// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/utils/random-number-generator.h" #include #include #include #include "src/base/macros.h" #include "src/base/platform/mutex.h" #include "src/base/platform/time.h" namespace v8 { namespace base { static LazyMutex entropy_mutex = LAZY_MUTEX_INITIALIZER; static RandomNumberGenerator::EntropySource entropy_source = NULL; // static void RandomNumberGenerator::SetEntropySource(EntropySource source) { LockGuard lock_guard(entropy_mutex.Pointer()); entropy_source = source; } RandomNumberGenerator::RandomNumberGenerator() { // Check if embedder supplied an entropy source. { LockGuard lock_guard(entropy_mutex.Pointer()); if (entropy_source != NULL) { int64_t seed; if (entropy_source(reinterpret_cast(&seed), sizeof(seed))) { SetSeed(seed); return; } } } #if V8_OS_CYGWIN || V8_OS_WIN // Use rand_s() to gather entropy on Windows. See: // https://code.google.com/p/v8/issues/detail?id=2905 unsigned first_half, second_half; errno_t result = rand_s(&first_half); DCHECK_EQ(0, result); result = rand_s(&second_half); DCHECK_EQ(0, result); SetSeed((static_cast(first_half) << 32) + second_half); #else // Gather entropy from /dev/urandom if available. FILE* fp = fopen("/dev/urandom", "rb"); if (fp != NULL) { int64_t seed; size_t n = fread(&seed, sizeof(seed), 1, fp); fclose(fp); if (n == 1) { SetSeed(seed); return; } } // We cannot assume that random() or rand() were seeded // properly, so instead of relying on random() or rand(), // we just seed our PRNG using timing data as fallback. // This is weak entropy, but it's sufficient, because // it is the responsibility of the embedder to install // an entropy source using v8::V8::SetEntropySource(), // which provides reasonable entropy, see: // https://code.google.com/p/v8/issues/detail?id=2905 int64_t seed = Time::NowFromSystemTime().ToInternalValue() << 24; seed ^= TimeTicks::HighResolutionNow().ToInternalValue() << 16; seed ^= TimeTicks::Now().ToInternalValue() << 8; SetSeed(seed); #endif // V8_OS_CYGWIN || V8_OS_WIN } int RandomNumberGenerator::NextInt(int max) { DCHECK_LT(0, max); // Fast path if max is a power of 2. if (IS_POWER_OF_TWO(max)) { return static_cast((max * static_cast(Next(31))) >> 31); } while (true) { int rnd = Next(31); int val = rnd % max; if (rnd - val + (max - 1) >= 0) { return val; } } } double RandomNumberGenerator::NextDouble() { XorShift128(&state0_, &state1_); return ToDouble(state0_, state1_); } int64_t RandomNumberGenerator::NextInt64() { XorShift128(&state0_, &state1_); return bit_cast(state0_ + state1_); } void RandomNumberGenerator::NextBytes(void* buffer, size_t buflen) { for (size_t n = 0; n < buflen; ++n) { static_cast(buffer)[n] = static_cast(Next(8)); } } int RandomNumberGenerator::Next(int bits) { DCHECK_LT(0, bits); DCHECK_GE(32, bits); XorShift128(&state0_, &state1_); return static_cast((state0_ + state1_) >> (64 - bits)); } void RandomNumberGenerator::SetSeed(int64_t seed) { initial_seed_ = seed; state0_ = MurmurHash3(bit_cast(seed)); state1_ = MurmurHash3(~state0_); CHECK(state0_ != 0 || state1_ != 0); } uint64_t RandomNumberGenerator::MurmurHash3(uint64_t h) { h ^= h >> 33; h *= V8_UINT64_C(0xFF51AFD7ED558CCD); h ^= h >> 33; h *= V8_UINT64_C(0xC4CEB9FE1A85EC53); h ^= h >> 33; return h; } } // namespace base } // namespace v8