// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/builtins/builtins-utils.h" #include "src/builtins/builtins.h" #include "src/code-factory.h" #include "src/code-stub-assembler.h" #include "src/conversions.h" #include "src/counters.h" #include "src/objects-inl.h" namespace v8 { namespace internal { class NumberBuiltinsAssembler : public CodeStubAssembler { public: explicit NumberBuiltinsAssembler(compiler::CodeAssemblerState* state) : CodeStubAssembler(state) {} protected: template void BitwiseOp(std::function body) { Node* left = Parameter(0); Node* right = Parameter(1); Node* context = Parameter(2); Node* lhs_value = TruncateTaggedToWord32(context, left); Node* rhs_value = TruncateTaggedToWord32(context, right); Node* value = body(lhs_value, rhs_value); Node* result = signed_result == kSigned ? ChangeInt32ToTagged(value) : ChangeUint32ToTagged(value); Return(result); } template void BitwiseShiftOp(std::function body) { BitwiseOp([this, body](Node* lhs, Node* rhs) { Node* shift_count = Word32And(rhs, Int32Constant(0x1f)); return body(lhs, shift_count); }); } void RelationalComparisonBuiltin(RelationalComparisonMode mode) { Node* lhs = Parameter(0); Node* rhs = Parameter(1); Node* context = Parameter(2); Return(RelationalComparison(mode, lhs, rhs, context)); } }; // ----------------------------------------------------------------------------- // ES6 section 20.1 Number Objects // ES6 section 20.1.2.2 Number.isFinite ( number ) TF_BUILTIN(NumberIsFinite, CodeStubAssembler) { Node* number = Parameter(1); Label return_true(this), return_false(this); // Check if {number} is a Smi. GotoIf(TaggedIsSmi(number), &return_true); // Check if {number} is a HeapNumber. GotoIfNot(IsHeapNumberMap(LoadMap(number)), &return_false); // Check if {number} contains a finite, non-NaN value. Node* number_value = LoadHeapNumberValue(number); BranchIfFloat64IsNaN(Float64Sub(number_value, number_value), &return_false, &return_true); Bind(&return_true); Return(BooleanConstant(true)); Bind(&return_false); Return(BooleanConstant(false)); } // ES6 section 20.1.2.3 Number.isInteger ( number ) TF_BUILTIN(NumberIsInteger, CodeStubAssembler) { Node* number = Parameter(1); Label return_true(this), return_false(this); // Check if {number} is a Smi. GotoIf(TaggedIsSmi(number), &return_true); // Check if {number} is a HeapNumber. GotoIfNot(IsHeapNumberMap(LoadMap(number)), &return_false); // Load the actual value of {number}. Node* number_value = LoadHeapNumberValue(number); // Truncate the value of {number} to an integer (or an infinity). Node* integer = Float64Trunc(number_value); // Check if {number}s value matches the integer (ruling out the infinities). Branch(Float64Equal(Float64Sub(number_value, integer), Float64Constant(0.0)), &return_true, &return_false); Bind(&return_true); Return(BooleanConstant(true)); Bind(&return_false); Return(BooleanConstant(false)); } // ES6 section 20.1.2.4 Number.isNaN ( number ) TF_BUILTIN(NumberIsNaN, CodeStubAssembler) { Node* number = Parameter(1); Label return_true(this), return_false(this); // Check if {number} is a Smi. GotoIf(TaggedIsSmi(number), &return_false); // Check if {number} is a HeapNumber. GotoIfNot(IsHeapNumberMap(LoadMap(number)), &return_false); // Check if {number} contains a NaN value. Node* number_value = LoadHeapNumberValue(number); BranchIfFloat64IsNaN(number_value, &return_true, &return_false); Bind(&return_true); Return(BooleanConstant(true)); Bind(&return_false); Return(BooleanConstant(false)); } // ES6 section 20.1.2.5 Number.isSafeInteger ( number ) TF_BUILTIN(NumberIsSafeInteger, CodeStubAssembler) { Node* number = Parameter(1); Label return_true(this), return_false(this); // Check if {number} is a Smi. GotoIf(TaggedIsSmi(number), &return_true); // Check if {number} is a HeapNumber. GotoIfNot(IsHeapNumberMap(LoadMap(number)), &return_false); // Load the actual value of {number}. Node* number_value = LoadHeapNumberValue(number); // Truncate the value of {number} to an integer (or an infinity). Node* integer = Float64Trunc(number_value); // Check if {number}s value matches the integer (ruling out the infinities). GotoIfNot( Float64Equal(Float64Sub(number_value, integer), Float64Constant(0.0)), &return_false); // Check if the {integer} value is in safe integer range. Branch(Float64LessThanOrEqual(Float64Abs(integer), Float64Constant(kMaxSafeInteger)), &return_true, &return_false); Bind(&return_true); Return(BooleanConstant(true)); Bind(&return_false); Return(BooleanConstant(false)); } // ES6 section 20.1.2.12 Number.parseFloat ( string ) TF_BUILTIN(NumberParseFloat, CodeStubAssembler) { Node* context = Parameter(4); // We might need to loop once for ToString conversion. Variable var_input(this, MachineRepresentation::kTagged); Label loop(this, &var_input); var_input.Bind(Parameter(1)); Goto(&loop); Bind(&loop); { // Load the current {input} value. Node* input = var_input.value(); // Check if the {input} is a HeapObject or a Smi. Label if_inputissmi(this), if_inputisnotsmi(this); Branch(TaggedIsSmi(input), &if_inputissmi, &if_inputisnotsmi); Bind(&if_inputissmi); { // The {input} is already a Number, no need to do anything. Return(input); } Bind(&if_inputisnotsmi); { // The {input} is a HeapObject, check if it's already a String. Label if_inputisstring(this), if_inputisnotstring(this); Node* input_map = LoadMap(input); Node* input_instance_type = LoadMapInstanceType(input_map); Branch(IsStringInstanceType(input_instance_type), &if_inputisstring, &if_inputisnotstring); Bind(&if_inputisstring); { // The {input} is already a String, check if {input} contains // a cached array index. Label if_inputcached(this), if_inputnotcached(this); Node* input_hash = LoadNameHashField(input); Node* input_bit = Word32And( input_hash, Int32Constant(String::kContainsCachedArrayIndexMask)); Branch(Word32Equal(input_bit, Int32Constant(0)), &if_inputcached, &if_inputnotcached); Bind(&if_inputcached); { // Just return the {input}s cached array index. Node* input_array_index = DecodeWordFromWord32(input_hash); Return(SmiTag(input_array_index)); } Bind(&if_inputnotcached); { // Need to fall back to the runtime to convert {input} to double. Return(CallRuntime(Runtime::kStringParseFloat, context, input)); } } Bind(&if_inputisnotstring); { // The {input} is neither a String nor a Smi, check for HeapNumber. Label if_inputisnumber(this), if_inputisnotnumber(this, Label::kDeferred); Branch(IsHeapNumberMap(input_map), &if_inputisnumber, &if_inputisnotnumber); Bind(&if_inputisnumber); { // The {input} is already a Number, take care of -0. Label if_inputiszero(this), if_inputisnotzero(this); Node* input_value = LoadHeapNumberValue(input); Branch(Float64Equal(input_value, Float64Constant(0.0)), &if_inputiszero, &if_inputisnotzero); Bind(&if_inputiszero); Return(SmiConstant(0)); Bind(&if_inputisnotzero); Return(input); } Bind(&if_inputisnotnumber); { // Need to convert the {input} to String first. // TODO(bmeurer): This could be more efficient if necessary. Callable callable = CodeFactory::ToString(isolate()); var_input.Bind(CallStub(callable, context, input)); Goto(&loop); } } } } } // ES6 section 20.1.2.13 Number.parseInt ( string, radix ) TF_BUILTIN(NumberParseInt, CodeStubAssembler) { Node* input = Parameter(1); Node* radix = Parameter(2); Node* context = Parameter(5); // Check if {radix} is treated as 10 (i.e. undefined, 0 or 10). Label if_radix10(this), if_generic(this, Label::kDeferred); GotoIf(WordEqual(radix, UndefinedConstant()), &if_radix10); GotoIf(WordEqual(radix, SmiConstant(Smi::FromInt(10))), &if_radix10); GotoIf(WordEqual(radix, SmiConstant(Smi::FromInt(0))), &if_radix10); Goto(&if_generic); Bind(&if_radix10); { // Check if we can avoid the ToString conversion on {input}. Label if_inputissmi(this), if_inputisheapnumber(this), if_inputisstring(this); GotoIf(TaggedIsSmi(input), &if_inputissmi); Node* input_map = LoadMap(input); GotoIf(IsHeapNumberMap(input_map), &if_inputisheapnumber); Node* input_instance_type = LoadMapInstanceType(input_map); Branch(IsStringInstanceType(input_instance_type), &if_inputisstring, &if_generic); Bind(&if_inputissmi); { // Just return the {input}. Return(input); } Bind(&if_inputisheapnumber); { // Check if the {input} value is in Signed32 range. Label if_inputissigned32(this); Node* input_value = LoadHeapNumberValue(input); Node* input_value32 = TruncateFloat64ToWord32(input_value); GotoIf(Float64Equal(input_value, ChangeInt32ToFloat64(input_value32)), &if_inputissigned32); // Check if the absolute {input} value is in the ]0.01,1e9[ range. Node* input_value_abs = Float64Abs(input_value); GotoIfNot(Float64LessThan(input_value_abs, Float64Constant(1e9)), &if_generic); Branch(Float64LessThan(Float64Constant(0.01), input_value_abs), &if_inputissigned32, &if_generic); // Return the truncated int32 value, and return the tagged result. Bind(&if_inputissigned32); Node* result = ChangeInt32ToTagged(input_value32); Return(result); } Bind(&if_inputisstring); { // Check if the String {input} has a cached array index. Node* input_hash = LoadNameHashField(input); Node* input_bit = Word32And( input_hash, Int32Constant(String::kContainsCachedArrayIndexMask)); GotoIf(Word32NotEqual(input_bit, Int32Constant(0)), &if_generic); // Return the cached array index as result. Node* input_index = DecodeWordFromWord32(input_hash); Node* result = SmiTag(input_index); Return(result); } } Bind(&if_generic); { Node* result = CallRuntime(Runtime::kStringParseInt, context, input, radix); Return(result); } } // ES6 section 20.1.3.2 Number.prototype.toExponential ( fractionDigits ) BUILTIN(NumberPrototypeToExponential) { HandleScope scope(isolate); Handle value = args.at(0); Handle fraction_digits = args.atOrUndefined(isolate, 1); // Unwrap the receiver {value}. if (value->IsJSValue()) { value = handle(Handle::cast(value)->value(), isolate); } if (!value->IsNumber()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kNotGeneric, isolate->factory()->NewStringFromAsciiChecked( "Number.prototype.toExponential"))); } double const value_number = value->Number(); // Convert the {fraction_digits} to an integer first. ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, fraction_digits, Object::ToInteger(isolate, fraction_digits)); double const fraction_digits_number = fraction_digits->Number(); if (std::isnan(value_number)) return isolate->heap()->nan_string(); if (std::isinf(value_number)) { return (value_number < 0.0) ? isolate->heap()->minus_infinity_string() : isolate->heap()->infinity_string(); } if (fraction_digits_number < 0.0 || fraction_digits_number > 20.0) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError(MessageTemplate::kNumberFormatRange, isolate->factory()->NewStringFromAsciiChecked( "toExponential()"))); } int const f = args.atOrUndefined(isolate, 1)->IsUndefined(isolate) ? -1 : static_cast(fraction_digits_number); char* const str = DoubleToExponentialCString(value_number, f); Handle result = isolate->factory()->NewStringFromAsciiChecked(str); DeleteArray(str); return *result; } // ES6 section 20.1.3.3 Number.prototype.toFixed ( fractionDigits ) BUILTIN(NumberPrototypeToFixed) { HandleScope scope(isolate); Handle value = args.at(0); Handle fraction_digits = args.atOrUndefined(isolate, 1); // Unwrap the receiver {value}. if (value->IsJSValue()) { value = handle(Handle::cast(value)->value(), isolate); } if (!value->IsNumber()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kNotGeneric, isolate->factory()->NewStringFromAsciiChecked( "Number.prototype.toFixed"))); } double const value_number = value->Number(); // Convert the {fraction_digits} to an integer first. ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, fraction_digits, Object::ToInteger(isolate, fraction_digits)); double const fraction_digits_number = fraction_digits->Number(); // Check if the {fraction_digits} are in the supported range. if (fraction_digits_number < 0.0 || fraction_digits_number > 20.0) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError(MessageTemplate::kNumberFormatRange, isolate->factory()->NewStringFromAsciiChecked( "toFixed() digits"))); } if (std::isnan(value_number)) return isolate->heap()->nan_string(); if (std::isinf(value_number)) { return (value_number < 0.0) ? isolate->heap()->minus_infinity_string() : isolate->heap()->infinity_string(); } char* const str = DoubleToFixedCString( value_number, static_cast(fraction_digits_number)); Handle result = isolate->factory()->NewStringFromAsciiChecked(str); DeleteArray(str); return *result; } // ES6 section 20.1.3.4 Number.prototype.toLocaleString ( [ r1 [ , r2 ] ] ) BUILTIN(NumberPrototypeToLocaleString) { HandleScope scope(isolate); Handle value = args.at(0); // Unwrap the receiver {value}. if (value->IsJSValue()) { value = handle(Handle::cast(value)->value(), isolate); } if (!value->IsNumber()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kNotGeneric, isolate->factory()->NewStringFromAsciiChecked( "Number.prototype.toLocaleString"))); } // Turn the {value} into a String. return *isolate->factory()->NumberToString(value); } // ES6 section 20.1.3.5 Number.prototype.toPrecision ( precision ) BUILTIN(NumberPrototypeToPrecision) { HandleScope scope(isolate); Handle value = args.at(0); Handle precision = args.atOrUndefined(isolate, 1); // Unwrap the receiver {value}. if (value->IsJSValue()) { value = handle(Handle::cast(value)->value(), isolate); } if (!value->IsNumber()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kNotGeneric, isolate->factory()->NewStringFromAsciiChecked( "Number.prototype.toPrecision"))); } double const value_number = value->Number(); // If no {precision} was specified, just return ToString of {value}. if (precision->IsUndefined(isolate)) { return *isolate->factory()->NumberToString(value); } // Convert the {precision} to an integer first. ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, precision, Object::ToInteger(isolate, precision)); double const precision_number = precision->Number(); if (std::isnan(value_number)) return isolate->heap()->nan_string(); if (std::isinf(value_number)) { return (value_number < 0.0) ? isolate->heap()->minus_infinity_string() : isolate->heap()->infinity_string(); } if (precision_number < 1.0 || precision_number > 21.0) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError(MessageTemplate::kToPrecisionFormatRange)); } char* const str = DoubleToPrecisionCString( value_number, static_cast(precision_number)); Handle result = isolate->factory()->NewStringFromAsciiChecked(str); DeleteArray(str); return *result; } // ES6 section 20.1.3.6 Number.prototype.toString ( [ radix ] ) BUILTIN(NumberPrototypeToString) { HandleScope scope(isolate); Handle value = args.at(0); Handle radix = args.atOrUndefined(isolate, 1); // Unwrap the receiver {value}. if (value->IsJSValue()) { value = handle(Handle::cast(value)->value(), isolate); } if (!value->IsNumber()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kNotGeneric, isolate->factory()->NewStringFromAsciiChecked( "Number.prototype.toString"))); } double const value_number = value->Number(); // If no {radix} was specified, just return ToString of {value}. if (radix->IsUndefined(isolate)) { return *isolate->factory()->NumberToString(value); } // Convert the {radix} to an integer first. ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, radix, Object::ToInteger(isolate, radix)); double const radix_number = radix->Number(); // If {radix} is 10, just return ToString of {value}. if (radix_number == 10.0) return *isolate->factory()->NumberToString(value); // Make sure the {radix} is within the valid range. if (radix_number < 2.0 || radix_number > 36.0) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError(MessageTemplate::kToRadixFormatRange)); } // Fast case where the result is a one character string. if ((IsUint32Double(value_number) && value_number < radix_number) || value_number == -0.0) { // Character array used for conversion. static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz"; return *isolate->factory()->LookupSingleCharacterStringFromCode( kCharTable[static_cast(value_number)]); } // Slow case. if (std::isnan(value_number)) return isolate->heap()->nan_string(); if (std::isinf(value_number)) { return (value_number < 0.0) ? isolate->heap()->minus_infinity_string() : isolate->heap()->infinity_string(); } char* const str = DoubleToRadixCString(value_number, static_cast(radix_number)); Handle result = isolate->factory()->NewStringFromAsciiChecked(str); DeleteArray(str); return *result; } // ES6 section 20.1.3.7 Number.prototype.valueOf ( ) TF_BUILTIN(NumberPrototypeValueOf, CodeStubAssembler) { Node* receiver = Parameter(0); Node* context = Parameter(3); Node* result = ToThisValue(context, receiver, PrimitiveType::kNumber, "Number.prototype.valueOf"); Return(result); } TF_BUILTIN(Add, CodeStubAssembler) { Node* left = Parameter(0); Node* right = Parameter(1); Node* context = Parameter(2); // Shared entry for floating point addition. Label do_fadd(this); Variable var_fadd_lhs(this, MachineRepresentation::kFloat64), var_fadd_rhs(this, MachineRepresentation::kFloat64); // We might need to loop several times due to ToPrimitive, ToString and/or // ToNumber conversions. Variable var_lhs(this, MachineRepresentation::kTagged), var_rhs(this, MachineRepresentation::kTagged), var_result(this, MachineRepresentation::kTagged); Variable* loop_vars[2] = {&var_lhs, &var_rhs}; Label loop(this, 2, loop_vars), end(this), string_add_convert_left(this, Label::kDeferred), string_add_convert_right(this, Label::kDeferred); var_lhs.Bind(left); var_rhs.Bind(right); Goto(&loop); Bind(&loop); { // Load the current {lhs} and {rhs} values. Node* lhs = var_lhs.value(); Node* rhs = var_rhs.value(); // Check if the {lhs} is a Smi or a HeapObject. Label if_lhsissmi(this), if_lhsisnotsmi(this); Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi); Bind(&if_lhsissmi); { // Check if the {rhs} is also a Smi. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // Try fast Smi addition first. Node* pair = IntPtrAddWithOverflow(BitcastTaggedToWord(lhs), BitcastTaggedToWord(rhs)); Node* overflow = Projection(1, pair); // Check if the Smi additon overflowed. Label if_overflow(this), if_notoverflow(this); Branch(overflow, &if_overflow, &if_notoverflow); Bind(&if_overflow); { var_fadd_lhs.Bind(SmiToFloat64(lhs)); var_fadd_rhs.Bind(SmiToFloat64(rhs)); Goto(&do_fadd); } Bind(&if_notoverflow); var_result.Bind(BitcastWordToTaggedSigned(Projection(0, pair))); Goto(&end); } Bind(&if_rhsisnotsmi); { // Load the map of {rhs}. Node* rhs_map = LoadMap(rhs); // Check if the {rhs} is a HeapNumber. Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred); Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { var_fadd_lhs.Bind(SmiToFloat64(lhs)); var_fadd_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fadd); } Bind(&if_rhsisnotnumber); { // Load the instance type of {rhs}. Node* rhs_instance_type = LoadMapInstanceType(rhs_map); // Check if the {rhs} is a String. Label if_rhsisstring(this, Label::kDeferred), if_rhsisnotstring(this, Label::kDeferred); Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, &if_rhsisnotstring); Bind(&if_rhsisstring); { var_lhs.Bind(lhs); var_rhs.Bind(rhs); Goto(&string_add_convert_left); } Bind(&if_rhsisnotstring); { // Check if {rhs} is a JSReceiver. Label if_rhsisreceiver(this, Label::kDeferred), if_rhsisnotreceiver(this, Label::kDeferred); Branch(IsJSReceiverInstanceType(rhs_instance_type), &if_rhsisreceiver, &if_rhsisnotreceiver); Bind(&if_rhsisreceiver); { // Convert {rhs} to a primitive first passing no hint. Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } Bind(&if_rhsisnotreceiver); { // Convert {rhs} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } } } } } Bind(&if_lhsisnotsmi); { // Load the map and instance type of {lhs}. Node* lhs_instance_type = LoadInstanceType(lhs); // Check if {lhs} is a String. Label if_lhsisstring(this), if_lhsisnotstring(this); Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring, &if_lhsisnotstring); Bind(&if_lhsisstring); { var_lhs.Bind(lhs); var_rhs.Bind(rhs); Goto(&string_add_convert_right); } Bind(&if_lhsisnotstring); { // Check if {rhs} is a Smi. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // Check if {lhs} is a Number. Label if_lhsisnumber(this), if_lhsisnotnumber(this, Label::kDeferred); Branch( Word32Equal(lhs_instance_type, Int32Constant(HEAP_NUMBER_TYPE)), &if_lhsisnumber, &if_lhsisnotnumber); Bind(&if_lhsisnumber); { // The {lhs} is a HeapNumber, the {rhs} is a Smi, just add them. var_fadd_lhs.Bind(LoadHeapNumberValue(lhs)); var_fadd_rhs.Bind(SmiToFloat64(rhs)); Goto(&do_fadd); } Bind(&if_lhsisnotnumber); { // The {lhs} is neither a Number nor a String, and the {rhs} is a // Smi. Label if_lhsisreceiver(this, Label::kDeferred), if_lhsisnotreceiver(this, Label::kDeferred); Branch(IsJSReceiverInstanceType(lhs_instance_type), &if_lhsisreceiver, &if_lhsisnotreceiver); Bind(&if_lhsisreceiver); { // Convert {lhs} to a primitive first passing no hint. Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); var_lhs.Bind(CallStub(callable, context, lhs)); Goto(&loop); } Bind(&if_lhsisnotreceiver); { // Convert {lhs} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_lhs.Bind(CallStub(callable, context, lhs)); Goto(&loop); } } } Bind(&if_rhsisnotsmi); { // Load the instance type of {rhs}. Node* rhs_instance_type = LoadInstanceType(rhs); // Check if {rhs} is a String. Label if_rhsisstring(this), if_rhsisnotstring(this); Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, &if_rhsisnotstring); Bind(&if_rhsisstring); { var_lhs.Bind(lhs); var_rhs.Bind(rhs); Goto(&string_add_convert_left); } Bind(&if_rhsisnotstring); { // Check if {lhs} is a HeapNumber. Label if_lhsisnumber(this), if_lhsisnotnumber(this); Branch( Word32Equal(lhs_instance_type, Int32Constant(HEAP_NUMBER_TYPE)), &if_lhsisnumber, &if_lhsisnotnumber); Bind(&if_lhsisnumber); { // Check if {rhs} is also a HeapNumber. Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred); Branch(Word32Equal(rhs_instance_type, Int32Constant(HEAP_NUMBER_TYPE)), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Perform a floating point addition. var_fadd_lhs.Bind(LoadHeapNumberValue(lhs)); var_fadd_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fadd); } Bind(&if_rhsisnotnumber); { // Check if {rhs} is a JSReceiver. Label if_rhsisreceiver(this, Label::kDeferred), if_rhsisnotreceiver(this, Label::kDeferred); Branch(IsJSReceiverInstanceType(rhs_instance_type), &if_rhsisreceiver, &if_rhsisnotreceiver); Bind(&if_rhsisreceiver); { // Convert {rhs} to a primitive first passing no hint. Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } Bind(&if_rhsisnotreceiver); { // Convert {rhs} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } } } Bind(&if_lhsisnotnumber); { // Check if {lhs} is a JSReceiver. Label if_lhsisreceiver(this, Label::kDeferred), if_lhsisnotreceiver(this); Branch(IsJSReceiverInstanceType(lhs_instance_type), &if_lhsisreceiver, &if_lhsisnotreceiver); Bind(&if_lhsisreceiver); { // Convert {lhs} to a primitive first passing no hint. Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); var_lhs.Bind(CallStub(callable, context, lhs)); Goto(&loop); } Bind(&if_lhsisnotreceiver); { // Check if {rhs} is a JSReceiver. Label if_rhsisreceiver(this, Label::kDeferred), if_rhsisnotreceiver(this, Label::kDeferred); Branch(IsJSReceiverInstanceType(rhs_instance_type), &if_rhsisreceiver, &if_rhsisnotreceiver); Bind(&if_rhsisreceiver); { // Convert {rhs} to a primitive first passing no hint. Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } Bind(&if_rhsisnotreceiver); { // Convert {lhs} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_lhs.Bind(CallStub(callable, context, lhs)); Goto(&loop); } } } } } } } } Bind(&string_add_convert_left); { // Convert {lhs}, which is a Smi, to a String and concatenate the // resulting string with the String {rhs}. Callable callable = CodeFactory::StringAdd(isolate(), STRING_ADD_CONVERT_LEFT, NOT_TENURED); var_result.Bind( CallStub(callable, context, var_lhs.value(), var_rhs.value())); Goto(&end); } Bind(&string_add_convert_right); { // Convert {lhs}, which is a Smi, to a String and concatenate the // resulting string with the String {rhs}. Callable callable = CodeFactory::StringAdd( isolate(), STRING_ADD_CONVERT_RIGHT, NOT_TENURED); var_result.Bind( CallStub(callable, context, var_lhs.value(), var_rhs.value())); Goto(&end); } Bind(&do_fadd); { Node* lhs_value = var_fadd_lhs.value(); Node* rhs_value = var_fadd_rhs.value(); Node* value = Float64Add(lhs_value, rhs_value); Node* result = AllocateHeapNumberWithValue(value); var_result.Bind(result); Goto(&end); } Bind(&end); Return(var_result.value()); } TF_BUILTIN(Subtract, CodeStubAssembler) { Node* left = Parameter(0); Node* right = Parameter(1); Node* context = Parameter(2); // Shared entry for floating point subtraction. Label do_fsub(this), end(this); Variable var_fsub_lhs(this, MachineRepresentation::kFloat64), var_fsub_rhs(this, MachineRepresentation::kFloat64); // We might need to loop several times due to ToPrimitive and/or ToNumber // conversions. Variable var_lhs(this, MachineRepresentation::kTagged), var_rhs(this, MachineRepresentation::kTagged), var_result(this, MachineRepresentation::kTagged); Variable* loop_vars[2] = {&var_lhs, &var_rhs}; Label loop(this, 2, loop_vars); var_lhs.Bind(left); var_rhs.Bind(right); Goto(&loop); Bind(&loop); { // Load the current {lhs} and {rhs} values. Node* lhs = var_lhs.value(); Node* rhs = var_rhs.value(); // Check if the {lhs} is a Smi or a HeapObject. Label if_lhsissmi(this), if_lhsisnotsmi(this); Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi); Bind(&if_lhsissmi); { // Check if the {rhs} is also a Smi. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // Try a fast Smi subtraction first. Node* pair = IntPtrSubWithOverflow(BitcastTaggedToWord(lhs), BitcastTaggedToWord(rhs)); Node* overflow = Projection(1, pair); // Check if the Smi subtraction overflowed. Label if_overflow(this), if_notoverflow(this); Branch(overflow, &if_overflow, &if_notoverflow); Bind(&if_overflow); { // The result doesn't fit into Smi range. var_fsub_lhs.Bind(SmiToFloat64(lhs)); var_fsub_rhs.Bind(SmiToFloat64(rhs)); Goto(&do_fsub); } Bind(&if_notoverflow); var_result.Bind(BitcastWordToTaggedSigned(Projection(0, pair))); Goto(&end); } Bind(&if_rhsisnotsmi); { // Load the map of the {rhs}. Node* rhs_map = LoadMap(rhs); // Check if {rhs} is a HeapNumber. Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred); Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Perform a floating point subtraction. var_fsub_lhs.Bind(SmiToFloat64(lhs)); var_fsub_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fsub); } Bind(&if_rhsisnotnumber); { // Convert the {rhs} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } } } Bind(&if_lhsisnotsmi); { // Load the map of the {lhs}. Node* lhs_map = LoadMap(lhs); // Check if the {lhs} is a HeapNumber. Label if_lhsisnumber(this), if_lhsisnotnumber(this, Label::kDeferred); Branch(IsHeapNumberMap(lhs_map), &if_lhsisnumber, &if_lhsisnotnumber); Bind(&if_lhsisnumber); { // Check if the {rhs} is a Smi. Label if_rhsissmi(this), if_rhsisnotsmi(this); Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); Bind(&if_rhsissmi); { // Perform a floating point subtraction. var_fsub_lhs.Bind(LoadHeapNumberValue(lhs)); var_fsub_rhs.Bind(SmiToFloat64(rhs)); Goto(&do_fsub); } Bind(&if_rhsisnotsmi); { // Load the map of the {rhs}. Node* rhs_map = LoadMap(rhs); // Check if the {rhs} is a HeapNumber. Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred); Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); Bind(&if_rhsisnumber); { // Perform a floating point subtraction. var_fsub_lhs.Bind(LoadHeapNumberValue(lhs)); var_fsub_rhs.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fsub); } Bind(&if_rhsisnotnumber); { // Convert the {rhs} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_rhs.Bind(CallStub(callable, context, rhs)); Goto(&loop); } } } Bind(&if_lhsisnotnumber); { // Convert the {lhs} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_lhs.Bind(CallStub(callable, context, lhs)); Goto(&loop); } } } Bind(&do_fsub); { Node* lhs_value = var_fsub_lhs.value(); Node* rhs_value = var_fsub_rhs.value(); Node* value = Float64Sub(lhs_value, rhs_value); var_result.Bind(AllocateHeapNumberWithValue(value)); Goto(&end); } Bind(&end); Return(var_result.value()); } TF_BUILTIN(Multiply, CodeStubAssembler) { Node* left = Parameter(0); Node* right = Parameter(1); Node* context = Parameter(2); // Shared entry point for floating point multiplication. Label do_fmul(this), return_result(this); Variable var_lhs_float64(this, MachineRepresentation::kFloat64), var_rhs_float64(this, MachineRepresentation::kFloat64); // We might need to loop one or two times due to ToNumber conversions. Variable var_lhs(this, MachineRepresentation::kTagged), var_rhs(this, MachineRepresentation::kTagged), var_result(this, MachineRepresentation::kTagged); Variable* loop_variables[] = {&var_lhs, &var_rhs}; Label loop(this, 2, loop_variables); var_lhs.Bind(left); var_rhs.Bind(right); Goto(&loop); Bind(&loop); { Node* lhs = var_lhs.value(); Node* rhs = var_rhs.value(); Label lhs_is_smi(this), lhs_is_not_smi(this); Branch(TaggedIsSmi(lhs), &lhs_is_smi, &lhs_is_not_smi); Bind(&lhs_is_smi); { Label rhs_is_smi(this), rhs_is_not_smi(this); Branch(TaggedIsSmi(rhs), &rhs_is_smi, &rhs_is_not_smi); Bind(&rhs_is_smi); { // Both {lhs} and {rhs} are Smis. The result is not necessarily a smi, // in case of overflow. var_result.Bind(SmiMul(lhs, rhs)); Goto(&return_result); } Bind(&rhs_is_not_smi); { Node* rhs_map = LoadMap(rhs); // Check if {rhs} is a HeapNumber. Label rhs_is_number(this), rhs_is_not_number(this, Label::kDeferred); Branch(IsHeapNumberMap(rhs_map), &rhs_is_number, &rhs_is_not_number); Bind(&rhs_is_number); { // Convert {lhs} to a double and multiply it with the value of {rhs}. var_lhs_float64.Bind(SmiToFloat64(lhs)); var_rhs_float64.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fmul); } Bind(&rhs_is_not_number); { // Multiplication is commutative, swap {lhs} with {rhs} and loop. var_lhs.Bind(rhs); var_rhs.Bind(lhs); Goto(&loop); } } } Bind(&lhs_is_not_smi); { Node* lhs_map = LoadMap(lhs); // Check if {lhs} is a HeapNumber. Label lhs_is_number(this), lhs_is_not_number(this, Label::kDeferred); Branch(IsHeapNumberMap(lhs_map), &lhs_is_number, &lhs_is_not_number); Bind(&lhs_is_number); { // Check if {rhs} is a Smi. Label rhs_is_smi(this), rhs_is_not_smi(this); Branch(TaggedIsSmi(rhs), &rhs_is_smi, &rhs_is_not_smi); Bind(&rhs_is_smi); { // Convert {rhs} to a double and multiply it with the value of {lhs}. var_lhs_float64.Bind(LoadHeapNumberValue(lhs)); var_rhs_float64.Bind(SmiToFloat64(rhs)); Goto(&do_fmul); } Bind(&rhs_is_not_smi); { Node* rhs_map = LoadMap(rhs); // Check if {rhs} is a HeapNumber. Label rhs_is_number(this), rhs_is_not_number(this, Label::kDeferred); Branch(IsHeapNumberMap(rhs_map), &rhs_is_number, &rhs_is_not_number); Bind(&rhs_is_number); { // Both {lhs} and {rhs} are HeapNumbers. Load their values and // multiply them. var_lhs_float64.Bind(LoadHeapNumberValue(lhs)); var_rhs_float64.Bind(LoadHeapNumberValue(rhs)); Goto(&do_fmul); } Bind(&rhs_is_not_number); { // Multiplication is commutative, swap {lhs} with {rhs} and loop. var_lhs.Bind(rhs); var_rhs.Bind(lhs); Goto(&loop); } } } Bind(&lhs_is_not_number); { // Convert {lhs} to a Number and loop. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_lhs.Bind(CallStub(callable, context, lhs)); Goto(&loop); } } } Bind(&do_fmul); { Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value()); Node* result = AllocateHeapNumberWithValue(value); var_result.Bind(result); Goto(&return_result); } Bind(&return_result); Return(var_result.value()); } TF_BUILTIN(Divide, CodeStubAssembler) { Node* left = Parameter(0); Node* right = Parameter(1); Node* context = Parameter(2); // Shared entry point for floating point division. Label do_fdiv(this), end(this); Variable var_dividend_float64(this, MachineRepresentation::kFloat64), var_divisor_float64(this, MachineRepresentation::kFloat64); // We might need to loop one or two times due to ToNumber conversions. Variable var_dividend(this, MachineRepresentation::kTagged), var_divisor(this, MachineRepresentation::kTagged), var_result(this, MachineRepresentation::kTagged); Variable* loop_variables[] = {&var_dividend, &var_divisor}; Label loop(this, 2, loop_variables); var_dividend.Bind(left); var_divisor.Bind(right); Goto(&loop); Bind(&loop); { Node* dividend = var_dividend.value(); Node* divisor = var_divisor.value(); Label dividend_is_smi(this), dividend_is_not_smi(this); Branch(TaggedIsSmi(dividend), ÷nd_is_smi, ÷nd_is_not_smi); Bind(÷nd_is_smi); { Label divisor_is_smi(this), divisor_is_not_smi(this); Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi); Bind(&divisor_is_smi); { Label bailout(this); // Do floating point division if {divisor} is zero. GotoIf(SmiEqual(divisor, SmiConstant(0)), &bailout); // Do floating point division {dividend} is zero and {divisor} is // negative. Label dividend_is_zero(this), dividend_is_not_zero(this); Branch(SmiEqual(dividend, SmiConstant(0)), ÷nd_is_zero, ÷nd_is_not_zero); Bind(÷nd_is_zero); { GotoIf(SmiLessThan(divisor, SmiConstant(0)), &bailout); Goto(÷nd_is_not_zero); } Bind(÷nd_is_not_zero); Node* untagged_divisor = SmiToWord32(divisor); Node* untagged_dividend = SmiToWord32(dividend); // Do floating point division if {dividend} is kMinInt (or kMinInt - 1 // if the Smi size is 31) and {divisor} is -1. Label divisor_is_minus_one(this), divisor_is_not_minus_one(this); Branch(Word32Equal(untagged_divisor, Int32Constant(-1)), &divisor_is_minus_one, &divisor_is_not_minus_one); Bind(&divisor_is_minus_one); { GotoIf( Word32Equal(untagged_dividend, Int32Constant(kSmiValueSize == 32 ? kMinInt : (kMinInt >> 1))), &bailout); Goto(&divisor_is_not_minus_one); } Bind(&divisor_is_not_minus_one); // TODO(epertoso): consider adding a machine instruction that returns // both the result and the remainder. Node* untagged_result = Int32Div(untagged_dividend, untagged_divisor); Node* truncated = Int32Mul(untagged_result, untagged_divisor); // Do floating point division if the remainder is not 0. GotoIf(Word32NotEqual(untagged_dividend, truncated), &bailout); var_result.Bind(SmiFromWord32(untagged_result)); Goto(&end); // Bailout: convert {dividend} and {divisor} to double and do double // division. Bind(&bailout); { var_dividend_float64.Bind(SmiToFloat64(dividend)); var_divisor_float64.Bind(SmiToFloat64(divisor)); Goto(&do_fdiv); } } Bind(&divisor_is_not_smi); { Node* divisor_map = LoadMap(divisor); // Check if {divisor} is a HeapNumber. Label divisor_is_number(this), divisor_is_not_number(this, Label::kDeferred); Branch(IsHeapNumberMap(divisor_map), &divisor_is_number, &divisor_is_not_number); Bind(&divisor_is_number); { // Convert {dividend} to a double and divide it with the value of // {divisor}. var_dividend_float64.Bind(SmiToFloat64(dividend)); var_divisor_float64.Bind(LoadHeapNumberValue(divisor)); Goto(&do_fdiv); } Bind(&divisor_is_not_number); { // Convert {divisor} to a number and loop. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_divisor.Bind(CallStub(callable, context, divisor)); Goto(&loop); } } } Bind(÷nd_is_not_smi); { Node* dividend_map = LoadMap(dividend); // Check if {dividend} is a HeapNumber. Label dividend_is_number(this), dividend_is_not_number(this, Label::kDeferred); Branch(IsHeapNumberMap(dividend_map), ÷nd_is_number, ÷nd_is_not_number); Bind(÷nd_is_number); { // Check if {divisor} is a Smi. Label divisor_is_smi(this), divisor_is_not_smi(this); Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi); Bind(&divisor_is_smi); { // Convert {divisor} to a double and use it for a floating point // division. var_dividend_float64.Bind(LoadHeapNumberValue(dividend)); var_divisor_float64.Bind(SmiToFloat64(divisor)); Goto(&do_fdiv); } Bind(&divisor_is_not_smi); { Node* divisor_map = LoadMap(divisor); // Check if {divisor} is a HeapNumber. Label divisor_is_number(this), divisor_is_not_number(this, Label::kDeferred); Branch(IsHeapNumberMap(divisor_map), &divisor_is_number, &divisor_is_not_number); Bind(&divisor_is_number); { // Both {dividend} and {divisor} are HeapNumbers. Load their values // and divide them. var_dividend_float64.Bind(LoadHeapNumberValue(dividend)); var_divisor_float64.Bind(LoadHeapNumberValue(divisor)); Goto(&do_fdiv); } Bind(&divisor_is_not_number); { // Convert {divisor} to a number and loop. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_divisor.Bind(CallStub(callable, context, divisor)); Goto(&loop); } } } Bind(÷nd_is_not_number); { // Convert {dividend} to a Number and loop. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_dividend.Bind(CallStub(callable, context, dividend)); Goto(&loop); } } } Bind(&do_fdiv); { Node* value = Float64Div(var_dividend_float64.value(), var_divisor_float64.value()); var_result.Bind(AllocateHeapNumberWithValue(value)); Goto(&end); } Bind(&end); Return(var_result.value()); } TF_BUILTIN(Modulus, CodeStubAssembler) { Node* left = Parameter(0); Node* right = Parameter(1); Node* context = Parameter(2); Variable var_result(this, MachineRepresentation::kTagged); Label return_result(this, &var_result); // Shared entry point for floating point modulus. Label do_fmod(this); Variable var_dividend_float64(this, MachineRepresentation::kFloat64), var_divisor_float64(this, MachineRepresentation::kFloat64); // We might need to loop one or two times due to ToNumber conversions. Variable var_dividend(this, MachineRepresentation::kTagged), var_divisor(this, MachineRepresentation::kTagged); Variable* loop_variables[] = {&var_dividend, &var_divisor}; Label loop(this, 2, loop_variables); var_dividend.Bind(left); var_divisor.Bind(right); Goto(&loop); Bind(&loop); { Node* dividend = var_dividend.value(); Node* divisor = var_divisor.value(); Label dividend_is_smi(this), dividend_is_not_smi(this); Branch(TaggedIsSmi(dividend), ÷nd_is_smi, ÷nd_is_not_smi); Bind(÷nd_is_smi); { Label dividend_is_not_zero(this); Label divisor_is_smi(this), divisor_is_not_smi(this); Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi); Bind(&divisor_is_smi); { // Compute the modulus of two Smis. var_result.Bind(SmiMod(dividend, divisor)); Goto(&return_result); } Bind(&divisor_is_not_smi); { Node* divisor_map = LoadMap(divisor); // Check if {divisor} is a HeapNumber. Label divisor_is_number(this), divisor_is_not_number(this, Label::kDeferred); Branch(IsHeapNumberMap(divisor_map), &divisor_is_number, &divisor_is_not_number); Bind(&divisor_is_number); { // Convert {dividend} to a double and compute its modulus with the // value of {dividend}. var_dividend_float64.Bind(SmiToFloat64(dividend)); var_divisor_float64.Bind(LoadHeapNumberValue(divisor)); Goto(&do_fmod); } Bind(&divisor_is_not_number); { // Convert {divisor} to a number and loop. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_divisor.Bind(CallStub(callable, context, divisor)); Goto(&loop); } } } Bind(÷nd_is_not_smi); { Node* dividend_map = LoadMap(dividend); // Check if {dividend} is a HeapNumber. Label dividend_is_number(this), dividend_is_not_number(this, Label::kDeferred); Branch(IsHeapNumberMap(dividend_map), ÷nd_is_number, ÷nd_is_not_number); Bind(÷nd_is_number); { // Check if {divisor} is a Smi. Label divisor_is_smi(this), divisor_is_not_smi(this); Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi); Bind(&divisor_is_smi); { // Convert {divisor} to a double and compute {dividend}'s modulus with // it. var_dividend_float64.Bind(LoadHeapNumberValue(dividend)); var_divisor_float64.Bind(SmiToFloat64(divisor)); Goto(&do_fmod); } Bind(&divisor_is_not_smi); { Node* divisor_map = LoadMap(divisor); // Check if {divisor} is a HeapNumber. Label divisor_is_number(this), divisor_is_not_number(this, Label::kDeferred); Branch(IsHeapNumberMap(divisor_map), &divisor_is_number, &divisor_is_not_number); Bind(&divisor_is_number); { // Both {dividend} and {divisor} are HeapNumbers. Load their values // and compute their modulus. var_dividend_float64.Bind(LoadHeapNumberValue(dividend)); var_divisor_float64.Bind(LoadHeapNumberValue(divisor)); Goto(&do_fmod); } Bind(&divisor_is_not_number); { // Convert {divisor} to a number and loop. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_divisor.Bind(CallStub(callable, context, divisor)); Goto(&loop); } } } Bind(÷nd_is_not_number); { // Convert {dividend} to a Number and loop. Callable callable = CodeFactory::NonNumberToNumber(isolate()); var_dividend.Bind(CallStub(callable, context, dividend)); Goto(&loop); } } } Bind(&do_fmod); { Node* value = Float64Mod(var_dividend_float64.value(), var_divisor_float64.value()); var_result.Bind(AllocateHeapNumberWithValue(value)); Goto(&return_result); } Bind(&return_result); Return(var_result.value()); } TF_BUILTIN(ShiftLeft, NumberBuiltinsAssembler) { BitwiseShiftOp([this](Node* lhs, Node* shift_count) { return Word32Shl(lhs, shift_count); }); } TF_BUILTIN(ShiftRight, NumberBuiltinsAssembler) { BitwiseShiftOp([this](Node* lhs, Node* shift_count) { return Word32Sar(lhs, shift_count); }); } TF_BUILTIN(ShiftRightLogical, NumberBuiltinsAssembler) { BitwiseShiftOp([this](Node* lhs, Node* shift_count) { return Word32Shr(lhs, shift_count); }); } TF_BUILTIN(BitwiseAnd, NumberBuiltinsAssembler) { BitwiseOp([this](Node* lhs, Node* rhs) { return Word32And(lhs, rhs); }); } TF_BUILTIN(BitwiseOr, NumberBuiltinsAssembler) { BitwiseOp([this](Node* lhs, Node* rhs) { return Word32Or(lhs, rhs); }); } TF_BUILTIN(BitwiseXor, NumberBuiltinsAssembler) { BitwiseOp([this](Node* lhs, Node* rhs) { return Word32Xor(lhs, rhs); }); } TF_BUILTIN(LessThan, NumberBuiltinsAssembler) { RelationalComparisonBuiltin(kLessThan); } TF_BUILTIN(LessThanOrEqual, NumberBuiltinsAssembler) { RelationalComparisonBuiltin(kLessThanOrEqual); } TF_BUILTIN(GreaterThan, NumberBuiltinsAssembler) { RelationalComparisonBuiltin(kGreaterThan); } TF_BUILTIN(GreaterThanOrEqual, NumberBuiltinsAssembler) { RelationalComparisonBuiltin(kGreaterThanOrEqual); } TF_BUILTIN(Equal, CodeStubAssembler) { Node* lhs = Parameter(0); Node* rhs = Parameter(1); Node* context = Parameter(2); Return(Equal(kDontNegateResult, lhs, rhs, context)); } TF_BUILTIN(NotEqual, CodeStubAssembler) { Node* lhs = Parameter(0); Node* rhs = Parameter(1); Node* context = Parameter(2); Return(Equal(kNegateResult, lhs, rhs, context)); } TF_BUILTIN(StrictEqual, CodeStubAssembler) { Node* lhs = Parameter(0); Node* rhs = Parameter(1); Node* context = Parameter(2); Return(StrictEqual(kDontNegateResult, lhs, rhs, context)); } TF_BUILTIN(StrictNotEqual, CodeStubAssembler) { Node* lhs = Parameter(0); Node* rhs = Parameter(1); Node* context = Parameter(2); Return(StrictEqual(kNegateResult, lhs, rhs, context)); } } // namespace internal } // namespace v8