// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/adapters.h" #include "src/base/bits.h" #include "src/compiler/instruction-selector-impl.h" #include "src/compiler/node-matchers.h" #include "src/compiler/node-properties.h" namespace v8 { namespace internal { namespace compiler { // Adds Arm-specific methods for generating InstructionOperands. class ArmOperandGenerator : public OperandGenerator { public: explicit ArmOperandGenerator(InstructionSelector* selector) : OperandGenerator(selector) {} bool CanBeImmediate(int32_t value) const { return Assembler::ImmediateFitsAddrMode1Instruction(value); } bool CanBeImmediate(uint32_t value) const { return CanBeImmediate(bit_cast(value)); } bool CanBeImmediate(Node* node, InstructionCode opcode) { Int32Matcher m(node); if (!m.HasValue()) return false; int32_t value = m.Value(); switch (ArchOpcodeField::decode(opcode)) { case kArmAnd: case kArmMov: case kArmMvn: case kArmBic: return CanBeImmediate(value) || CanBeImmediate(~value); case kArmAdd: case kArmSub: case kArmCmp: case kArmCmn: return CanBeImmediate(value) || CanBeImmediate(-value); case kArmTst: case kArmTeq: case kArmOrr: case kArmEor: case kArmRsb: return CanBeImmediate(value); case kArmVldrF32: case kArmVstrF32: case kArmVldrF64: case kArmVstrF64: return value >= -1020 && value <= 1020 && (value % 4) == 0; case kArmLdrb: case kArmLdrsb: case kArmStrb: case kArmLdr: case kArmStr: return value >= -4095 && value <= 4095; case kArmLdrh: case kArmLdrsh: case kArmStrh: return value >= -255 && value <= 255; default: break; } return false; } }; namespace { void VisitRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { ArmOperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); } void VisitRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { ArmOperandGenerator g(selector); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); } void VisitRRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { ArmOperandGenerator g(selector); // Use DefineSameAsFirst for ternary ops that clobber their first input, // e.g. the NEON vbsl instruction. selector->Emit( opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2))); } void VisitRRI(InstructionSelector* selector, ArchOpcode opcode, Node* node) { ArmOperandGenerator g(selector); int32_t imm = OpParameter(node); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseImmediate(imm)); } void VisitRRIR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { ArmOperandGenerator g(selector); int32_t imm = OpParameter(node); selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), g.UseImmediate(imm), g.UseRegister(node->InputAt(1))); } template bool TryMatchShift(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { ArmOperandGenerator g(selector); if (node->opcode() == kOpcode) { Int32BinopMatcher m(node); *value_return = g.UseRegister(m.left().node()); if (m.right().IsInRange(kImmMin, kImmMax)) { *opcode_return |= AddressingModeField::encode(kImmMode); *shift_return = g.UseImmediate(m.right().node()); } else { *opcode_return |= AddressingModeField::encode(kRegMode); *shift_return = g.UseRegister(m.right().node()); } return true; } return false; } template bool TryMatchShiftImmediate(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { ArmOperandGenerator g(selector); if (node->opcode() == kOpcode) { Int32BinopMatcher m(node); if (m.right().IsInRange(kImmMin, kImmMax)) { *opcode_return |= AddressingModeField::encode(kImmMode); *value_return = g.UseRegister(m.left().node()); *shift_return = g.UseImmediate(m.right().node()); return true; } } return false; } bool TryMatchROR(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { return TryMatchShift(selector, opcode_return, node, value_return, shift_return); } bool TryMatchASR(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { return TryMatchShift(selector, opcode_return, node, value_return, shift_return); } bool TryMatchLSL(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { return TryMatchShift(selector, opcode_return, node, value_return, shift_return); } bool TryMatchLSLImmediate(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { return TryMatchShiftImmediate( selector, opcode_return, node, value_return, shift_return); } bool TryMatchLSR(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { return TryMatchShift(selector, opcode_return, node, value_return, shift_return); } bool TryMatchShift(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, InstructionOperand* value_return, InstructionOperand* shift_return) { return ( TryMatchASR(selector, opcode_return, node, value_return, shift_return) || TryMatchLSL(selector, opcode_return, node, value_return, shift_return) || TryMatchLSR(selector, opcode_return, node, value_return, shift_return) || TryMatchROR(selector, opcode_return, node, value_return, shift_return)); } bool TryMatchImmediateOrShift(InstructionSelector* selector, InstructionCode* opcode_return, Node* node, size_t* input_count_return, InstructionOperand* inputs) { ArmOperandGenerator g(selector); if (g.CanBeImmediate(node, *opcode_return)) { *opcode_return |= AddressingModeField::encode(kMode_Operand2_I); inputs[0] = g.UseImmediate(node); *input_count_return = 1; return true; } if (TryMatchShift(selector, opcode_return, node, &inputs[0], &inputs[1])) { *input_count_return = 2; return true; } return false; } void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode, InstructionCode reverse_opcode, FlagsContinuation* cont) { ArmOperandGenerator g(selector); Int32BinopMatcher m(node); InstructionOperand inputs[5]; size_t input_count = 0; InstructionOperand outputs[2]; size_t output_count = 0; if (m.left().node() == m.right().node()) { // If both inputs refer to the same operand, enforce allocating a register // for both of them to ensure that we don't end up generating code like // this: // // mov r0, r1, asr #16 // adds r0, r0, r1, asr #16 // bvs label InstructionOperand const input = g.UseRegister(m.left().node()); opcode |= AddressingModeField::encode(kMode_Operand2_R); inputs[input_count++] = input; inputs[input_count++] = input; } else if (TryMatchImmediateOrShift(selector, &opcode, m.right().node(), &input_count, &inputs[1])) { inputs[0] = g.UseRegister(m.left().node()); input_count++; } else if (TryMatchImmediateOrShift(selector, &reverse_opcode, m.left().node(), &input_count, &inputs[1])) { inputs[0] = g.UseRegister(m.right().node()); opcode = reverse_opcode; input_count++; } else { opcode |= AddressingModeField::encode(kMode_Operand2_R); inputs[input_count++] = g.UseRegister(m.left().node()); inputs[input_count++] = g.UseRegister(m.right().node()); } if (cont->IsBranch()) { inputs[input_count++] = g.Label(cont->true_block()); inputs[input_count++] = g.Label(cont->false_block()); } outputs[output_count++] = g.DefineAsRegister(node); if (cont->IsSet()) { outputs[output_count++] = g.DefineAsRegister(cont->result()); } DCHECK_NE(0u, input_count); DCHECK_NE(0u, output_count); DCHECK_GE(arraysize(inputs), input_count); DCHECK_GE(arraysize(outputs), output_count); DCHECK_NE(kMode_None, AddressingModeField::decode(opcode)); opcode = cont->Encode(opcode); if (cont->IsDeoptimize()) { selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs, cont->kind(), cont->reason(), cont->frame_state()); } else if (cont->IsTrap()) { inputs[input_count++] = g.UseImmediate(cont->trap_id()); selector->Emit(opcode, output_count, outputs, input_count, inputs); } else { selector->Emit(opcode, output_count, outputs, input_count, inputs); } } void VisitBinop(InstructionSelector* selector, Node* node, InstructionCode opcode, InstructionCode reverse_opcode) { FlagsContinuation cont; VisitBinop(selector, node, opcode, reverse_opcode, &cont); } void EmitDiv(InstructionSelector* selector, ArchOpcode div_opcode, ArchOpcode f64i32_opcode, ArchOpcode i32f64_opcode, InstructionOperand result_operand, InstructionOperand left_operand, InstructionOperand right_operand) { ArmOperandGenerator g(selector); if (selector->IsSupported(SUDIV)) { selector->Emit(div_opcode, result_operand, left_operand, right_operand); return; } InstructionOperand left_double_operand = g.TempDoubleRegister(); InstructionOperand right_double_operand = g.TempDoubleRegister(); InstructionOperand result_double_operand = g.TempDoubleRegister(); selector->Emit(f64i32_opcode, left_double_operand, left_operand); selector->Emit(f64i32_opcode, right_double_operand, right_operand); selector->Emit(kArmVdivF64, result_double_operand, left_double_operand, right_double_operand); selector->Emit(i32f64_opcode, result_operand, result_double_operand); } void VisitDiv(InstructionSelector* selector, Node* node, ArchOpcode div_opcode, ArchOpcode f64i32_opcode, ArchOpcode i32f64_opcode) { ArmOperandGenerator g(selector); Int32BinopMatcher m(node); EmitDiv(selector, div_opcode, f64i32_opcode, i32f64_opcode, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.right().node())); } void VisitMod(InstructionSelector* selector, Node* node, ArchOpcode div_opcode, ArchOpcode f64i32_opcode, ArchOpcode i32f64_opcode) { ArmOperandGenerator g(selector); Int32BinopMatcher m(node); InstructionOperand div_operand = g.TempRegister(); InstructionOperand result_operand = g.DefineAsRegister(node); InstructionOperand left_operand = g.UseRegister(m.left().node()); InstructionOperand right_operand = g.UseRegister(m.right().node()); EmitDiv(selector, div_opcode, f64i32_opcode, i32f64_opcode, div_operand, left_operand, right_operand); if (selector->IsSupported(ARMv7)) { selector->Emit(kArmMls, result_operand, div_operand, right_operand, left_operand); } else { InstructionOperand mul_operand = g.TempRegister(); selector->Emit(kArmMul, mul_operand, div_operand, right_operand); selector->Emit(kArmSub | AddressingModeField::encode(kMode_Operand2_R), result_operand, left_operand, mul_operand); } } void EmitLoad(InstructionSelector* selector, InstructionCode opcode, InstructionOperand* output, Node* base, Node* index) { ArmOperandGenerator g(selector); InstructionOperand inputs[3]; size_t input_count = 2; inputs[0] = g.UseRegister(base); if (g.CanBeImmediate(index, opcode)) { inputs[1] = g.UseImmediate(index); opcode |= AddressingModeField::encode(kMode_Offset_RI); } else if ((opcode == kArmLdr) && TryMatchLSLImmediate(selector, &opcode, index, &inputs[1], &inputs[2])) { input_count = 3; } else { inputs[1] = g.UseRegister(index); opcode |= AddressingModeField::encode(kMode_Offset_RR); } selector->Emit(opcode, 1, output, input_count, inputs); } void EmitStore(InstructionSelector* selector, InstructionCode opcode, size_t input_count, InstructionOperand* inputs, Node* index) { ArmOperandGenerator g(selector); if (g.CanBeImmediate(index, opcode)) { inputs[input_count++] = g.UseImmediate(index); opcode |= AddressingModeField::encode(kMode_Offset_RI); } else if ((opcode == kArmStr) && TryMatchLSLImmediate(selector, &opcode, index, &inputs[2], &inputs[3])) { input_count = 4; } else { inputs[input_count++] = g.UseRegister(index); opcode |= AddressingModeField::encode(kMode_Offset_RR); } selector->Emit(opcode, 0, nullptr, input_count, inputs); } } // namespace void InstructionSelector::VisitLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); InstructionCode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kFloat32: opcode = kArmVldrF32; break; case MachineRepresentation::kFloat64: opcode = kArmVldrF64; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = load_rep.IsUnsigned() ? kArmLdrb : kArmLdrsb; break; case MachineRepresentation::kWord16: opcode = load_rep.IsUnsigned() ? kArmLdrh : kArmLdrsh; break; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord32: opcode = kArmLdr; break; case MachineRepresentation::kWord64: // Fall through. case MachineRepresentation::kSimd128: // Fall through. case MachineRepresentation::kSimd1x4: // Fall through. case MachineRepresentation::kSimd1x8: // Fall through. case MachineRepresentation::kSimd1x16: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); return; } InstructionOperand output = g.DefineAsRegister(node); EmitLoad(this, opcode, &output, base, index); } void InstructionSelector::VisitProtectedLoad(Node* node) { // TODO(eholk) UNIMPLEMENTED(); } void InstructionSelector::VisitStore(Node* node) { ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); StoreRepresentation store_rep = StoreRepresentationOf(node->op()); WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); MachineRepresentation rep = store_rep.representation(); if (write_barrier_kind != kNoWriteBarrier) { DCHECK(CanBeTaggedPointer(rep)); AddressingMode addressing_mode; InstructionOperand inputs[3]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); // OutOfLineRecordWrite uses the index in an 'add' instruction as well as // for the store itself, so we must check compatibility with both. if (g.CanBeImmediate(index, kArmAdd) && g.CanBeImmediate(index, kArmStr)) { inputs[input_count++] = g.UseImmediate(index); addressing_mode = kMode_Offset_RI; } else { inputs[input_count++] = g.UseUniqueRegister(index); addressing_mode = kMode_Offset_RR; } inputs[input_count++] = g.UseUniqueRegister(value); RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny; switch (write_barrier_kind) { case kNoWriteBarrier: UNREACHABLE(); break; case kMapWriteBarrier: record_write_mode = RecordWriteMode::kValueIsMap; break; case kPointerWriteBarrier: record_write_mode = RecordWriteMode::kValueIsPointer; break; case kFullWriteBarrier: record_write_mode = RecordWriteMode::kValueIsAny; break; } InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; size_t const temp_count = arraysize(temps); InstructionCode code = kArchStoreWithWriteBarrier; code |= AddressingModeField::encode(addressing_mode); code |= MiscField::encode(static_cast(record_write_mode)); Emit(code, 0, nullptr, input_count, inputs, temp_count, temps); } else { InstructionCode opcode = kArchNop; switch (rep) { case MachineRepresentation::kFloat32: opcode = kArmVstrF32; break; case MachineRepresentation::kFloat64: opcode = kArmVstrF64; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kWord8: opcode = kArmStrb; break; case MachineRepresentation::kWord16: opcode = kArmStrh; break; case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord32: opcode = kArmStr; break; case MachineRepresentation::kWord64: // Fall through. case MachineRepresentation::kSimd128: // Fall through. case MachineRepresentation::kSimd1x4: // Fall through. case MachineRepresentation::kSimd1x8: // Fall through. case MachineRepresentation::kSimd1x16: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); return; } InstructionOperand inputs[4]; size_t input_count = 0; inputs[input_count++] = g.UseRegister(value); inputs[input_count++] = g.UseRegister(base); EmitStore(this, opcode, input_count, inputs, index); } } void InstructionSelector::VisitProtectedStore(Node* node) { // TODO(eholk) UNIMPLEMENTED(); } void InstructionSelector::VisitUnalignedLoad(Node* node) { UnalignedLoadRepresentation load_rep = UnalignedLoadRepresentationOf(node->op()); ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); InstructionCode opcode = kArmLdr; // Only floating point loads need to be specially handled; integer loads // support unaligned access. We support unaligned FP loads by loading to // integer registers first, then moving to the destination FP register. switch (load_rep.representation()) { case MachineRepresentation::kFloat32: { InstructionOperand temp = g.TempRegister(); EmitLoad(this, opcode, &temp, base, index); Emit(kArmVmovF32U32, g.DefineAsRegister(node), temp); return; } case MachineRepresentation::kFloat64: { // TODO(arm): use vld1.8 for this when NEON is available. // Compute the address of the least-significant half of the FP value. // We assume that the base node is unlikely to be an encodable immediate // or the result of a shift operation, so only consider the addressing // mode that should be used for the index node. InstructionCode add_opcode = kArmAdd; InstructionOperand inputs[3]; inputs[0] = g.UseRegister(base); size_t input_count; if (TryMatchImmediateOrShift(this, &add_opcode, index, &input_count, &inputs[1])) { // input_count has been set by TryMatchImmediateOrShift(), so increment // it to account for the base register in inputs[0]. input_count++; } else { add_opcode |= AddressingModeField::encode(kMode_Operand2_R); inputs[1] = g.UseRegister(index); input_count = 2; // Base register and index. } InstructionOperand addr = g.TempRegister(); Emit(add_opcode, 1, &addr, input_count, inputs); // Load both halves and move to an FP register. InstructionOperand fp_lo = g.TempRegister(); InstructionOperand fp_hi = g.TempRegister(); opcode |= AddressingModeField::encode(kMode_Offset_RI); Emit(opcode, fp_lo, addr, g.TempImmediate(0)); Emit(opcode, fp_hi, addr, g.TempImmediate(4)); Emit(kArmVmovF64U32U32, g.DefineAsRegister(node), fp_lo, fp_hi); return; } default: // All other cases should support unaligned accesses. UNREACHABLE(); return; } } void InstructionSelector::VisitUnalignedStore(Node* node) { ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); InstructionOperand inputs[4]; size_t input_count = 0; UnalignedStoreRepresentation store_rep = UnalignedStoreRepresentationOf(node->op()); // Only floating point stores need to be specially handled; integer stores // support unaligned access. We support unaligned FP stores by moving the // value to integer registers first, then storing to the destination address. switch (store_rep) { case MachineRepresentation::kFloat32: { inputs[input_count++] = g.TempRegister(); Emit(kArmVmovU32F32, inputs[0], g.UseRegister(value)); inputs[input_count++] = g.UseRegister(base); EmitStore(this, kArmStr, input_count, inputs, index); return; } case MachineRepresentation::kFloat64: { // TODO(arm): use vst1.8 for this when NEON is available. // Store a 64-bit floating point value using two 32-bit integer stores. // Computing the store address here would require three live temporary // registers (fp<63:32>, fp<31:0>, address), so compute base + 4 after // storing the least-significant half of the value. // First, move the 64-bit FP value into two temporary integer registers. InstructionOperand fp[] = {g.TempRegister(), g.TempRegister()}; inputs[input_count++] = g.UseRegister(value); Emit(kArmVmovU32U32F64, arraysize(fp), fp, input_count, inputs); // Store the least-significant half. inputs[0] = fp[0]; // Low 32-bits of FP value. inputs[input_count++] = g.UseRegister(base); // First store base address. EmitStore(this, kArmStr, input_count, inputs, index); // Store the most-significant half. InstructionOperand base4 = g.TempRegister(); Emit(kArmAdd | AddressingModeField::encode(kMode_Operand2_I), base4, g.UseRegister(base), g.TempImmediate(4)); // Compute base + 4. inputs[0] = fp[1]; // High 32-bits of FP value. inputs[1] = base4; // Second store base + 4 address. EmitStore(this, kArmStr, input_count, inputs, index); return; } default: // All other cases should support unaligned accesses. UNREACHABLE(); return; } } void InstructionSelector::VisitCheckedLoad(Node* node) { CheckedLoadRepresentation load_rep = CheckedLoadRepresentationOf(node->op()); ArmOperandGenerator g(this); Node* const buffer = node->InputAt(0); Node* const offset = node->InputAt(1); Node* const length = node->InputAt(2); ArchOpcode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kWord8: opcode = load_rep.IsSigned() ? kCheckedLoadInt8 : kCheckedLoadUint8; break; case MachineRepresentation::kWord16: opcode = load_rep.IsSigned() ? kCheckedLoadInt16 : kCheckedLoadUint16; break; case MachineRepresentation::kWord32: opcode = kCheckedLoadWord32; break; case MachineRepresentation::kFloat32: opcode = kCheckedLoadFloat32; break; case MachineRepresentation::kFloat64: opcode = kCheckedLoadFloat64; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: // Fall through. case MachineRepresentation::kSimd128: // Fall through. case MachineRepresentation::kSimd1x4: // Fall through. case MachineRepresentation::kSimd1x8: // Fall through. case MachineRepresentation::kSimd1x16: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); return; } InstructionOperand offset_operand = g.UseRegister(offset); InstructionOperand length_operand = g.CanBeImmediate(length, kArmCmp) ? g.UseImmediate(length) : g.UseRegister(length); Emit(opcode | AddressingModeField::encode(kMode_Offset_RR), g.DefineAsRegister(node), offset_operand, length_operand, g.UseRegister(buffer), offset_operand); } void InstructionSelector::VisitCheckedStore(Node* node) { MachineRepresentation rep = CheckedStoreRepresentationOf(node->op()); ArmOperandGenerator g(this); Node* const buffer = node->InputAt(0); Node* const offset = node->InputAt(1); Node* const length = node->InputAt(2); Node* const value = node->InputAt(3); ArchOpcode opcode = kArchNop; switch (rep) { case MachineRepresentation::kWord8: opcode = kCheckedStoreWord8; break; case MachineRepresentation::kWord16: opcode = kCheckedStoreWord16; break; case MachineRepresentation::kWord32: opcode = kCheckedStoreWord32; break; case MachineRepresentation::kFloat32: opcode = kCheckedStoreFloat32; break; case MachineRepresentation::kFloat64: opcode = kCheckedStoreFloat64; break; case MachineRepresentation::kBit: // Fall through. case MachineRepresentation::kTaggedSigned: // Fall through. case MachineRepresentation::kTaggedPointer: // Fall through. case MachineRepresentation::kTagged: // Fall through. case MachineRepresentation::kWord64: // Fall through. case MachineRepresentation::kSimd128: // Fall through. case MachineRepresentation::kSimd1x4: // Fall through. case MachineRepresentation::kSimd1x8: // Fall through. case MachineRepresentation::kSimd1x16: // Fall through. case MachineRepresentation::kNone: UNREACHABLE(); return; } InstructionOperand offset_operand = g.UseRegister(offset); InstructionOperand length_operand = g.CanBeImmediate(length, kArmCmp) ? g.UseImmediate(length) : g.UseRegister(length); Emit(opcode | AddressingModeField::encode(kMode_Offset_RR), g.NoOutput(), offset_operand, length_operand, g.UseRegister(value), g.UseRegister(buffer), offset_operand); } namespace { void EmitBic(InstructionSelector* selector, Node* node, Node* left, Node* right) { ArmOperandGenerator g(selector); InstructionCode opcode = kArmBic; InstructionOperand value_operand; InstructionOperand shift_operand; if (TryMatchShift(selector, &opcode, right, &value_operand, &shift_operand)) { selector->Emit(opcode, g.DefineAsRegister(node), g.UseRegister(left), value_operand, shift_operand); return; } selector->Emit(opcode | AddressingModeField::encode(kMode_Operand2_R), g.DefineAsRegister(node), g.UseRegister(left), g.UseRegister(right)); } void EmitUbfx(InstructionSelector* selector, Node* node, Node* left, uint32_t lsb, uint32_t width) { DCHECK_LE(1u, width); DCHECK_LE(width, 32u - lsb); ArmOperandGenerator g(selector); selector->Emit(kArmUbfx, g.DefineAsRegister(node), g.UseRegister(left), g.TempImmediate(lsb), g.TempImmediate(width)); } } // namespace void InstructionSelector::VisitWord32And(Node* node) { ArmOperandGenerator g(this); Int32BinopMatcher m(node); if (m.left().IsWord32Xor() && CanCover(node, m.left().node())) { Int32BinopMatcher mleft(m.left().node()); if (mleft.right().Is(-1)) { EmitBic(this, node, m.right().node(), mleft.left().node()); return; } } if (m.right().IsWord32Xor() && CanCover(node, m.right().node())) { Int32BinopMatcher mright(m.right().node()); if (mright.right().Is(-1)) { EmitBic(this, node, m.left().node(), mright.left().node()); return; } } if (m.right().HasValue()) { uint32_t const value = m.right().Value(); uint32_t width = base::bits::CountPopulation32(value); uint32_t leading_zeros = base::bits::CountLeadingZeros32(value); // Try to merge SHR operations on the left hand input into this AND. if (m.left().IsWord32Shr()) { Int32BinopMatcher mshr(m.left().node()); if (mshr.right().HasValue()) { uint32_t const shift = mshr.right().Value(); if (((shift == 8) || (shift == 16) || (shift == 24)) && ((value == 0xff) || (value == 0xffff))) { // Merge SHR into AND by emitting a UXTB or UXTH instruction with a // bytewise rotation. Emit((value == 0xff) ? kArmUxtb : kArmUxth, g.DefineAsRegister(m.node()), g.UseRegister(mshr.left().node()), g.TempImmediate(mshr.right().Value())); return; } else if (IsSupported(ARMv7) && (width != 0) && ((leading_zeros + width) == 32)) { // Merge Shr into And by emitting a UBFX instruction. DCHECK_EQ(0u, base::bits::CountTrailingZeros32(value)); if ((1 <= shift) && (shift <= 31)) { // UBFX cannot extract bits past the register size, however since // shifting the original value would have introduced some zeros we // can still use UBFX with a smaller mask and the remaining bits // will be zeros. EmitUbfx(this, node, mshr.left().node(), shift, std::min(width, 32 - shift)); return; } } } } else if (value == 0xffff) { // Emit UXTH for this AND. We don't bother testing for UXTB, as it's no // better than AND 0xff for this operation. Emit(kArmUxth, g.DefineAsRegister(m.node()), g.UseRegister(m.left().node()), g.TempImmediate(0)); return; } if (g.CanBeImmediate(~value)) { // Emit BIC for this AND by inverting the immediate value first. Emit(kArmBic | AddressingModeField::encode(kMode_Operand2_I), g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.TempImmediate(~value)); return; } if (!g.CanBeImmediate(value) && IsSupported(ARMv7)) { // If value has 9 to 23 contiguous set bits, and has the lsb set, we can // replace this AND with UBFX. Other contiguous bit patterns have already // been handled by BIC or will be handled by AND. if ((width != 0) && ((leading_zeros + width) == 32) && (9 <= leading_zeros) && (leading_zeros <= 23)) { DCHECK_EQ(0u, base::bits::CountTrailingZeros32(value)); EmitUbfx(this, node, m.left().node(), 0, width); return; } width = 32 - width; leading_zeros = base::bits::CountLeadingZeros32(~value); uint32_t lsb = base::bits::CountTrailingZeros32(~value); if ((leading_zeros + width + lsb) == 32) { // This AND can be replaced with BFC. Emit(kArmBfc, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.TempImmediate(lsb), g.TempImmediate(width)); return; } } } VisitBinop(this, node, kArmAnd, kArmAnd); } void InstructionSelector::VisitWord32Or(Node* node) { VisitBinop(this, node, kArmOrr, kArmOrr); } void InstructionSelector::VisitWord32Xor(Node* node) { ArmOperandGenerator g(this); Int32BinopMatcher m(node); if (m.right().Is(-1)) { InstructionCode opcode = kArmMvn; InstructionOperand value_operand; InstructionOperand shift_operand; if (TryMatchShift(this, &opcode, m.left().node(), &value_operand, &shift_operand)) { Emit(opcode, g.DefineAsRegister(node), value_operand, shift_operand); return; } Emit(opcode | AddressingModeField::encode(kMode_Operand2_R), g.DefineAsRegister(node), g.UseRegister(m.left().node())); return; } VisitBinop(this, node, kArmEor, kArmEor); } namespace { template void VisitShift(InstructionSelector* selector, Node* node, TryMatchShift try_match_shift, FlagsContinuation* cont) { ArmOperandGenerator g(selector); InstructionCode opcode = kArmMov; InstructionOperand inputs[4]; size_t input_count = 2; InstructionOperand outputs[2]; size_t output_count = 0; CHECK(try_match_shift(selector, &opcode, node, &inputs[0], &inputs[1])); if (cont->IsBranch()) { inputs[input_count++] = g.Label(cont->true_block()); inputs[input_count++] = g.Label(cont->false_block()); } outputs[output_count++] = g.DefineAsRegister(node); if (cont->IsSet()) { outputs[output_count++] = g.DefineAsRegister(cont->result()); } DCHECK_NE(0u, input_count); DCHECK_NE(0u, output_count); DCHECK_GE(arraysize(inputs), input_count); DCHECK_GE(arraysize(outputs), output_count); DCHECK_NE(kMode_None, AddressingModeField::decode(opcode)); opcode = cont->Encode(opcode); if (cont->IsDeoptimize()) { selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs, cont->kind(), cont->reason(), cont->frame_state()); } else if (cont->IsTrap()) { inputs[input_count++] = g.UseImmediate(cont->trap_id()); selector->Emit(opcode, output_count, outputs, input_count, inputs); } else { selector->Emit(opcode, output_count, outputs, input_count, inputs); } } template void VisitShift(InstructionSelector* selector, Node* node, TryMatchShift try_match_shift) { FlagsContinuation cont; VisitShift(selector, node, try_match_shift, &cont); } } // namespace void InstructionSelector::VisitWord32Shl(Node* node) { VisitShift(this, node, TryMatchLSL); } void InstructionSelector::VisitWord32Shr(Node* node) { ArmOperandGenerator g(this); Int32BinopMatcher m(node); if (IsSupported(ARMv7) && m.left().IsWord32And() && m.right().IsInRange(0, 31)) { uint32_t lsb = m.right().Value(); Int32BinopMatcher mleft(m.left().node()); if (mleft.right().HasValue()) { uint32_t value = (mleft.right().Value() >> lsb) << lsb; uint32_t width = base::bits::CountPopulation32(value); uint32_t msb = base::bits::CountLeadingZeros32(value); if (msb + width + lsb == 32) { DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(value)); return EmitUbfx(this, node, mleft.left().node(), lsb, width); } } } VisitShift(this, node, TryMatchLSR); } void InstructionSelector::VisitWord32Sar(Node* node) { ArmOperandGenerator g(this); Int32BinopMatcher m(node); if (CanCover(m.node(), m.left().node()) && m.left().IsWord32Shl()) { Int32BinopMatcher mleft(m.left().node()); if (m.right().HasValue() && mleft.right().HasValue()) { uint32_t sar = m.right().Value(); uint32_t shl = mleft.right().Value(); if ((sar == shl) && (sar == 16)) { Emit(kArmSxth, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(0)); return; } else if ((sar == shl) && (sar == 24)) { Emit(kArmSxtb, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(0)); return; } else if (IsSupported(ARMv7) && (sar >= shl)) { Emit(kArmSbfx, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.TempImmediate(sar - shl), g.TempImmediate(32 - sar)); return; } } } VisitShift(this, node, TryMatchASR); } void InstructionSelector::VisitInt32PairAdd(Node* node) { ArmOperandGenerator g(this); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { // We use UseUniqueRegister here to avoid register sharing with the output // registers. InstructionOperand inputs[] = { g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; InstructionOperand outputs[] = { g.DefineAsRegister(node), g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; Emit(kArmAddPair, 2, outputs, 4, inputs); } else { // The high word of the result is not used, so we emit the standard 32 bit // instruction. Emit(kArmAdd | AddressingModeField::encode(kMode_Operand2_R), g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(2))); } } void InstructionSelector::VisitInt32PairSub(Node* node) { ArmOperandGenerator g(this); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { // We use UseUniqueRegister here to avoid register sharing with the output // register. InstructionOperand inputs[] = { g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; InstructionOperand outputs[] = { g.DefineAsRegister(node), g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; Emit(kArmSubPair, 2, outputs, 4, inputs); } else { // The high word of the result is not used, so we emit the standard 32 bit // instruction. Emit(kArmSub | AddressingModeField::encode(kMode_Operand2_R), g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(2))); } } void InstructionSelector::VisitInt32PairMul(Node* node) { ArmOperandGenerator g(this); Node* projection1 = NodeProperties::FindProjection(node, 1); if (projection1) { InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), g.UseUniqueRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))}; InstructionOperand outputs[] = { g.DefineAsRegister(node), g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; Emit(kArmMulPair, 2, outputs, 4, inputs); } else { // The high word of the result is not used, so we emit the standard 32 bit // instruction. Emit(kArmMul | AddressingModeField::encode(kMode_Operand2_R), g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(2))); } } namespace { // Shared routine for multiple shift operations. void VisitWord32PairShift(InstructionSelector* selector, InstructionCode opcode, Node* node) { ArmOperandGenerator g(selector); // We use g.UseUniqueRegister here to guarantee that there is // no register aliasing of input registers with output registers. Int32Matcher m(node->InputAt(2)); InstructionOperand shift_operand; if (m.HasValue()) { shift_operand = g.UseImmediate(m.node()); } else { shift_operand = g.UseUniqueRegister(m.node()); } InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)), shift_operand}; Node* projection1 = NodeProperties::FindProjection(node, 1); InstructionOperand outputs[2]; InstructionOperand temps[1]; int32_t output_count = 0; int32_t temp_count = 0; outputs[output_count++] = g.DefineAsRegister(node); if (projection1) { outputs[output_count++] = g.DefineAsRegister(projection1); } else { temps[temp_count++] = g.TempRegister(); } selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps); } } // namespace void InstructionSelector::VisitWord32PairShl(Node* node) { VisitWord32PairShift(this, kArmLslPair, node); } void InstructionSelector::VisitWord32PairShr(Node* node) { VisitWord32PairShift(this, kArmLsrPair, node); } void InstructionSelector::VisitWord32PairSar(Node* node) { VisitWord32PairShift(this, kArmAsrPair, node); } void InstructionSelector::VisitWord32Ror(Node* node) { VisitShift(this, node, TryMatchROR); } void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord32ReverseBits(Node* node) { DCHECK(IsSupported(ARMv7)); VisitRR(this, kArmRbit, node); } void InstructionSelector::VisitWord64ReverseBytes(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord32ReverseBytes(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitWord32Popcnt(Node* node) { UNREACHABLE(); } void InstructionSelector::VisitInt32Add(Node* node) { ArmOperandGenerator g(this); Int32BinopMatcher m(node); if (CanCover(node, m.left().node())) { switch (m.left().opcode()) { case IrOpcode::kInt32Mul: { Int32BinopMatcher mleft(m.left().node()); Emit(kArmMla, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.UseRegister(mleft.right().node()), g.UseRegister(m.right().node())); return; } case IrOpcode::kInt32MulHigh: { Int32BinopMatcher mleft(m.left().node()); Emit(kArmSmmla, g.DefineAsRegister(node), g.UseRegister(mleft.left().node()), g.UseRegister(mleft.right().node()), g.UseRegister(m.right().node())); return; } case IrOpcode::kWord32And: { Int32BinopMatcher mleft(m.left().node()); if (mleft.right().Is(0xff)) { Emit(kArmUxtab, g.DefineAsRegister(node), g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), g.TempImmediate(0)); return; } else if (mleft.right().Is(0xffff)) { Emit(kArmUxtah, g.DefineAsRegister(node), g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), g.TempImmediate(0)); return; } } case IrOpcode::kWord32Sar: { Int32BinopMatcher mleft(m.left().node()); if (CanCover(mleft.node(), mleft.left().node()) && mleft.left().IsWord32Shl()) { Int32BinopMatcher mleftleft(mleft.left().node()); if (mleft.right().Is(24) && mleftleft.right().Is(24)) { Emit(kArmSxtab, g.DefineAsRegister(node), g.UseRegister(m.right().node()), g.UseRegister(mleftleft.left().node()), g.TempImmediate(0)); return; } else if (mleft.right().Is(16) && mleftleft.right().Is(16)) { Emit(kArmSxtah, g.DefineAsRegister(node), g.UseRegister(m.right().node()), g.UseRegister(mleftleft.left().node()), g.TempImmediate(0)); return; } } } default: break; } } if (CanCover(node, m.right().node())) { switch (m.right().opcode()) { case IrOpcode::kInt32Mul: { Int32BinopMatcher mright(m.right().node()); Emit(kArmMla, g.DefineAsRegister(node), g.UseRegister(mright.left().node()), g.UseRegister(mright.right().node()), g.UseRegister(m.left().node())); return; } case IrOpcode::kInt32MulHigh: { Int32BinopMatcher mright(m.right().node()); Emit(kArmSmmla, g.DefineAsRegister(node), g.UseRegister(mright.left().node()), g.UseRegister(mright.right().node()), g.UseRegister(m.left().node())); return; } case IrOpcode::kWord32And: { Int32BinopMatcher mright(m.right().node()); if (mright.right().Is(0xff)) { Emit(kArmUxtab, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), g.TempImmediate(0)); return; } else if (mright.right().Is(0xffff)) { Emit(kArmUxtah, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), g.TempImmediate(0)); return; } } case IrOpcode::kWord32Sar: { Int32BinopMatcher mright(m.right().node()); if (CanCover(mright.node(), mright.left().node()) && mright.left().IsWord32Shl()) { Int32BinopMatcher mrightleft(mright.left().node()); if (mright.right().Is(24) && mrightleft.right().Is(24)) { Emit(kArmSxtab, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(mrightleft.left().node()), g.TempImmediate(0)); return; } else if (mright.right().Is(16) && mrightleft.right().Is(16)) { Emit(kArmSxtah, g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(mrightleft.left().node()), g.TempImmediate(0)); return; } } } default: break; } } VisitBinop(this, node, kArmAdd, kArmAdd); } void InstructionSelector::VisitInt32Sub(Node* node) { ArmOperandGenerator g(this); Int32BinopMatcher m(node); if (IsSupported(ARMv7) && m.right().IsInt32Mul() && CanCover(node, m.right().node())) { Int32BinopMatcher mright(m.right().node()); Emit(kArmMls, g.DefineAsRegister(node), g.UseRegister(mright.left().node()), g.UseRegister(mright.right().node()), g.UseRegister(m.left().node())); return; } VisitBinop(this, node, kArmSub, kArmRsb); } namespace { void EmitInt32MulWithOverflow(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { ArmOperandGenerator g(selector); Int32BinopMatcher m(node); InstructionOperand result_operand = g.DefineAsRegister(node); InstructionOperand temp_operand = g.TempRegister(); InstructionOperand outputs[] = {result_operand, temp_operand}; InstructionOperand inputs[] = {g.UseRegister(m.left().node()), g.UseRegister(m.right().node())}; selector->Emit(kArmSmull, 2, outputs, 2, inputs); // result operand needs shift operator. InstructionOperand shift_31 = g.UseImmediate(31); InstructionCode opcode = cont->Encode(kArmCmp) | AddressingModeField::encode(kMode_Operand2_R_ASR_I); if (cont->IsBranch()) { selector->Emit(opcode, g.NoOutput(), temp_operand, result_operand, shift_31, g.Label(cont->true_block()), g.Label(cont->false_block())); } else if (cont->IsDeoptimize()) { InstructionOperand in[] = {temp_operand, result_operand, shift_31}; selector->EmitDeoptimize(opcode, 0, nullptr, 3, in, cont->kind(), cont->reason(), cont->frame_state()); } else if (cont->IsSet()) { selector->Emit(opcode, g.DefineAsRegister(cont->result()), temp_operand, result_operand, shift_31); } else { DCHECK(cont->IsTrap()); InstructionOperand in[] = {temp_operand, result_operand, shift_31, g.UseImmediate(cont->trap_id())}; selector->Emit(opcode, 0, nullptr, 4, in); } } } // namespace void InstructionSelector::VisitInt32Mul(Node* node) { ArmOperandGenerator g(this); Int32BinopMatcher m(node); if (m.right().HasValue() && m.right().Value() > 0) { int32_t value = m.right().Value(); if (base::bits::IsPowerOfTwo32(value - 1)) { Emit(kArmAdd | AddressingModeField::encode(kMode_Operand2_R_LSL_I), g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.left().node()), g.TempImmediate(WhichPowerOf2(value - 1))); return; } if (value < kMaxInt && base::bits::IsPowerOfTwo32(value + 1)) { Emit(kArmRsb | AddressingModeField::encode(kMode_Operand2_R_LSL_I), g.DefineAsRegister(node), g.UseRegister(m.left().node()), g.UseRegister(m.left().node()), g.TempImmediate(WhichPowerOf2(value + 1))); return; } } VisitRRR(this, kArmMul, node); } void InstructionSelector::VisitUint32MulHigh(Node* node) { ArmOperandGenerator g(this); InstructionOperand outputs[] = {g.TempRegister(), g.DefineAsRegister(node)}; InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))}; Emit(kArmUmull, arraysize(outputs), outputs, arraysize(inputs), inputs); } void InstructionSelector::VisitInt32Div(Node* node) { VisitDiv(this, node, kArmSdiv, kArmVcvtF64S32, kArmVcvtS32F64); } void InstructionSelector::VisitUint32Div(Node* node) { VisitDiv(this, node, kArmUdiv, kArmVcvtF64U32, kArmVcvtU32F64); } void InstructionSelector::VisitInt32Mod(Node* node) { VisitMod(this, node, kArmSdiv, kArmVcvtF64S32, kArmVcvtS32F64); } void InstructionSelector::VisitUint32Mod(Node* node) { VisitMod(this, node, kArmUdiv, kArmVcvtF64U32, kArmVcvtU32F64); } #define RR_OP_LIST(V) \ V(Word32Clz, kArmClz) \ V(ChangeFloat32ToFloat64, kArmVcvtF64F32) \ V(RoundInt32ToFloat32, kArmVcvtF32S32) \ V(RoundUint32ToFloat32, kArmVcvtF32U32) \ V(ChangeInt32ToFloat64, kArmVcvtF64S32) \ V(ChangeUint32ToFloat64, kArmVcvtF64U32) \ V(TruncateFloat32ToInt32, kArmVcvtS32F32) \ V(TruncateFloat32ToUint32, kArmVcvtU32F32) \ V(ChangeFloat64ToInt32, kArmVcvtS32F64) \ V(ChangeFloat64ToUint32, kArmVcvtU32F64) \ V(TruncateFloat64ToUint32, kArmVcvtU32F64) \ V(TruncateFloat64ToFloat32, kArmVcvtF32F64) \ V(TruncateFloat64ToWord32, kArchTruncateDoubleToI) \ V(RoundFloat64ToInt32, kArmVcvtS32F64) \ V(BitcastFloat32ToInt32, kArmVmovU32F32) \ V(BitcastInt32ToFloat32, kArmVmovF32U32) \ V(Float64ExtractLowWord32, kArmVmovLowU32F64) \ V(Float64ExtractHighWord32, kArmVmovHighU32F64) \ V(Float64SilenceNaN, kArmFloat64SilenceNaN) \ V(Float32Abs, kArmVabsF32) \ V(Float64Abs, kArmVabsF64) \ V(Float32Neg, kArmVnegF32) \ V(Float64Neg, kArmVnegF64) \ V(Float32Sqrt, kArmVsqrtF32) \ V(Float64Sqrt, kArmVsqrtF64) #define RR_OP_LIST_V8(V) \ V(Float32RoundDown, kArmVrintmF32) \ V(Float64RoundDown, kArmVrintmF64) \ V(Float32RoundUp, kArmVrintpF32) \ V(Float64RoundUp, kArmVrintpF64) \ V(Float32RoundTruncate, kArmVrintzF32) \ V(Float64RoundTruncate, kArmVrintzF64) \ V(Float64RoundTiesAway, kArmVrintaF64) \ V(Float32RoundTiesEven, kArmVrintnF32) \ V(Float64RoundTiesEven, kArmVrintnF64) #define RRR_OP_LIST(V) \ V(Int32MulHigh, kArmSmmul) \ V(Float32Mul, kArmVmulF32) \ V(Float64Mul, kArmVmulF64) \ V(Float32Div, kArmVdivF32) \ V(Float64Div, kArmVdivF64) \ V(Float32Max, kArmFloat32Max) \ V(Float64Max, kArmFloat64Max) \ V(Float32Min, kArmFloat32Min) \ V(Float64Min, kArmFloat64Min) #define RR_VISITOR(Name, opcode) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRR(this, opcode, node); \ } RR_OP_LIST(RR_VISITOR) #undef RR_VISITOR #define RR_VISITOR_V8(Name, opcode) \ void InstructionSelector::Visit##Name(Node* node) { \ DCHECK(CpuFeatures::IsSupported(ARMv8)); \ VisitRR(this, opcode, node); \ } RR_OP_LIST_V8(RR_VISITOR_V8) #undef RR_VISITOR_V8 #define RRR_VISITOR(Name, opcode) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRRR(this, opcode, node); \ } RRR_OP_LIST(RRR_VISITOR) #undef RRR_VISITOR void InstructionSelector::VisitFloat32Add(Node* node) { ArmOperandGenerator g(this); Float32BinopMatcher m(node); if (m.left().IsFloat32Mul() && CanCover(node, m.left().node())) { Float32BinopMatcher mleft(m.left().node()); Emit(kArmVmlaF32, g.DefineSameAsFirst(node), g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), g.UseRegister(mleft.right().node())); return; } if (m.right().IsFloat32Mul() && CanCover(node, m.right().node())) { Float32BinopMatcher mright(m.right().node()); Emit(kArmVmlaF32, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), g.UseRegister(mright.right().node())); return; } VisitRRR(this, kArmVaddF32, node); } void InstructionSelector::VisitFloat64Add(Node* node) { ArmOperandGenerator g(this); Float64BinopMatcher m(node); if (m.left().IsFloat64Mul() && CanCover(node, m.left().node())) { Float64BinopMatcher mleft(m.left().node()); Emit(kArmVmlaF64, g.DefineSameAsFirst(node), g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), g.UseRegister(mleft.right().node())); return; } if (m.right().IsFloat64Mul() && CanCover(node, m.right().node())) { Float64BinopMatcher mright(m.right().node()); Emit(kArmVmlaF64, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), g.UseRegister(mright.right().node())); return; } VisitRRR(this, kArmVaddF64, node); } void InstructionSelector::VisitFloat32Sub(Node* node) { ArmOperandGenerator g(this); Float32BinopMatcher m(node); if (m.right().IsFloat32Mul() && CanCover(node, m.right().node())) { Float32BinopMatcher mright(m.right().node()); Emit(kArmVmlsF32, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), g.UseRegister(mright.right().node())); return; } VisitRRR(this, kArmVsubF32, node); } void InstructionSelector::VisitFloat64Sub(Node* node) { ArmOperandGenerator g(this); Float64BinopMatcher m(node); if (m.right().IsFloat64Mul() && CanCover(node, m.right().node())) { Float64BinopMatcher mright(m.right().node()); Emit(kArmVmlsF64, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()), g.UseRegister(mright.right().node())); return; } VisitRRR(this, kArmVsubF64, node); } void InstructionSelector::VisitFloat64Mod(Node* node) { ArmOperandGenerator g(this); Emit(kArmVmodF64, g.DefineAsFixed(node, d0), g.UseFixed(node->InputAt(0), d0), g.UseFixed(node->InputAt(1), d1))->MarkAsCall(); } void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, InstructionCode opcode) { ArmOperandGenerator g(this); Emit(opcode, g.DefineAsFixed(node, d0), g.UseFixed(node->InputAt(0), d0), g.UseFixed(node->InputAt(1), d1)) ->MarkAsCall(); } void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, InstructionCode opcode) { ArmOperandGenerator g(this); Emit(opcode, g.DefineAsFixed(node, d0), g.UseFixed(node->InputAt(0), d0)) ->MarkAsCall(); } void InstructionSelector::EmitPrepareArguments( ZoneVector* arguments, const CallDescriptor* descriptor, Node* node) { ArmOperandGenerator g(this); // Prepare for C function call. if (descriptor->IsCFunctionCall()) { Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast(descriptor->ParameterCount())), 0, nullptr, 0, nullptr); // Poke any stack arguments. for (size_t n = 0; n < arguments->size(); ++n) { PushParameter input = (*arguments)[n]; if (input.node()) { int slot = static_cast(n); Emit(kArmPoke | MiscField::encode(slot), g.NoOutput(), g.UseRegister(input.node())); } } } else { // Push any stack arguments. for (PushParameter input : base::Reversed(*arguments)) { // Skip any alignment holes in pushed nodes. if (input.node() == nullptr) continue; Emit(kArmPush, g.NoOutput(), g.UseRegister(input.node())); } } } bool InstructionSelector::IsTailCallAddressImmediate() { return false; } int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; } namespace { // Shared routine for multiple compare operations. void VisitCompare(InstructionSelector* selector, InstructionCode opcode, InstructionOperand left, InstructionOperand right, FlagsContinuation* cont) { ArmOperandGenerator g(selector); opcode = cont->Encode(opcode); if (cont->IsBranch()) { selector->Emit(opcode, g.NoOutput(), left, right, g.Label(cont->true_block()), g.Label(cont->false_block())); } else if (cont->IsDeoptimize()) { selector->EmitDeoptimize(opcode, g.NoOutput(), left, right, cont->kind(), cont->reason(), cont->frame_state()); } else if (cont->IsSet()) { selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right); } else { DCHECK(cont->IsTrap()); selector->Emit(opcode, g.NoOutput(), left, right, g.UseImmediate(cont->trap_id())); } } // Shared routine for multiple float32 compare operations. void VisitFloat32Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { ArmOperandGenerator g(selector); Float32BinopMatcher m(node); if (m.right().Is(0.0f)) { VisitCompare(selector, kArmVcmpF32, g.UseRegister(m.left().node()), g.UseImmediate(m.right().node()), cont); } else if (m.left().Is(0.0f)) { cont->Commute(); VisitCompare(selector, kArmVcmpF32, g.UseRegister(m.right().node()), g.UseImmediate(m.left().node()), cont); } else { VisitCompare(selector, kArmVcmpF32, g.UseRegister(m.left().node()), g.UseRegister(m.right().node()), cont); } } // Shared routine for multiple float64 compare operations. void VisitFloat64Compare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { ArmOperandGenerator g(selector); Float64BinopMatcher m(node); if (m.right().Is(0.0)) { VisitCompare(selector, kArmVcmpF64, g.UseRegister(m.left().node()), g.UseImmediate(m.right().node()), cont); } else if (m.left().Is(0.0)) { cont->Commute(); VisitCompare(selector, kArmVcmpF64, g.UseRegister(m.right().node()), g.UseImmediate(m.left().node()), cont); } else { VisitCompare(selector, kArmVcmpF64, g.UseRegister(m.left().node()), g.UseRegister(m.right().node()), cont); } } // Check whether we can convert: // ((a b) cmp 0), b. // to: // (a b), b. // where is the flag setting version of . // We only generate conditions that are a combination of the N // and Z flags. This avoids the need to make this function dependent on // the flag-setting operation. bool CanUseFlagSettingBinop(FlagsCondition cond) { switch (cond) { case kEqual: case kNotEqual: case kSignedLessThan: case kSignedGreaterThanOrEqual: case kUnsignedLessThanOrEqual: // x <= 0 -> x == 0 case kUnsignedGreaterThan: // x > 0 -> x != 0 return true; default: return false; } } // Map to so that the following transformation is possible: // ((a b) cmp 0), b. // to: // (a b), b. // where is the flag setting version of . FlagsCondition MapForFlagSettingBinop(FlagsCondition cond) { DCHECK(CanUseFlagSettingBinop(cond)); switch (cond) { case kEqual: case kNotEqual: return cond; case kSignedLessThan: return kNegative; case kSignedGreaterThanOrEqual: return kPositiveOrZero; case kUnsignedLessThanOrEqual: // x <= 0 -> x == 0 return kEqual; case kUnsignedGreaterThan: // x > 0 -> x != 0 return kNotEqual; default: UNREACHABLE(); return cond; } } // Check if we can perform the transformation: // ((a b) cmp 0), b. // to: // (a b), b. // where is the flag setting version of , and if so, // updates {node}, {opcode} and {cont} accordingly. void MaybeReplaceCmpZeroWithFlagSettingBinop(InstructionSelector* selector, Node** node, Node* binop, InstructionCode* opcode, FlagsCondition cond, FlagsContinuation* cont) { InstructionCode binop_opcode; InstructionCode no_output_opcode; switch (binop->opcode()) { case IrOpcode::kInt32Add: binop_opcode = kArmAdd; no_output_opcode = kArmCmn; break; case IrOpcode::kWord32And: binop_opcode = kArmAnd; no_output_opcode = kArmTst; break; case IrOpcode::kWord32Or: binop_opcode = kArmOrr; no_output_opcode = kArmOrr; break; case IrOpcode::kWord32Xor: binop_opcode = kArmEor; no_output_opcode = kArmTeq; break; default: UNREACHABLE(); return; } if (selector->CanCover(*node, binop)) { // The comparison is the only user of {node}. cont->Overwrite(MapForFlagSettingBinop(cond)); *opcode = no_output_opcode; *node = binop; } else if (selector->IsOnlyUserOfNodeInSameBlock(*node, binop)) { // We can also handle the case where the {node} and the comparison are in // the same basic block, and the comparison is the only user of {node} in // this basic block ({node} has users in other basic blocks). cont->Overwrite(MapForFlagSettingBinop(cond)); *opcode = binop_opcode; *node = binop; } } // Shared routine for multiple word compare operations. void VisitWordCompare(InstructionSelector* selector, Node* node, InstructionCode opcode, FlagsContinuation* cont) { ArmOperandGenerator g(selector); Int32BinopMatcher m(node); InstructionOperand inputs[5]; size_t input_count = 0; InstructionOperand outputs[2]; size_t output_count = 0; bool has_result = (opcode != kArmCmp) && (opcode != kArmCmn) && (opcode != kArmTst) && (opcode != kArmTeq); if (TryMatchImmediateOrShift(selector, &opcode, m.right().node(), &input_count, &inputs[1])) { inputs[0] = g.UseRegister(m.left().node()); input_count++; } else if (TryMatchImmediateOrShift(selector, &opcode, m.left().node(), &input_count, &inputs[1])) { if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute(); inputs[0] = g.UseRegister(m.right().node()); input_count++; } else { opcode |= AddressingModeField::encode(kMode_Operand2_R); inputs[input_count++] = g.UseRegister(m.left().node()); inputs[input_count++] = g.UseRegister(m.right().node()); } if (has_result) { if (cont->IsDeoptimize()) { // If we can deoptimize as a result of the binop, we need to make sure // that the deopt inputs are not overwritten by the binop result. One way // to achieve that is to declare the output register as same-as-first. outputs[output_count++] = g.DefineSameAsFirst(node); } else { outputs[output_count++] = g.DefineAsRegister(node); } } if (cont->IsBranch()) { inputs[input_count++] = g.Label(cont->true_block()); inputs[input_count++] = g.Label(cont->false_block()); } else if (cont->IsSet()) { outputs[output_count++] = g.DefineAsRegister(cont->result()); } DCHECK_NE(0u, input_count); DCHECK_GE(arraysize(inputs), input_count); DCHECK_GE(arraysize(outputs), output_count); opcode = cont->Encode(opcode); if (cont->IsDeoptimize()) { selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs, cont->kind(), cont->reason(), cont->frame_state()); } else if (cont->IsTrap()) { inputs[input_count++] = g.UseImmediate(cont->trap_id()); selector->Emit(opcode, output_count, outputs, input_count, inputs); } else { selector->Emit(opcode, output_count, outputs, input_count, inputs); } } void VisitWordCompare(InstructionSelector* selector, Node* node, FlagsContinuation* cont) { InstructionCode opcode = kArmCmp; Int32BinopMatcher m(node); FlagsCondition cond = cont->condition(); if (m.right().Is(0) && (m.left().IsInt32Add() || m.left().IsWord32Or() || m.left().IsWord32And() || m.left().IsWord32Xor())) { // Emit flag setting instructions for comparisons against zero. if (CanUseFlagSettingBinop(cond)) { Node* binop = m.left().node(); MaybeReplaceCmpZeroWithFlagSettingBinop(selector, &node, binop, &opcode, cond, cont); } } else if (m.left().Is(0) && (m.right().IsInt32Add() || m.right().IsWord32Or() || m.right().IsWord32And() || m.right().IsWord32Xor())) { // Same as above, but we need to commute the condition before we // continue with the rest of the checks. cond = CommuteFlagsCondition(cond); if (CanUseFlagSettingBinop(cond)) { Node* binop = m.right().node(); MaybeReplaceCmpZeroWithFlagSettingBinop(selector, &node, binop, &opcode, cond, cont); } } VisitWordCompare(selector, node, opcode, cont); } // Shared routine for word comparisons against zero. void VisitWordCompareZero(InstructionSelector* selector, Node* user, Node* value, FlagsContinuation* cont) { // Try to combine with comparisons against 0 by simply inverting the branch. while (value->opcode() == IrOpcode::kWord32Equal && selector->CanCover(user, value)) { Int32BinopMatcher m(value); if (!m.right().Is(0)) break; user = value; value = m.left().node(); cont->Negate(); } if (selector->CanCover(user, value)) { switch (value->opcode()) { case IrOpcode::kWord32Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitWordCompare(selector, value, cont); case IrOpcode::kInt32LessThan: cont->OverwriteAndNegateIfEqual(kSignedLessThan); return VisitWordCompare(selector, value, cont); case IrOpcode::kInt32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); return VisitWordCompare(selector, value, cont); case IrOpcode::kUint32LessThan: cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); return VisitWordCompare(selector, value, cont); case IrOpcode::kUint32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); return VisitWordCompare(selector, value, cont); case IrOpcode::kFloat32Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitFloat32Compare(selector, value, cont); case IrOpcode::kFloat32LessThan: cont->OverwriteAndNegateIfEqual(kFloatLessThan); return VisitFloat32Compare(selector, value, cont); case IrOpcode::kFloat32LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kFloatLessThanOrEqual); return VisitFloat32Compare(selector, value, cont); case IrOpcode::kFloat64Equal: cont->OverwriteAndNegateIfEqual(kEqual); return VisitFloat64Compare(selector, value, cont); case IrOpcode::kFloat64LessThan: cont->OverwriteAndNegateIfEqual(kFloatLessThan); return VisitFloat64Compare(selector, value, cont); case IrOpcode::kFloat64LessThanOrEqual: cont->OverwriteAndNegateIfEqual(kFloatLessThanOrEqual); return VisitFloat64Compare(selector, value, cont); case IrOpcode::kProjection: // Check if this is the overflow output projection of an // WithOverflow node. if (ProjectionIndexOf(value->op()) == 1u) { // We cannot combine the WithOverflow with this branch // unless the 0th projection (the use of the actual value of the // is either nullptr, which means there's no use of the // actual value, or was already defined, which means it is scheduled // *AFTER* this branch). Node* const node = value->InputAt(0); Node* const result = NodeProperties::FindProjection(node, 0); if (!result || selector->IsDefined(result)) { switch (node->opcode()) { case IrOpcode::kInt32AddWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(selector, node, kArmAdd, kArmAdd, cont); case IrOpcode::kInt32SubWithOverflow: cont->OverwriteAndNegateIfEqual(kOverflow); return VisitBinop(selector, node, kArmSub, kArmRsb, cont); case IrOpcode::kInt32MulWithOverflow: // ARM doesn't set the overflow flag for multiplication, so we // need to test on kNotEqual. Here is the code sequence used: // smull resultlow, resulthigh, left, right // cmp resulthigh, Operand(resultlow, ASR, 31) cont->OverwriteAndNegateIfEqual(kNotEqual); return EmitInt32MulWithOverflow(selector, node, cont); default: break; } } } break; case IrOpcode::kInt32Add: return VisitWordCompare(selector, value, kArmCmn, cont); case IrOpcode::kInt32Sub: return VisitWordCompare(selector, value, kArmCmp, cont); case IrOpcode::kWord32And: return VisitWordCompare(selector, value, kArmTst, cont); case IrOpcode::kWord32Or: return VisitBinop(selector, value, kArmOrr, kArmOrr, cont); case IrOpcode::kWord32Xor: return VisitWordCompare(selector, value, kArmTeq, cont); case IrOpcode::kWord32Sar: return VisitShift(selector, value, TryMatchASR, cont); case IrOpcode::kWord32Shl: return VisitShift(selector, value, TryMatchLSL, cont); case IrOpcode::kWord32Shr: return VisitShift(selector, value, TryMatchLSR, cont); case IrOpcode::kWord32Ror: return VisitShift(selector, value, TryMatchROR, cont); default: break; } } if (user->opcode() == IrOpcode::kWord32Equal) { return VisitWordCompare(selector, user, cont); } // Continuation could not be combined with a compare, emit compare against 0. ArmOperandGenerator g(selector); InstructionCode const opcode = cont->Encode(kArmTst) | AddressingModeField::encode(kMode_Operand2_R); InstructionOperand const value_operand = g.UseRegister(value); if (cont->IsBranch()) { selector->Emit(opcode, g.NoOutput(), value_operand, value_operand, g.Label(cont->true_block()), g.Label(cont->false_block())); } else if (cont->IsDeoptimize()) { selector->EmitDeoptimize(opcode, g.NoOutput(), value_operand, value_operand, cont->kind(), cont->reason(), cont->frame_state()); } else if (cont->IsSet()) { selector->Emit(opcode, g.DefineAsRegister(cont->result()), value_operand, value_operand); } else { DCHECK(cont->IsTrap()); selector->Emit(opcode, g.NoOutput(), value_operand, value_operand, g.UseImmediate(cont->trap_id())); } } } // namespace void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch, BasicBlock* fbranch) { FlagsContinuation cont(kNotEqual, tbranch, fbranch); VisitWordCompareZero(this, branch, branch->InputAt(0), &cont); } void InstructionSelector::VisitDeoptimizeIf(Node* node) { DeoptimizeParameters p = DeoptimizeParametersOf(node->op()); FlagsContinuation cont = FlagsContinuation::ForDeoptimize( kNotEqual, p.kind(), p.reason(), node->InputAt(1)); VisitWordCompareZero(this, node, node->InputAt(0), &cont); } void InstructionSelector::VisitDeoptimizeUnless(Node* node) { DeoptimizeParameters p = DeoptimizeParametersOf(node->op()); FlagsContinuation cont = FlagsContinuation::ForDeoptimize( kEqual, p.kind(), p.reason(), node->InputAt(1)); VisitWordCompareZero(this, node, node->InputAt(0), &cont); } void InstructionSelector::VisitTrapIf(Node* node, Runtime::FunctionId func_id) { FlagsContinuation cont = FlagsContinuation::ForTrap(kNotEqual, func_id, node->InputAt(1)); VisitWordCompareZero(this, node, node->InputAt(0), &cont); } void InstructionSelector::VisitTrapUnless(Node* node, Runtime::FunctionId func_id) { FlagsContinuation cont = FlagsContinuation::ForTrap(kEqual, func_id, node->InputAt(1)); VisitWordCompareZero(this, node, node->InputAt(0), &cont); } void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { ArmOperandGenerator g(this); InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); // Emit either ArchTableSwitch or ArchLookupSwitch. size_t table_space_cost = 4 + sw.value_range; size_t table_time_cost = 3; size_t lookup_space_cost = 3 + 2 * sw.case_count; size_t lookup_time_cost = sw.case_count; if (sw.case_count > 0 && table_space_cost + 3 * table_time_cost <= lookup_space_cost + 3 * lookup_time_cost && sw.min_value > std::numeric_limits::min()) { InstructionOperand index_operand = value_operand; if (sw.min_value) { index_operand = g.TempRegister(); Emit(kArmSub | AddressingModeField::encode(kMode_Operand2_I), index_operand, value_operand, g.TempImmediate(sw.min_value)); } // Generate a table lookup. return EmitTableSwitch(sw, index_operand); } // Generate a sequence of conditional jumps. return EmitLookupSwitch(sw, value_operand); } void InstructionSelector::VisitWord32Equal(Node* const node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); Int32BinopMatcher m(node); if (m.right().Is(0)) { return VisitWordCompareZero(this, m.node(), m.left().node(), &cont); } VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitInt32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitUint32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); VisitWordCompare(this, node, &cont); } void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kArmAdd, kArmAdd, &cont); } FlagsContinuation cont; VisitBinop(this, node, kArmAdd, kArmAdd, &cont); } void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); return VisitBinop(this, node, kArmSub, kArmRsb, &cont); } FlagsContinuation cont; VisitBinop(this, node, kArmSub, kArmRsb, &cont); } void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { if (Node* ovf = NodeProperties::FindProjection(node, 1)) { // ARM doesn't set the overflow flag for multiplication, so we need to test // on kNotEqual. Here is the code sequence used: // smull resultlow, resulthigh, left, right // cmp resulthigh, Operand(resultlow, ASR, 31) FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, ovf); return EmitInt32MulWithOverflow(this, node, &cont); } FlagsContinuation cont; EmitInt32MulWithOverflow(this, node, &cont); } void InstructionSelector::VisitFloat32Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kFloatLessThan, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kFloatLessThanOrEqual, node); VisitFloat32Compare(this, node, &cont); } void InstructionSelector::VisitFloat64Equal(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThan(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kFloatLessThan, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { FlagsContinuation cont = FlagsContinuation::ForSet(kFloatLessThanOrEqual, node); VisitFloat64Compare(this, node, &cont); } void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { ArmOperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (left->opcode() == IrOpcode::kFloat64InsertHighWord32 && CanCover(node, left)) { left = left->InputAt(1); Emit(kArmVmovF64U32U32, g.DefineAsRegister(node), g.UseRegister(right), g.UseRegister(left)); return; } Emit(kArmVmovLowF64U32, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseRegister(right)); } void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) { ArmOperandGenerator g(this); Node* left = node->InputAt(0); Node* right = node->InputAt(1); if (left->opcode() == IrOpcode::kFloat64InsertLowWord32 && CanCover(node, left)) { left = left->InputAt(1); Emit(kArmVmovF64U32U32, g.DefineAsRegister(node), g.UseRegister(left), g.UseRegister(right)); return; } Emit(kArmVmovHighF64U32, g.DefineSameAsFirst(node), g.UseRegister(left), g.UseRegister(right)); } void InstructionSelector::VisitAtomicLoad(Node* node) { LoadRepresentation load_rep = LoadRepresentationOf(node->op()); ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); ArchOpcode opcode = kArchNop; switch (load_rep.representation()) { case MachineRepresentation::kWord8: opcode = load_rep.IsSigned() ? kAtomicLoadInt8 : kAtomicLoadUint8; break; case MachineRepresentation::kWord16: opcode = load_rep.IsSigned() ? kAtomicLoadInt16 : kAtomicLoadUint16; break; case MachineRepresentation::kWord32: opcode = kAtomicLoadWord32; break; default: UNREACHABLE(); return; } Emit(opcode | AddressingModeField::encode(kMode_Offset_RR), g.DefineAsRegister(node), g.UseRegister(base), g.UseRegister(index)); } void InstructionSelector::VisitAtomicStore(Node* node) { MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); ArmOperandGenerator g(this); Node* base = node->InputAt(0); Node* index = node->InputAt(1); Node* value = node->InputAt(2); ArchOpcode opcode = kArchNop; switch (rep) { case MachineRepresentation::kWord8: opcode = kAtomicStoreWord8; break; case MachineRepresentation::kWord16: opcode = kAtomicStoreWord16; break; case MachineRepresentation::kWord32: opcode = kAtomicStoreWord32; break; default: UNREACHABLE(); return; } AddressingMode addressing_mode = kMode_Offset_RR; InstructionOperand inputs[4]; size_t input_count = 0; inputs[input_count++] = g.UseUniqueRegister(base); inputs[input_count++] = g.UseUniqueRegister(index); inputs[input_count++] = g.UseUniqueRegister(value); InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); Emit(code, 0, nullptr, input_count, inputs); } #define SIMD_TYPE_LIST(V) \ V(Float32x4) \ V(Int32x4) \ V(Int16x8) \ V(Int8x16) #define SIMD_FORMAT_LIST(V) \ V(32x4) \ V(16x8) \ V(8x16) #define SIMD_UNOP_LIST(V) \ V(Float32x4FromInt32x4) \ V(Float32x4FromUint32x4) \ V(Float32x4Abs) \ V(Float32x4Neg) \ V(Int32x4FromFloat32x4) \ V(Uint32x4FromFloat32x4) \ V(Int32x4Neg) \ V(Int16x8Neg) \ V(Int8x16Neg) \ V(Simd128Not) #define SIMD_BINOP_LIST(V) \ V(Float32x4Add) \ V(Float32x4Sub) \ V(Float32x4Equal) \ V(Float32x4NotEqual) \ V(Int32x4Add) \ V(Int32x4Sub) \ V(Int32x4Mul) \ V(Int32x4Min) \ V(Int32x4Max) \ V(Int32x4Equal) \ V(Int32x4NotEqual) \ V(Int32x4GreaterThan) \ V(Int32x4GreaterThanOrEqual) \ V(Uint32x4Min) \ V(Uint32x4Max) \ V(Uint32x4GreaterThan) \ V(Uint32x4GreaterThanOrEqual) \ V(Int16x8Add) \ V(Int16x8AddSaturate) \ V(Int16x8Sub) \ V(Int16x8SubSaturate) \ V(Int16x8Mul) \ V(Int16x8Min) \ V(Int16x8Max) \ V(Int16x8Equal) \ V(Int16x8NotEqual) \ V(Int16x8GreaterThan) \ V(Int16x8GreaterThanOrEqual) \ V(Uint16x8AddSaturate) \ V(Uint16x8SubSaturate) \ V(Uint16x8Min) \ V(Uint16x8Max) \ V(Uint16x8GreaterThan) \ V(Uint16x8GreaterThanOrEqual) \ V(Int8x16Add) \ V(Int8x16AddSaturate) \ V(Int8x16Sub) \ V(Int8x16SubSaturate) \ V(Int8x16Mul) \ V(Int8x16Min) \ V(Int8x16Max) \ V(Int8x16Equal) \ V(Int8x16NotEqual) \ V(Int8x16GreaterThan) \ V(Int8x16GreaterThanOrEqual) \ V(Uint8x16AddSaturate) \ V(Uint8x16SubSaturate) \ V(Uint8x16Min) \ V(Uint8x16Max) \ V(Uint8x16GreaterThan) \ V(Uint8x16GreaterThanOrEqual) \ V(Simd128And) \ V(Simd128Or) \ V(Simd128Xor) #define SIMD_SHIFT_OP_LIST(V) \ V(Int32x4ShiftLeftByScalar) \ V(Int32x4ShiftRightByScalar) \ V(Uint32x4ShiftRightByScalar) \ V(Int16x8ShiftLeftByScalar) \ V(Int16x8ShiftRightByScalar) \ V(Uint16x8ShiftRightByScalar) \ V(Int8x16ShiftLeftByScalar) \ V(Int8x16ShiftRightByScalar) \ V(Uint8x16ShiftRightByScalar) #define SIMD_VISIT_SPLAT(Type) \ void InstructionSelector::VisitCreate##Type(Node* node) { \ VisitRR(this, kArm##Type##Splat, node); \ } SIMD_TYPE_LIST(SIMD_VISIT_SPLAT) #undef SIMD_VISIT_SPLAT #define SIMD_VISIT_EXTRACT_LANE(Type) \ void InstructionSelector::Visit##Type##ExtractLane(Node* node) { \ VisitRRI(this, kArm##Type##ExtractLane, node); \ } SIMD_TYPE_LIST(SIMD_VISIT_EXTRACT_LANE) #undef SIMD_VISIT_EXTRACT_LANE #define SIMD_VISIT_REPLACE_LANE(Type) \ void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \ VisitRRIR(this, kArm##Type##ReplaceLane, node); \ } SIMD_TYPE_LIST(SIMD_VISIT_REPLACE_LANE) #undef SIMD_VISIT_REPLACE_LANE #define SIMD_VISIT_UNOP(Name) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRR(this, kArm##Name, node); \ } SIMD_UNOP_LIST(SIMD_VISIT_UNOP) #undef SIMD_VISIT_UNOP #define SIMD_VISIT_BINOP(Name) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRRR(this, kArm##Name, node); \ } SIMD_BINOP_LIST(SIMD_VISIT_BINOP) #undef SIMD_VISIT_BINOP #define SIMD_VISIT_SHIFT_OP(Name) \ void InstructionSelector::Visit##Name(Node* node) { \ VisitRRI(this, kArm##Name, node); \ } SIMD_SHIFT_OP_LIST(SIMD_VISIT_SHIFT_OP) #undef SIMD_VISIT_SHIFT_OP #define SIMD_VISIT_SELECT_OP(format) \ void InstructionSelector::VisitSimd##format##Select(Node* node) { \ VisitRRRR(this, kArmSimd##format##Select, node); \ } SIMD_FORMAT_LIST(SIMD_VISIT_SELECT_OP) #undef SIMD_VISIT_SELECT_OP // static MachineOperatorBuilder::Flags InstructionSelector::SupportedMachineOperatorFlags() { MachineOperatorBuilder::Flags flags; if (CpuFeatures::IsSupported(SUDIV)) { // The sdiv and udiv instructions correctly return 0 if the divisor is 0, // but the fall-back implementation does not. flags |= MachineOperatorBuilder::kInt32DivIsSafe | MachineOperatorBuilder::kUint32DivIsSafe; } if (CpuFeatures::IsSupported(ARMv7)) { flags |= MachineOperatorBuilder::kWord32ReverseBits; } if (CpuFeatures::IsSupported(ARMv8)) { flags |= MachineOperatorBuilder::kFloat32RoundDown | MachineOperatorBuilder::kFloat64RoundDown | MachineOperatorBuilder::kFloat32RoundUp | MachineOperatorBuilder::kFloat64RoundUp | MachineOperatorBuilder::kFloat32RoundTruncate | MachineOperatorBuilder::kFloat64RoundTruncate | MachineOperatorBuilder::kFloat64RoundTiesAway | MachineOperatorBuilder::kFloat32RoundTiesEven | MachineOperatorBuilder::kFloat64RoundTiesEven; } return flags; } // static MachineOperatorBuilder::AlignmentRequirements InstructionSelector::AlignmentRequirements() { Vector req_aligned = Vector::New(2); req_aligned[0] = MachineType::Float32(); req_aligned[1] = MachineType::Float64(); return MachineOperatorBuilder::AlignmentRequirements:: SomeUnalignedAccessUnsupported(req_aligned, req_aligned); } } // namespace compiler } // namespace internal } // namespace v8