM_LOCATION("CompareICStub[Booleans]"); Label miss; __ CheckMap(x1, x2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK); __ CheckMap(x0, x3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK); if (!Token::IsEqualityOp(op())) { __ Ldr(x1, FieldMemOperand(x1, Oddball::kToNumberOffset)); __ AssertSmi(x1); __ Ldr(x0, FieldMemOperand(x0, Oddball::kToNumberOffset)); __ AssertSmi(x0); } __ Sub(x0, x1, x0); __ Ret(); __ Bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateSmis(MacroAssembler* masm) { // Inputs are in x0 (lhs) and x1 (rhs). DCHECK(state() == CompareICState::SMI); ASM_LOCATION("CompareICStub[Smis]"); Label miss; // Bail out (to 'miss') unless both x0 and x1 are smis. __ JumpIfEitherNotSmi(x0, x1, &miss); if (GetCondition() == eq) { // For equality we do not care about the sign of the result. __ Sub(x0, x0, x1); } else { // Untag before subtracting to avoid handling overflow. __ SmiUntag(x1); __ Sub(x0, x1, Operand::UntagSmi(x0)); } __ Ret(); __ Bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateNumbers(MacroAssembler* masm) { DCHECK(state() == CompareICState::NUMBER); ASM_LOCATION("CompareICStub[HeapNumbers]"); Label unordered, maybe_undefined1, maybe_undefined2; Label miss, handle_lhs, values_in_d_regs; Label untag_rhs, untag_lhs; Register result = x0; Register rhs = x0; Register lhs = x1; FPRegister rhs_d = d0; FPRegister lhs_d = d1; if (left() == CompareICState::SMI) { __ JumpIfNotSmi(lhs, &miss); } if (right() == CompareICState::SMI) { __ JumpIfNotSmi(rhs, &miss); } __ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag); __ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag); // Load rhs if it's a heap number. __ JumpIfSmi(rhs, &handle_lhs); __ JumpIfNotHeapNumber(rhs, &maybe_undefined1); __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset)); // Load lhs if it's a heap number. __ Bind(&handle_lhs); __ JumpIfSmi(lhs, &values_in_d_regs); __ JumpIfNotHeapNumber(lhs, &maybe_undefined2); __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset)); __ Bind(&values_in_d_regs); __ Fcmp(lhs_d, rhs_d); __ B(vs, &unordered); // Overflow flag set if either is NaN. STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1)); __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL). __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0. __ Ret(); __ Bind(&unordered); CompareICStub stub(isolate(), op(), CompareICState::GENERIC, CompareICState::GENERIC, CompareICState::GENERIC); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); __ Bind(&maybe_undefined1); if (Token::IsOrderedRelationalCompareOp(op())) { __ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss); __ JumpIfSmi(lhs, &unordered); __ JumpIfNotHeapNumber(lhs, &maybe_undefined2); __ B(&unordered); } __ Bind(&maybe_undefined2); if (Token::IsOrderedRelationalCompareOp(op())) { __ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered); } __ Bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::INTERNALIZED_STRING); ASM_LOCATION("CompareICStub[InternalizedStrings]"); Label miss; Register result = x0; Register rhs = x0; Register lhs = x1; // Check that both operands are heap objects. __ JumpIfEitherSmi(lhs, rhs, &miss); // Check that both operands are internalized strings. Register rhs_map = x10; Register lhs_map = x11; Register rhs_type = x10; Register lhs_type = x11; __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0)); __ Orr(x12, lhs_type, rhs_type); __ TestAndBranchIfAnySet( x12, kIsNotStringMask | kIsNotInternalizedMask, &miss); // Internalized strings are compared by identity. STATIC_ASSERT(EQUAL == 0); __ Cmp(lhs, rhs); __ Cset(result, ne); __ Ret(); __ Bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) { DCHECK(state() == CompareICState::UNIQUE_NAME); ASM_LOCATION("CompareICStub[UniqueNames]"); DCHECK(GetCondition() == eq); Label miss; Register result = x0; Register rhs = x0; Register lhs = x1; Register lhs_instance_type = w2; Register rhs_instance_type = w3; // Check that both operands are heap objects. __ JumpIfEitherSmi(lhs, rhs, &miss); // Check that both operands are unique names. This leaves the instance // types loaded in tmp1 and tmp2. __ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset)); __ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset)); __ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset)); // To avoid a miss, each instance type should be either SYMBOL_TYPE or it // should have kInternalizedTag set. __ JumpIfNotUniqueNameInstanceType(lhs_instance_type, &miss); __ JumpIfNotUniqueNameInstanceType(rhs_instance_type, &miss); // Unique names are compared by identity. STATIC_ASSERT(EQUAL == 0); __ Cmp(lhs, rhs); __ Cset(result, ne); __ Ret(); __ Bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::STRING); ASM_LOCATION("CompareICStub[Strings]"); Label miss; bool equality = Token::IsEqualityOp(op()); Register result = x0; Register rhs = x0; Register lhs = x1; // Check that both operands are heap objects. __ JumpIfEitherSmi(rhs, lhs, &miss); // Check that both operands are strings. Register rhs_map = x10; Register lhs_map = x11; Register rhs_type = x10; Register lhs_type = x11; __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset)); __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ Orr(x12, lhs_type, rhs_type); __ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss); // Fast check for identical strings. Label not_equal; __ Cmp(lhs, rhs); __ B(ne, ¬_equal); __ Mov(result, EQUAL); __ Ret(); __ Bind(¬_equal); // Handle not identical strings // Check that both strings are internalized strings. If they are, we're done // because we already know they are not identical. We know they are both // strings. if (equality) { DCHECK(GetCondition() == eq); STATIC_ASSERT(kInternalizedTag == 0); Label not_internalized_strings; __ Orr(x12, lhs_type, rhs_type); __ TestAndBranchIfAnySet( x12, kIsNotInternalizedMask, ¬_internalized_strings); // Result is in rhs (x0), and not EQUAL, as rhs is not a smi. __ Ret(); __ Bind(¬_internalized_strings); } // Check that both strings are sequential one-byte. Label runtime; __ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x12, x13, &runtime); // Compare flat one-byte strings. Returns when done. if (equality) { StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11, x12); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11, x12, x13); } // Handle more complex cases in runtime. __ Bind(&runtime); if (equality) { { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(lhs, rhs); __ CallRuntime(Runtime::kStringEqual); } __ LoadRoot(x1, Heap::kTrueValueRootIndex); __ Sub(x0, x0, x1); __ Ret(); } else { __ Push(lhs, rhs); __ TailCallRuntime(Runtime::kStringCompare); } __ Bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateReceivers(MacroAssembler* masm) { DCHECK_EQ(CompareICState::RECEIVER, state()); ASM_LOCATION("CompareICStub[Receivers]"); Label miss; Register result = x0; Register rhs = x0; Register lhs = x1; __ JumpIfEitherSmi(rhs, lhs, &miss); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); __ JumpIfObjectType(rhs, x10, x10, FIRST_JS_RECEIVER_TYPE, &miss, lt); __ JumpIfObjectType(lhs, x10, x10, FIRST_JS_RECEIVER_TYPE, &miss, lt); DCHECK_EQ(eq, GetCondition()); __ Sub(result, rhs, lhs); __ Ret(); __ Bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) { ASM_LOCATION("CompareICStub[KnownReceivers]"); Label miss; Handle cell = Map::WeakCellForMap(known_map_); Register result = x0; Register rhs = x0; Register lhs = x1; __ JumpIfEitherSmi(rhs, lhs, &miss); Register rhs_map = x10; Register lhs_map = x11; Register map = x12; __ GetWeakValue(map, cell); __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset)); __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ Cmp(rhs_map, map); __ B(ne, &miss); __ Cmp(lhs_map, map); __ B(ne, &miss); if (Token::IsEqualityOp(op())) { __ Sub(result, rhs, lhs); __ Ret(); } else { Register ncr = x2; if (op() == Token::LT || op() == Token::LTE) { __ Mov(ncr, Smi::FromInt(GREATER)); } else { __ Mov(ncr, Smi::FromInt(LESS)); } __ Push(lhs, rhs, ncr); __ TailCallRuntime(Runtime::kCompare); } __ Bind(&miss); GenerateMiss(masm); } // This method handles the case where a compare stub had the wrong // implementation. It calls a miss handler, which re-writes the stub. All other // CompareICStub::Generate* methods should fall back into this one if their // operands were not the expected types. void CompareICStub::GenerateMiss(MacroAssembler* masm) { ASM_LOCATION("CompareICStub[Miss]"); Register stub_entry = x11; { FrameScope scope(masm, StackFrame::INTERNAL); Register op = x10; Register left = x1; Register right = x0; // Preserve some caller-saved registers. __ Push(x1, x0, lr); // Push the arguments. __ Mov(op, Smi::FromInt(this->op())); __ Push(left, right, op); // Call the miss handler. This also pops the arguments. __ CallRuntime(Runtime::kCompareIC_Miss); // Compute the entry point of the rewritten stub. __ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag); // Restore caller-saved registers. __ Pop(lr, x0, x1); } // Tail-call to the new stub. __ Jump(stub_entry); } void StringHelper::GenerateFlatOneByteStringEquals( MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3) { DCHECK(!AreAliased(left, right, scratch1, scratch2, scratch3)); Register result = x0; Register left_length = scratch1; Register right_length = scratch2; // Compare lengths. If lengths differ, strings can't be equal. Lengths are // smis, and don't need to be untagged. Label strings_not_equal, check_zero_length; __ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset)); __ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset)); __ Cmp(left_length, right_length); __ B(eq, &check_zero_length); __ Bind(&strings_not_equal); __ Mov(result, Smi::FromInt(NOT_EQUAL)); __ Ret(); // Check if the length is zero. If so, the strings must be equal (and empty.) Label compare_chars; __ Bind(&check_zero_length); STATIC_ASSERT(kSmiTag == 0); __ Cbnz(left_length, &compare_chars); __ Mov(result, Smi::FromInt(EQUAL)); __ Ret(); // Compare characters. Falls through if all characters are equal. __ Bind(&compare_chars); GenerateOneByteCharsCompareLoop(masm, left, right, left_length, scratch2, scratch3, &strings_not_equal); // Characters in strings are equal. __ Mov(result, Smi::FromInt(EQUAL)); __ Ret(); } void StringHelper::GenerateCompareFlatOneByteStrings( MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { DCHECK(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4)); Label result_not_equal, compare_lengths; // Find minimum length and length difference. Register length_delta = scratch3; __ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); __ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ Subs(length_delta, scratch1, scratch2); Register min_length = scratch1; __ Csel(min_length, scratch2, scratch1, gt); __ Cbz(min_length, &compare_lengths); // Compare loop. GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2, scratch4, &result_not_equal); // Compare lengths - strings up to min-length are equal. __ Bind(&compare_lengths); DCHECK(Smi::FromInt(EQUAL) == static_cast(0)); // Use length_delta as result if it's zero. Register result = x0; __ Subs(result, length_delta, 0); __ Bind(&result_not_equal); Register greater = x10; Register less = x11; __ Mov(greater, Smi::FromInt(GREATER)); __ Mov(less, Smi::FromInt(LESS)); __ CmovX(result, greater, gt); __ CmovX(result, less, lt); __ Ret(); } void StringHelper::GenerateOneByteCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch1, Register scratch2, Label* chars_not_equal) { DCHECK(!AreAliased(left, right, length, scratch1, scratch2)); // Change index to run from -length to -1 by adding length to string // start. This means that loop ends when index reaches zero, which // doesn't need an additional compare. __ SmiUntag(length); __ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag); __ Add(left, left, scratch1); __ Add(right, right, scratch1); Register index = length; __ Neg(index, length); // index = -length; // Compare loop Label loop; __ Bind(&loop); __ Ldrb(scratch1, MemOperand(left, index)); __ Ldrb(scratch2, MemOperand(right, index)); __ Cmp(scratch1, scratch2); __ B(ne, chars_not_equal); __ Add(index, index, 1); __ Cbnz(index, &loop); } void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x1 : left // -- x0 : right // -- lr : return address // ----------------------------------- // Load x2 with the allocation site. We stick an undefined dummy value here // and replace it with the real allocation site later when we instantiate this // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). __ LoadObject(x2, handle(isolate()->heap()->undefined_value())); // Make sure that we actually patched the allocation site. if (FLAG_debug_code) { __ AssertNotSmi(x2, kExpectedAllocationSite); __ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset)); __ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex, kExpectedAllocationSite); } // Tail call into the stub that handles binary operations with allocation // sites. BinaryOpWithAllocationSiteStub stub(isolate(), state()); __ TailCallStub(&stub); } void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { // We need some extra registers for this stub, they have been allocated // but we need to save them before using them. regs_.Save(masm); if (remembered_set_action() == EMIT_REMEMBERED_SET) { Label dont_need_remembered_set; Register val = regs_.scratch0(); __ Ldr(val, MemOperand(regs_.address())); __ JumpIfNotInNewSpace(val, &dont_need_remembered_set); __ JumpIfInNewSpace(regs_.object(), &dont_need_remembered_set); // First notify the incremental marker if necessary, then update the // remembered set. CheckNeedsToInformIncrementalMarker( masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); // Restore the extra scratch registers we used. __ RememberedSetHelper(object(), address(), value(), // scratch1 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); __ Bind(&dont_need_remembered_set); } CheckNeedsToInformIncrementalMarker( masm, kReturnOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); // Restore the extra scratch registers we used. __ Ret(); } void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode()); Register address = x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address(); DCHECK(!address.Is(regs_.object())); DCHECK(!address.Is(x0)); __ Mov(address, regs_.address()); __ Mov(x0, regs_.object()); __ Mov(x1, address); __ Mov(x2, ExternalReference::isolate_address(isolate())); AllowExternalCallThatCantCauseGC scope(masm); ExternalReference function = ExternalReference::incremental_marking_record_write_function( isolate()); __ CallCFunction(function, 3, 0); regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode()); } void RecordWriteStub::CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode) { Label on_black; Label need_incremental; Label need_incremental_pop_scratch; // If the object is not black we don't have to inform the incremental marker. __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); regs_.Restore(masm); // Restore the extra scratch registers we used. if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), // scratch1 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ Bind(&on_black); // Get the value from the slot. Register val = regs_.scratch0(); __ Ldr(val, MemOperand(regs_.address())); if (mode == INCREMENTAL_COMPACTION) { Label ensure_not_white; __ CheckPageFlagClear(val, regs_.scratch1(), MemoryChunk::kEvacuationCandidateMask, &ensure_not_white); __ CheckPageFlagClear(regs_.object(), regs_.scratch1(), MemoryChunk::kSkipEvacuationSlotsRecordingMask, &need_incremental); __ Bind(&ensure_not_white); } // We need extra registers for this, so we push the object and the address // register temporarily. __ Push(regs_.address(), regs_.object()); __ JumpIfWhite(val, regs_.scratch1(), // Scratch. regs_.object(), // Scratch. regs_.address(), // Scratch. regs_.scratch2(), // Scratch. &need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); regs_.Restore(masm); // Restore the extra scratch registers we used. if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), // scratch1 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ Bind(&need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); __ Bind(&need_incremental); // Fall through when we need to inform the incremental marker. } void RecordWriteStub::Generate(MacroAssembler* masm) { Label skip_to_incremental_noncompacting; Label skip_to_incremental_compacting; // We patch these two first instructions back and forth between a nop and // real branch when we start and stop incremental heap marking. // Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops // are generated. // See RecordWriteStub::Patch for details. { InstructionAccurateScope scope(masm, 2); __ adr(xzr, &skip_to_incremental_noncompacting); __ adr(xzr, &skip_to_incremental_compacting); } if (remembered_set_action() == EMIT_REMEMBERED_SET) { __ RememberedSetHelper(object(), address(), value(), // scratch1 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } __ Ret(); __ Bind(&skip_to_incremental_noncompacting); GenerateIncremental(masm, INCREMENTAL); __ Bind(&skip_to_incremental_compacting); GenerateIncremental(masm, INCREMENTAL_COMPACTION); } void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { CEntryStub ces(isolate(), 1, kSaveFPRegs); __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); int parameter_count_offset = StubFailureTrampolineFrameConstants::kArgumentsLengthOffset; __ Ldr(x1, MemOperand(fp, parameter_count_offset)); if (function_mode() == JS_FUNCTION_STUB_MODE) { __ Add(x1, x1, 1); } masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); __ Drop(x1); // Return to IC Miss stub, continuation still on stack. __ Ret(); } // The entry hook is a "BumpSystemStackPointer" instruction (sub), followed by // a "Push lr" instruction, followed by a call. static const unsigned int kProfileEntryHookCallSize = Assembler::kCallSizeWithRelocation + (2 * kInstructionSize); void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { if (masm->isolate()->function_entry_hook() != NULL) { ProfileEntryHookStub stub(masm->isolate()); Assembler::BlockConstPoolScope no_const_pools(masm); DontEmitDebugCodeScope no_debug_code(masm); Label entry_hook_call_start; __ Bind(&entry_hook_call_start); __ Push(lr); __ CallStub(&stub); DCHECK(masm->SizeOfCodeGeneratedSince(&entry_hook_call_start) == kProfileEntryHookCallSize); __ Pop(lr); } } void ProfileEntryHookStub::Generate(MacroAssembler* masm) { MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm); // Save all kCallerSaved registers (including lr), since this can be called // from anywhere. // TODO(jbramley): What about FP registers? __ PushCPURegList(kCallerSaved); DCHECK(kCallerSaved.IncludesAliasOf(lr)); const int kNumSavedRegs = kCallerSaved.Count(); // Compute the function's address as the first argument. __ Sub(x0, lr, kProfileEntryHookCallSize); #if V8_HOST_ARCH_ARM64 uintptr_t entry_hook = reinterpret_cast(isolate()->function_entry_hook()); __ Mov(x10, entry_hook); #else // Under the simulator we need to indirect the entry hook through a trampoline // function at a known address. ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); __ Mov(x10, Operand(ExternalReference(&dispatcher, ExternalReference::BUILTIN_CALL, isolate()))); // It additionally takes an isolate as a third parameter __ Mov(x2, ExternalReference::isolate_address(isolate())); #endif // The caller's return address is above the saved temporaries. // Grab its location for the second argument to the hook. __ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize); { // Create a dummy frame, as CallCFunction requires this. FrameScope frame(masm, StackFrame::MANUAL); __ CallCFunction(x10, 2, 0); } __ PopCPURegList(kCallerSaved); __ Ret(); } void DirectCEntryStub::Generate(MacroAssembler* masm) { // When calling into C++ code the stack pointer must be csp. // Therefore this code must use csp for peek/poke operations when the // stub is generated. When the stub is called // (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame // and configure the stack pointer *before* doing the call. const Register old_stack_pointer = __ StackPointer(); __ SetStackPointer(csp); // Put return address on the stack (accessible to GC through exit frame pc). __ Poke(lr, 0); // Call the C++ function. __ Blr(x10); // Return to calling code. __ Peek(lr, 0); __ AssertFPCRState(); __ Ret(); __ SetStackPointer(old_stack_pointer); } void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) { // Make sure the caller configured the stack pointer (see comment in // DirectCEntryStub::Generate). DCHECK(csp.Is(__ StackPointer())); intptr_t code = reinterpret_cast(GetCode().location()); __ Mov(lr, Operand(code, RelocInfo::CODE_TARGET)); __ Mov(x10, target); // Branch to the stub. __ Blr(lr); } void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, Label* miss, Label* done, Register receiver, Register properties, Handle name, Register scratch0) { DCHECK(!AreAliased(receiver, properties, scratch0)); DCHECK(name->IsUniqueName()); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the hole value). for (int i = 0; i < kInlinedProbes; i++) { // scratch0 points to properties hash. // Compute the masked index: (hash + i + i * i) & mask. Register index = scratch0; // Capacity is smi 2^n. __ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset)); __ Sub(index, index, 1); __ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i)); // Scale the index by multiplying by the entry size. STATIC_ASSERT(NameDictionary::kEntrySize == 3); __ Add(index, index, Operand(index, LSL, 1)); // index *= 3. Register entity_name = scratch0; // Having undefined at this place means the name is not contained. Register tmp = index; __ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2)); __ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); __ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done); // Stop if found the property. __ Cmp(entity_name, Operand(name)); __ B(eq, miss); Label good; __ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good); // Check if the entry name is not a unique name. __ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); __ Ldrb(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(entity_name, miss); __ Bind(&good); } CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6); spill_list.Combine(lr); spill_list.Remove(scratch0); // Scratch registers don't need to be preserved. __ PushCPURegList(spill_list); __ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ Mov(x1, Operand(name)); NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP); __ CallStub(&stub); // Move stub return value to scratch0. Note that scratch0 is not included in // spill_list and won't be clobbered by PopCPURegList. __ Mov(scratch0, x0); __ PopCPURegList(spill_list); __ Cbz(scratch0, done); __ B(miss); } void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. // // Arguments are in x0 and x1: // x0: property dictionary. // x1: the name of the property we are looking for. // // Return value is in x0 and is zero if lookup failed, non zero otherwise. // If the lookup is successful, x2 will contains the index of the entry. Register result = x0; Register dictionary = x0; Register key = x1; Register index = x2; Register mask = x3; Register hash = x4; Register undefined = x5; Register entry_key = x6; Label in_dictionary, maybe_in_dictionary, not_in_dictionary; __ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset)); __ Sub(mask, mask, 1); __ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset)); __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); for (int i = kInlinedProbes; i < kTotalProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. // Capacity is smi 2^n. if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. DCHECK(NameDictionary::GetProbeOffset(i) < 1 << (32 - Name::kHashFieldOffset)); __ Add(index, hash, NameDictionary::GetProbeOffset(i) << Name::kHashShift); } else { __ Mov(index, hash); } __ And(index, mask, Operand(index, LSR, Name::kHashShift)); // Scale the index by multiplying by the entry size. STATIC_ASSERT(NameDictionary::kEntrySize == 3); __ Add(index, index, Operand(index, LSL, 1)); // index *= 3. __ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2)); __ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset)); // Having undefined at this place means the name is not contained. __ Cmp(entry_key, undefined); __ B(eq, ¬_in_dictionary); // Stop if found the property. __ Cmp(entry_key, key); __ B(eq, &in_dictionary); if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) { // Check if the entry name is not a unique name. __ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); __ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary); } } __ Bind(&maybe_in_dictionary); // If we are doing negative lookup then probing failure should be // treated as a lookup success. For positive lookup, probing failure // should be treated as lookup failure. if (mode() == POSITIVE_LOOKUP) { __ Mov(result, 0); __ Ret(); } __ Bind(&in_dictionary); __ Mov(result, 1); __ Ret(); __ Bind(¬_in_dictionary); __ Mov(result, 0); __ Ret(); } template static void CreateArrayDispatch(MacroAssembler* masm, AllocationSiteOverrideMode mode) { ASM_LOCATION("CreateArrayDispatch"); if (mode == DISABLE_ALLOCATION_SITES) { T stub(masm->isolate(), GetInitialFastElementsKind(), mode); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { Register kind = x3; int last_index = GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { Label next; ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i); // TODO(jbramley): Is this the best way to handle this? Can we make the // tail calls conditional, rather than hopping over each one? __ CompareAndBranch(kind, candidate_kind, ne, &next); T stub(masm->isolate(), candidate_kind); __ TailCallStub(&stub); __ Bind(&next); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } // TODO(jbramley): If this needs to be a special case, make it a proper template // specialization, and not a separate function. static void CreateArrayDispatchOneArgument(MacroAssembler* masm, AllocationSiteOverrideMode mode) { ASM_LOCATION("CreateArrayDispatchOneArgument"); // x0 - argc // x1 - constructor? // x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) // x3 - kind (if mode != DISABLE_ALLOCATION_SITES) // sp[0] - last argument Register allocation_site = x2; Register kind = x3; Label normal_sequence; if (mode == DONT_OVERRIDE) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4); STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); // Is the low bit set? If so, the array is holey. __ Tbnz(kind, 0, &normal_sequence); } // Look at the last argument. // TODO(jbramley): What does a 0 argument represent? __ Peek(x10, 0); __ Cbz(x10, &normal_sequence); if (mode == DISABLE_ALLOCATION_SITES) { ElementsKind initial = GetInitialFastElementsKind(); ElementsKind holey_initial = GetHoleyElementsKind(initial); ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub_holey); __ Bind(&normal_sequence); ArraySingleArgumentConstructorStub stub(masm->isolate(), initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { // We are going to create a holey array, but our kind is non-holey. // Fix kind and retry (only if we have an allocation site in the slot). __ Orr(kind, kind, 1); if (FLAG_debug_code) { __ Ldr(x10, FieldMemOperand(allocation_site, 0)); __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex, &normal_sequence); __ Assert(eq, kExpectedAllocationSite); } // Save the resulting elements kind in type info. We can't just store 'kind' // in the AllocationSite::transition_info field because elements kind is // restricted to a portion of the field; upper bits need to be left alone. STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ Ldr(x11, FieldMemOperand(allocation_site, AllocationSite::kTransitionInfoOffset)); __ Add(x11, x11, Smi::FromInt(kFastElementsKindPackedToHoley)); __ Str(x11, FieldMemOperand(allocation_site, AllocationSite::kTransitionInfoOffset)); __ Bind(&normal_sequence); int last_index = GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { Label next; ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i); __ CompareAndBranch(kind, candidate_kind, ne, &next); ArraySingleArgumentConstructorStub stub(masm->isolate(), candidate_kind); __ TailCallStub(&stub); __ Bind(&next); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } template static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { int to_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= to_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); T stub(isolate, kind); stub.GetCode(); if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); stub1.GetCode(); } } } void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) { ArrayConstructorStubAheadOfTimeHelper( isolate); ArrayConstructorStubAheadOfTimeHelper( isolate); ArrayNArgumentsConstructorStub stub(isolate); stub.GetCode(); ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; for (int i = 0; i < 2; i++) { // For internal arrays we only need a few things InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); stubh1.GetCode(); InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); stubh2.GetCode(); } } void ArrayConstructorStub::GenerateDispatchToArrayStub( MacroAssembler* masm, AllocationSiteOverrideMode mode) { Register argc = x0; Label zero_case, n_case; __ Cbz(argc, &zero_case); __ Cmp(argc, 1); __ B(ne, &n_case); // One argument. CreateArrayDispatchOneArgument(masm, mode); __ Bind(&zero_case); // No arguments. CreateArrayDispatch(masm, mode); __ Bind(&n_case); // N arguments. ArrayNArgumentsConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void ArrayConstructorStub::Generate(MacroAssembler* masm) { ASM_LOCATION("ArrayConstructorStub::Generate"); // ----------- S t a t e ------------- // -- x0 : argc (only if argument_count() is ANY or MORE_THAN_ONE) // -- x1 : constructor // -- x2 : AllocationSite or undefined // -- x3 : new target // -- sp[0] : last argument // ----------------------------------- Register constructor = x1; Register allocation_site = x2; Register new_target = x3; if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. Label unexpected_map, map_ok; // Initial map for the builtin Array function should be a map. __ Ldr(x10, FieldMemOperand(constructor, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ JumpIfSmi(x10, &unexpected_map); __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok); __ Bind(&unexpected_map); __ Abort(kUnexpectedInitialMapForArrayFunction); __ Bind(&map_ok); // We should either have undefined in the allocation_site register or a // valid AllocationSite. __ AssertUndefinedOrAllocationSite(allocation_site, x10); } // Enter the context of the Array function. __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset)); Label subclassing; __ Cmp(new_target, constructor); __ B(ne, &subclassing); Register kind = x3; Label no_info; // Get the elements kind and case on that. __ JumpIfRoot(allocation_site, Heap::kUndefinedValueRootIndex, &no_info); __ Ldrsw(kind, UntagSmiFieldMemOperand(allocation_site, AllocationSite::kTransitionInfoOffset)); __ And(kind, kind, AllocationSite::ElementsKindBits::kMask); GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); __ Bind(&no_info); GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); // Subclassing support. __ Bind(&subclassing); __ Poke(constructor, Operand(x0, LSL, kPointerSizeLog2)); __ Add(x0, x0, Operand(3)); __ Push(new_target, allocation_site); __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate())); } void InternalArrayConstructorStub::GenerateCase( MacroAssembler* masm, ElementsKind kind) { Label zero_case, n_case; Register argc = x0; __ Cbz(argc, &zero_case); __ CompareAndBranch(argc, 1, ne, &n_case); // One argument. if (IsFastPackedElementsKind(kind)) { Label packed_case; // We might need to create a holey array; look at the first argument. __ Peek(x10, 0); __ Cbz(x10, &packed_case); InternalArraySingleArgumentConstructorStub stub1_holey(isolate(), GetHoleyElementsKind(kind)); __ TailCallStub(&stub1_holey); __ Bind(&packed_case); } InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); __ TailCallStub(&stub1); __ Bind(&zero_case); // No arguments. InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); __ TailCallStub(&stub0); __ Bind(&n_case); // N arguments. ArrayNArgumentsConstructorStub stubN(isolate()); __ TailCallStub(&stubN); } void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : argc // -- x1 : constructor // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- Register constructor = x1; if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. Label unexpected_map, map_ok; // Initial map for the builtin Array function should be a map. __ Ldr(x10, FieldMemOperand(constructor, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ JumpIfSmi(x10, &unexpected_map); __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok); __ Bind(&unexpected_map); __ Abort(kUnexpectedInitialMapForArrayFunction); __ Bind(&map_ok); } Register kind = w3; // Figure out the right elements kind __ Ldr(x10, FieldMemOperand(constructor, JSFunction::kPrototypeOrInitialMapOffset)); // Retrieve elements_kind from map. __ LoadElementsKindFromMap(kind, x10); if (FLAG_debug_code) { Label done; __ Cmp(x3, FAST_ELEMENTS); __ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne); __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray); } Label fast_elements_case; __ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case); GenerateCase(masm, FAST_HOLEY_ELEMENTS); __ Bind(&fast_elements_case); GenerateCase(masm, FAST_ELEMENTS); } // The number of register that CallApiFunctionAndReturn will need to save on // the stack. The space for these registers need to be allocated in the // ExitFrame before calling CallApiFunctionAndReturn. static const int kCallApiFunctionSpillSpace = 4; static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { return static_cast(ref0.address() - ref1.address()); } // Calls an API function. Allocates HandleScope, extracts returned value // from handle and propagates exceptions. // 'stack_space' is the space to be unwound on exit (includes the call JS // arguments space and the additional space allocated for the fast call). // 'spill_offset' is the offset from the stack pointer where // CallApiFunctionAndReturn can spill registers. static void CallApiFunctionAndReturn( MacroAssembler* masm, Register function_address, ExternalReference thunk_ref, int stack_space, MemOperand* stack_space_operand, int spill_offset, MemOperand return_value_operand, MemOperand* context_restore_operand) { ASM_LOCATION("CallApiFunctionAndReturn"); Isolate* isolate = masm->isolate(); ExternalReference next_address = ExternalReference::handle_scope_next_address(isolate); const int kNextOffset = 0; const int kLimitOffset = AddressOffset( ExternalReference::handle_scope_limit_address(isolate), next_address); const int kLevelOffset = AddressOffset( ExternalReference::handle_scope_level_address(isolate), next_address); DCHECK(function_address.is(x1) || function_address.is(x2)); Label profiler_disabled; Label end_profiler_check; __ Mov(x10, ExternalReference::is_profiling_address(isolate)); __ Ldrb(w10, MemOperand(x10)); __ Cbz(w10, &profiler_disabled); __ Mov(x3, thunk_ref); __ B(&end_profiler_check); __ Bind(&profiler_disabled); __ Mov(x3, function_address); __ Bind(&end_profiler_check); // Save the callee-save registers we are going to use. // TODO(all): Is this necessary? ARM doesn't do it. STATIC_ASSERT(kCallApiFunctionSpillSpace == 4); __ Poke(x19, (spill_offset + 0) * kXRegSize); __ Poke(x20, (spill_offset + 1) * kXRegSize); __ Poke(x21, (spill_offset + 2) * kXRegSize); __ Poke(x22, (spill_offset + 3) * kXRegSize); // Allocate HandleScope in callee-save registers. // We will need to restore the HandleScope after the call to the API function, // by allocating it in callee-save registers they will be preserved by C code. Register handle_scope_base = x22; Register next_address_reg = x19; Register limit_reg = x20; Register level_reg = w21; __ Mov(handle_scope_base, next_address); __ Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset)); __ Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset)); __ Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset)); __ Add(level_reg, level_reg, 1); __ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset)); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ Mov(x0, ExternalReference::isolate_address(isolate)); __ CallCFunction(ExternalReference::log_enter_external_function(isolate), 1); __ PopSafepointRegisters(); } // Native call returns to the DirectCEntry stub which redirects to the // return address pushed on stack (could have moved after GC). // DirectCEntry stub itself is generated early and never moves. DirectCEntryStub stub(isolate); stub.GenerateCall(masm, x3); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ Mov(x0, ExternalReference::isolate_address(isolate)); __ CallCFunction(ExternalReference::log_leave_external_function(isolate), 1); __ PopSafepointRegisters(); } Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; Label return_value_loaded; // Load value from ReturnValue. __ Ldr(x0, return_value_operand); __ Bind(&return_value_loaded); // No more valid handles (the result handle was the last one). Restore // previous handle scope. __ Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset)); if (__ emit_debug_code()) { __ Ldr(w1, MemOperand(handle_scope_base, kLevelOffset)); __ Cmp(w1, level_reg); __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall); } __ Sub(level_reg, level_reg, 1); __ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset)); __ Ldr(x1, MemOperand(handle_scope_base, kLimitOffset)); __ Cmp(limit_reg, x1); __ B(ne, &delete_allocated_handles); // Leave the API exit frame. __ Bind(&leave_exit_frame); // Restore callee-saved registers. __ Peek(x19, (spill_offset + 0) * kXRegSize); __ Peek(x20, (spill_offset + 1) * kXRegSize); __ Peek(x21, (spill_offset + 2) * kXRegSize); __ Peek(x22, (spill_offset + 3) * kXRegSize); bool restore_context = context_restore_operand != NULL; if (restore_context) { __ Ldr(cp, *context_restore_operand); } if (stack_space_operand != NULL) { __ Ldr(w2, *stack_space_operand); } __ LeaveExitFrame(false, x1, !restore_context); // Check if the function scheduled an exception. __ Mov(x5, ExternalReference::scheduled_exception_address(isolate)); __ Ldr(x5, MemOperand(x5)); __ JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex, &promote_scheduled_exception); if (stack_space_operand != NULL) { __ Drop(x2, 1); } else { __ Drop(stack_space); } __ Ret(); // Re-throw by promoting a scheduled exception. __ Bind(&promote_scheduled_exception); __ TailCallRuntime(Runtime::kPromoteScheduledException); // HandleScope limit has changed. Delete allocated extensions. __ Bind(&delete_allocated_handles); __ Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset)); // Save the return value in a callee-save register. Register saved_result = x19; __ Mov(saved_result, x0); __ Mov(x0, ExternalReference::isolate_address(isolate)); __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate), 1); __ Mov(x0, saved_result); __ B(&leave_exit_frame); } void CallApiCallbackStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : callee // -- x4 : call_data // -- x2 : holder // -- x1 : api_function_address // -- cp : context // -- // -- sp[0] : last argument // -- ... // -- sp[(argc - 1) * 8] : first argument // -- sp[argc * 8] : receiver // ----------------------------------- Register callee = x0; Register call_data = x4; Register holder = x2; Register api_function_address = x1; Register context = cp; typedef FunctionCallbackArguments FCA; STATIC_ASSERT(FCA::kContextSaveIndex == 6); STATIC_ASSERT(FCA::kCalleeIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); STATIC_ASSERT(FCA::kNewTargetIndex == 7); STATIC_ASSERT(FCA::kArgsLength == 8); // FunctionCallbackArguments // new target __ PushRoot(Heap::kUndefinedValueRootIndex); // context, callee and call data. __ Push(context, callee, call_data); if (!is_lazy()) { // Load context from callee __ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset)); } if (!call_data_undefined()) { __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex); } Register isolate_reg = x5; __ Mov(isolate_reg, ExternalReference::isolate_address(masm->isolate())); // FunctionCallbackArguments: // return value, return value default, isolate, holder. __ Push(call_data, call_data, isolate_reg, holder); // Prepare arguments. Register args = x6; __ Mov(args, masm->StackPointer()); // Allocate the v8::Arguments structure in the arguments' space, since it's // not controlled by GC. const int kApiStackSpace = 3; // Allocate space for CallApiFunctionAndReturn can store some scratch // registeres on the stack. const int kCallApiFunctionSpillSpace = 4; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); DCHECK(!AreAliased(x0, api_function_address)); // x0 = FunctionCallbackInfo& // Arguments is after the return address. __ Add(x0, masm->StackPointer(), 1 * kPointerSize); // FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_ __ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize)); __ Stp(args, x10, MemOperand(x0, 0 * kPointerSize)); // FunctionCallbackInfo::length_ = argc __ Mov(x10, argc()); __ Str(x10, MemOperand(x0, 2 * kPointerSize)); ExternalReference thunk_ref = ExternalReference::invoke_function_callback(masm->isolate()); AllowExternalCallThatCantCauseGC scope(masm); MemOperand context_restore_operand( fp, (2 + FCA::kContextSaveIndex) * kPointerSize); // Stores return the first js argument int return_value_offset = 0; if (is_store()) { return_value_offset = 2 + FCA::kArgsLength; } else { return_value_offset = 2 + FCA::kReturnValueOffset; } MemOperand return_value_operand(fp, return_value_offset * kPointerSize); int stack_space = 0; MemOperand length_operand = MemOperand(masm->StackPointer(), 3 * kPointerSize); MemOperand* stack_space_operand = &length_operand; stack_space = argc() + FCA::kArgsLength + 1; stack_space_operand = NULL; const int spill_offset = 1 + kApiStackSpace; CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space, stack_space_operand, spill_offset, return_value_operand, &context_restore_operand); } void CallApiGetterStub::Generate(MacroAssembler* masm) { // Build v8::PropertyCallbackInfo::args_ array on the stack and push property // name below the exit frame to make GC aware of them. STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); Register receiver = ApiGetterDescriptor::ReceiverRegister(); Register holder = ApiGetterDescriptor::HolderRegister(); Register callback = ApiGetterDescriptor::CallbackRegister(); Register scratch = x4; Register scratch2 = x5; Register scratch3 = x6; DCHECK(!AreAliased(receiver, holder, callback, scratch)); __ Push(receiver); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ Mov(scratch2, Operand(ExternalReference::isolate_address(isolate()))); __ Ldr(scratch3, FieldMemOperand(callback, AccessorInfo::kDataOffset)); __ Push(scratch3, scratch, scratch, scratch2, holder); __ Push(Smi::kZero); // should_throw_on_error -> false __ Ldr(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset)); __ Push(scratch); // v8::PropertyCallbackInfo::args_ array and name handle. const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; // Load address of v8::PropertyAccessorInfo::args_ array and name handle. __ Mov(x0, masm->StackPointer()); // x0 = Handle __ Add(x1, x0, 1 * kPointerSize); // x1 = v8::PCI::args_ const int kApiStackSpace = 1; // Allocate space for CallApiFunctionAndReturn can store some scratch // registeres on the stack. const int kCallApiFunctionSpillSpace = 4; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace); // Create v8::PropertyCallbackInfo object on the stack and initialize // it's args_ field. __ Poke(x1, 1 * kPointerSize); __ Add(x1, masm->StackPointer(), 1 * kPointerSize); // x1 = v8::PropertyCallbackInfo& ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(isolate()); Register api_function_address = x2; __ Ldr(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); __ Ldr(api_function_address, FieldMemOperand(scratch, Foreign::kForeignAddressOffset)); const int spill_offset = 1 + kApiStackSpace; // +3 is to skip prolog, return address and name handle. MemOperand return_value_operand( fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, kStackUnwindSpace, NULL, spill_offset, return_value_operand, NULL); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM64