// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/crankshaft/arm64/lithium-codegen-arm64.h" #include "src/arm64/frames-arm64.h" #include "src/base/bits.h" #include "src/builtins/builtins-constructor.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/crankshaft/arm64/lithium-gap-resolver-arm64.h" #include "src/crankshaft/hydrogen-osr.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" namespace v8 { namespace internal { class SafepointGenerator final : public CallWrapper { public: SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers, Safepoint::DeoptMode mode) : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) { } virtual ~SafepointGenerator() { } virtual void BeforeCall(int call_size) const { } virtual void AfterCall() const { codegen_->RecordSafepoint(pointers_, deopt_mode_); } private: LCodeGen* codegen_; LPointerMap* pointers_; Safepoint::DeoptMode deopt_mode_; }; LCodeGen::PushSafepointRegistersScope::PushSafepointRegistersScope( LCodeGen* codegen) : codegen_(codegen) { DCHECK(codegen_->info()->is_calling()); DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple); codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters; UseScratchRegisterScope temps(codegen_->masm_); // Preserve the value of lr which must be saved on the stack (the call to // the stub will clobber it). Register to_be_pushed_lr = temps.UnsafeAcquire(StoreRegistersStateStub::to_be_pushed_lr()); codegen_->masm_->Mov(to_be_pushed_lr, lr); StoreRegistersStateStub stub(codegen_->isolate()); codegen_->masm_->CallStub(&stub); } LCodeGen::PushSafepointRegistersScope::~PushSafepointRegistersScope() { DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters); RestoreRegistersStateStub stub(codegen_->isolate()); codegen_->masm_->CallStub(&stub); codegen_->expected_safepoint_kind_ = Safepoint::kSimple; } #define __ masm()-> // Emit code to branch if the given condition holds. // The code generated here doesn't modify the flags and they must have // been set by some prior instructions. // // The EmitInverted function simply inverts the condition. class BranchOnCondition : public BranchGenerator { public: BranchOnCondition(LCodeGen* codegen, Condition cond) : BranchGenerator(codegen), cond_(cond) { } virtual void Emit(Label* label) const { __ B(cond_, label); } virtual void EmitInverted(Label* label) const { if (cond_ != al) { __ B(NegateCondition(cond_), label); } } private: Condition cond_; }; // Emit code to compare lhs and rhs and branch if the condition holds. // This uses MacroAssembler's CompareAndBranch function so it will handle // converting the comparison to Cbz/Cbnz if the right-hand side is 0. // // EmitInverted still compares the two operands but inverts the condition. class CompareAndBranch : public BranchGenerator { public: CompareAndBranch(LCodeGen* codegen, Condition cond, const Register& lhs, const Operand& rhs) : BranchGenerator(codegen), cond_(cond), lhs_(lhs), rhs_(rhs) { } virtual void Emit(Label* label) const { __ CompareAndBranch(lhs_, rhs_, cond_, label); } virtual void EmitInverted(Label* label) const { __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label); } private: Condition cond_; const Register& lhs_; const Operand& rhs_; }; // Test the input with the given mask and branch if the condition holds. // If the condition is 'eq' or 'ne' this will use MacroAssembler's // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the // conversion to Tbz/Tbnz when possible. class TestAndBranch : public BranchGenerator { public: TestAndBranch(LCodeGen* codegen, Condition cond, const Register& value, uint64_t mask) : BranchGenerator(codegen), cond_(cond), value_(value), mask_(mask) { } virtual void Emit(Label* label) const { switch (cond_) { case eq: __ TestAndBranchIfAllClear(value_, mask_, label); break; case ne: __ TestAndBranchIfAnySet(value_, mask_, label); break; default: __ Tst(value_, mask_); __ B(cond_, label); } } virtual void EmitInverted(Label* label) const { // The inverse of "all clear" is "any set" and vice versa. switch (cond_) { case eq: __ TestAndBranchIfAnySet(value_, mask_, label); break; case ne: __ TestAndBranchIfAllClear(value_, mask_, label); break; default: __ Tst(value_, mask_); __ B(NegateCondition(cond_), label); } } private: Condition cond_; const Register& value_; uint64_t mask_; }; // Test the input and branch if it is non-zero and not a NaN. class BranchIfNonZeroNumber : public BranchGenerator { public: BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value, const FPRegister& scratch) : BranchGenerator(codegen), value_(value), scratch_(scratch) { } virtual void Emit(Label* label) const { __ Fabs(scratch_, value_); // Compare with 0.0. Because scratch_ is positive, the result can be one of // nZCv (equal), nzCv (greater) or nzCV (unordered). __ Fcmp(scratch_, 0.0); __ B(gt, label); } virtual void EmitInverted(Label* label) const { __ Fabs(scratch_, value_); __ Fcmp(scratch_, 0.0); __ B(le, label); } private: const FPRegister& value_; const FPRegister& scratch_; }; // Test the input and branch if it is a heap number. class BranchIfHeapNumber : public BranchGenerator { public: BranchIfHeapNumber(LCodeGen* codegen, const Register& value) : BranchGenerator(codegen), value_(value) { } virtual void Emit(Label* label) const { __ JumpIfHeapNumber(value_, label); } virtual void EmitInverted(Label* label) const { __ JumpIfNotHeapNumber(value_, label); } private: const Register& value_; }; // Test the input and branch if it is the specified root value. class BranchIfRoot : public BranchGenerator { public: BranchIfRoot(LCodeGen* codegen, const Register& value, Heap::RootListIndex index) : BranchGenerator(codegen), value_(value), index_(index) { } virtual void Emit(Label* label) const { __ JumpIfRoot(value_, index_, label); } virtual void EmitInverted(Label* label) const { __ JumpIfNotRoot(value_, index_, label); } private: const Register& value_; const Heap::RootListIndex index_; }; void LCodeGen::WriteTranslation(LEnvironment* environment, Translation* translation) { if (environment == NULL) return; // The translation includes one command per value in the environment. int translation_size = environment->translation_size(); WriteTranslation(environment->outer(), translation); WriteTranslationFrame(environment, translation); int object_index = 0; int dematerialized_index = 0; for (int i = 0; i < translation_size; ++i) { LOperand* value = environment->values()->at(i); AddToTranslation( environment, translation, value, environment->HasTaggedValueAt(i), environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); } } void LCodeGen::AddToTranslation(LEnvironment* environment, Translation* translation, LOperand* op, bool is_tagged, bool is_uint32, int* object_index_pointer, int* dematerialized_index_pointer) { if (op == LEnvironment::materialization_marker()) { int object_index = (*object_index_pointer)++; if (environment->ObjectIsDuplicateAt(object_index)) { int dupe_of = environment->ObjectDuplicateOfAt(object_index); translation->DuplicateObject(dupe_of); return; } int object_length = environment->ObjectLengthAt(object_index); if (environment->ObjectIsArgumentsAt(object_index)) { translation->BeginArgumentsObject(object_length); } else { translation->BeginCapturedObject(object_length); } int dematerialized_index = *dematerialized_index_pointer; int env_offset = environment->translation_size() + dematerialized_index; *dematerialized_index_pointer += object_length; for (int i = 0; i < object_length; ++i) { LOperand* value = environment->values()->at(env_offset + i); AddToTranslation(environment, translation, value, environment->HasTaggedValueAt(env_offset + i), environment->HasUint32ValueAt(env_offset + i), object_index_pointer, dematerialized_index_pointer); } return; } if (op->IsStackSlot()) { int index = op->index(); if (is_tagged) { translation->StoreStackSlot(index); } else if (is_uint32) { translation->StoreUint32StackSlot(index); } else { translation->StoreInt32StackSlot(index); } } else if (op->IsDoubleStackSlot()) { int index = op->index(); translation->StoreDoubleStackSlot(index); } else if (op->IsRegister()) { Register reg = ToRegister(op); if (is_tagged) { translation->StoreRegister(reg); } else if (is_uint32) { translation->StoreUint32Register(reg); } else { translation->StoreInt32Register(reg); } } else if (op->IsDoubleRegister()) { DoubleRegister reg = ToDoubleRegister(op); translation->StoreDoubleRegister(reg); } else if (op->IsConstantOperand()) { HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); translation->StoreLiteral(src_index); } else { UNREACHABLE(); } } void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, Safepoint::DeoptMode mode) { environment->set_has_been_used(); if (!environment->HasBeenRegistered()) { int frame_count = 0; int jsframe_count = 0; for (LEnvironment* e = environment; e != NULL; e = e->outer()) { ++frame_count; if (e->frame_type() == JS_FUNCTION) { ++jsframe_count; } } Translation translation(&translations_, frame_count, jsframe_count, zone()); WriteTranslation(environment, &translation); int deoptimization_index = deoptimizations_.length(); int pc_offset = masm()->pc_offset(); environment->Register(deoptimization_index, translation.index(), (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); deoptimizations_.Add(environment, zone()); } } void LCodeGen::CallCode(Handle code, RelocInfo::Mode mode, LInstruction* instr) { CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::CallCodeGeneric(Handle code, RelocInfo::Mode mode, LInstruction* instr, SafepointMode safepoint_mode) { DCHECK(instr != NULL); Assembler::BlockPoolsScope scope(masm_); __ Call(code, mode); RecordSafepointWithLazyDeopt(instr, safepoint_mode); if ((code->kind() == Code::BINARY_OP_IC) || (code->kind() == Code::COMPARE_IC)) { // Signal that we don't inline smi code before these stubs in the // optimizing code generator. InlineSmiCheckInfo::EmitNotInlined(masm()); } } void LCodeGen::DoCallNewArray(LCallNewArray* instr) { DCHECK(instr->IsMarkedAsCall()); DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->constructor()).is(x1)); __ Mov(x0, Operand(instr->arity())); __ Mov(x2, instr->hydrogen()->site()); ElementsKind kind = instr->hydrogen()->elements_kind(); AllocationSiteOverrideMode override_mode = (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) ? DISABLE_ALLOCATION_SITES : DONT_OVERRIDE; if (instr->arity() == 0) { ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else if (instr->arity() == 1) { Label done; if (IsFastPackedElementsKind(kind)) { Label packed_case; // We might need to create a holey array; look at the first argument. __ Peek(x10, 0); __ Cbz(x10, &packed_case); ElementsKind holey_kind = GetHoleyElementsKind(kind); ArraySingleArgumentConstructorStub stub(isolate(), holey_kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ B(&done); __ Bind(&packed_case); } ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ Bind(&done); } else { ArrayNArgumentsConstructorStub stub(isolate()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); DCHECK(ToRegister(instr->result()).is(x0)); } void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments, LInstruction* instr, SaveFPRegsMode save_doubles) { DCHECK(instr != NULL); __ CallRuntime(function, num_arguments, save_doubles); RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::LoadContextFromDeferred(LOperand* context) { if (context->IsRegister()) { __ Mov(cp, ToRegister(context)); } else if (context->IsStackSlot()) { __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer)); } else if (context->IsConstantOperand()) { HConstant* constant = chunk_->LookupConstant(LConstantOperand::cast(context)); __ LoadHeapObject(cp, Handle::cast(constant->handle(isolate()))); } else { UNREACHABLE(); } } void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, LInstruction* instr, LOperand* context) { if (context != nullptr) LoadContextFromDeferred(context); __ CallRuntimeSaveDoubles(id); RecordSafepointWithRegisters( instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); } void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr, SafepointMode safepoint_mode) { if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); } else { DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kLazyDeopt); } } void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::Kind kind, int arguments, Safepoint::DeoptMode deopt_mode) { DCHECK(expected_safepoint_kind_ == kind); const ZoneList* operands = pointers->GetNormalizedOperands(); Safepoint safepoint = safepoints_.DefineSafepoint( masm(), kind, arguments, deopt_mode); for (int i = 0; i < operands->length(); i++) { LOperand* pointer = operands->at(i); if (pointer->IsStackSlot()) { safepoint.DefinePointerSlot(pointer->index(), zone()); } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { safepoint.DefinePointerRegister(ToRegister(pointer), zone()); } } } void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode deopt_mode) { RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); } void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { LPointerMap empty_pointers(zone()); RecordSafepoint(&empty_pointers, deopt_mode); } void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) { RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode); } bool LCodeGen::GenerateCode() { LPhase phase("Z_Code generation", chunk()); DCHECK(is_unused()); status_ = GENERATING; // Open a frame scope to indicate that there is a frame on the stack. The // NONE indicates that the scope shouldn't actually generate code to set up // the frame (that is done in GeneratePrologue). FrameScope frame_scope(masm_, StackFrame::NONE); return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && GenerateJumpTable() && GenerateSafepointTable(); } void LCodeGen::SaveCallerDoubles() { DCHECK(info()->saves_caller_doubles()); DCHECK(NeedsEagerFrame()); Comment(";;; Save clobbered callee double registers"); BitVector* doubles = chunk()->allocated_double_registers(); BitVector::Iterator iterator(doubles); int count = 0; while (!iterator.Done()) { // TODO(all): Is this supposed to save just the callee-saved doubles? It // looks like it's saving all of them. FPRegister value = FPRegister::from_code(iterator.Current()); __ Poke(value, count * kDoubleSize); iterator.Advance(); count++; } } void LCodeGen::RestoreCallerDoubles() { DCHECK(info()->saves_caller_doubles()); DCHECK(NeedsEagerFrame()); Comment(";;; Restore clobbered callee double registers"); BitVector* doubles = chunk()->allocated_double_registers(); BitVector::Iterator iterator(doubles); int count = 0; while (!iterator.Done()) { // TODO(all): Is this supposed to restore just the callee-saved doubles? It // looks like it's restoring all of them. FPRegister value = FPRegister::from_code(iterator.Current()); __ Peek(value, count * kDoubleSize); iterator.Advance(); count++; } } bool LCodeGen::GeneratePrologue() { DCHECK(is_generating()); if (info()->IsOptimizing()) { ProfileEntryHookStub::MaybeCallEntryHook(masm_); } DCHECK(__ StackPointer().Is(jssp)); info()->set_prologue_offset(masm_->pc_offset()); if (NeedsEagerFrame()) { if (info()->IsStub()) { __ StubPrologue( StackFrame::STUB, GetStackSlotCount() + TypedFrameConstants::kFixedSlotCount); } else { __ Prologue(info()->GeneratePreagedPrologue()); // Reserve space for the stack slots needed by the code. int slots = GetStackSlotCount(); if (slots > 0) { __ Claim(slots, kPointerSize); } } frame_is_built_ = true; } if (info()->saves_caller_doubles()) { SaveCallerDoubles(); } return !is_aborted(); } void LCodeGen::DoPrologue(LPrologue* instr) { Comment(";;; Prologue begin"); // Allocate a local context if needed. if (info()->scope()->NeedsContext()) { Comment(";;; Allocate local context"); bool need_write_barrier = true; // Argument to NewContext is the function, which is in x1. int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; if (info()->scope()->is_script_scope()) { __ Mov(x10, Operand(info()->scope()->scope_info())); __ Push(x1, x10); __ CallRuntime(Runtime::kNewScriptContext); deopt_mode = Safepoint::kLazyDeopt; } else { if (slots <= ConstructorBuiltinsAssembler::MaximumFunctionContextSlots()) { Callable callable = CodeFactory::FastNewFunctionContext( isolate(), info()->scope()->scope_type()); __ Mov(FastNewFunctionContextDescriptor::SlotsRegister(), slots); __ Call(callable.code(), RelocInfo::CODE_TARGET); // Result of the FastNewFunctionContext builtin is always in new space. need_write_barrier = false; } else { __ Push(x1); __ Push(Smi::FromInt(info()->scope()->scope_type())); __ CallRuntime(Runtime::kNewFunctionContext); } } RecordSafepoint(deopt_mode); // Context is returned in x0. It replaces the context passed to us. It's // saved in the stack and kept live in cp. __ Mov(cp, x0); __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Copy any necessary parameters into the context. int num_parameters = info()->scope()->num_parameters(); int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0; for (int i = first_parameter; i < num_parameters; i++) { Variable* var = (i == -1) ? info()->scope()->receiver() : info()->scope()->parameter(i); if (var->IsContextSlot()) { Register value = x0; Register scratch = x3; int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ Ldr(value, MemOperand(fp, parameter_offset)); // Store it in the context. MemOperand target = ContextMemOperand(cp, var->index()); __ Str(value, target); // Update the write barrier. This clobbers value and scratch. if (need_write_barrier) { __ RecordWriteContextSlot(cp, static_cast(target.offset()), value, scratch, GetLinkRegisterState(), kSaveFPRegs); } else if (FLAG_debug_code) { Label done; __ JumpIfInNewSpace(cp, &done); __ Abort(kExpectedNewSpaceObject); __ bind(&done); } } } Comment(";;; End allocate local context"); } Comment(";;; Prologue end"); } void LCodeGen::GenerateOsrPrologue() { // Generate the OSR entry prologue at the first unknown OSR value, or if there // are none, at the OSR entrypoint instruction. if (osr_pc_offset_ >= 0) return; osr_pc_offset_ = masm()->pc_offset(); // Adjust the frame size, subsuming the unoptimized frame into the // optimized frame. int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); DCHECK(slots >= 0); __ Claim(slots); } void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { if (instr->IsCall()) { EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); } if (!instr->IsLazyBailout() && !instr->IsGap()) { safepoints_.BumpLastLazySafepointIndex(); } } bool LCodeGen::GenerateDeferredCode() { DCHECK(is_generating()); if (deferred_.length() > 0) { for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) { LDeferredCode* code = deferred_[i]; HValue* value = instructions_->at(code->instruction_index())->hydrogen_value(); RecordAndWritePosition(value->position()); Comment(";;; <@%d,#%d> " "-------------------- Deferred %s --------------------", code->instruction_index(), code->instr()->hydrogen_value()->id(), code->instr()->Mnemonic()); __ Bind(code->entry()); if (NeedsDeferredFrame()) { Comment(";;; Build frame"); DCHECK(!frame_is_built_); DCHECK(info()->IsStub()); frame_is_built_ = true; __ Push(lr, fp); __ Mov(fp, StackFrame::TypeToMarker(StackFrame::STUB)); __ Push(fp); __ Add(fp, __ StackPointer(), TypedFrameConstants::kFixedFrameSizeFromFp); Comment(";;; Deferred code"); } code->Generate(); if (NeedsDeferredFrame()) { Comment(";;; Destroy frame"); DCHECK(frame_is_built_); __ Pop(xzr, fp, lr); frame_is_built_ = false; } __ B(code->exit()); } } // Force constant pool emission at the end of the deferred code to make // sure that no constant pools are emitted after deferred code because // deferred code generation is the last step which generates code. The two // following steps will only output data used by crakshaft. masm()->CheckConstPool(true, false); return !is_aborted(); } bool LCodeGen::GenerateJumpTable() { Label needs_frame, call_deopt_entry; if (jump_table_.length() > 0) { Comment(";;; -------------------- Jump table --------------------"); Address base = jump_table_[0]->address; UseScratchRegisterScope temps(masm()); Register entry_offset = temps.AcquireX(); int length = jump_table_.length(); for (int i = 0; i < length; i++) { Deoptimizer::JumpTableEntry* table_entry = jump_table_[i]; __ Bind(&table_entry->label); Address entry = table_entry->address; DeoptComment(table_entry->deopt_info); // Second-level deopt table entries are contiguous and small, so instead // of loading the full, absolute address of each one, load the base // address and add an immediate offset. __ Mov(entry_offset, entry - base); if (table_entry->needs_frame) { DCHECK(!info()->saves_caller_doubles()); Comment(";;; call deopt with frame"); // Save lr before Bl, fp will be adjusted in the needs_frame code. __ Push(lr, fp); // Reuse the existing needs_frame code. __ Bl(&needs_frame); } else { // There is nothing special to do, so just continue to the second-level // table. __ Bl(&call_deopt_entry); } masm()->CheckConstPool(false, false); } if (needs_frame.is_linked()) { // This variant of deopt can only be used with stubs. Since we don't // have a function pointer to install in the stack frame that we're // building, install a special marker there instead. DCHECK(info()->IsStub()); Comment(";;; needs_frame common code"); UseScratchRegisterScope temps(masm()); Register stub_marker = temps.AcquireX(); __ Bind(&needs_frame); __ Mov(stub_marker, StackFrame::TypeToMarker(StackFrame::STUB)); __ Push(cp, stub_marker); __ Add(fp, __ StackPointer(), 2 * kPointerSize); } // Generate common code for calling the second-level deopt table. __ Bind(&call_deopt_entry); if (info()->saves_caller_doubles()) { DCHECK(info()->IsStub()); RestoreCallerDoubles(); } Register deopt_entry = temps.AcquireX(); __ Mov(deopt_entry, Operand(reinterpret_cast(base), RelocInfo::RUNTIME_ENTRY)); __ Add(deopt_entry, deopt_entry, entry_offset); __ Br(deopt_entry); } // Force constant pool emission at the end of the deopt jump table to make // sure that no constant pools are emitted after. masm()->CheckConstPool(true, false); // The deoptimization jump table is the last part of the instruction // sequence. Mark the generated code as done unless we bailed out. if (!is_aborted()) status_ = DONE; return !is_aborted(); } bool LCodeGen::GenerateSafepointTable() { DCHECK(is_done()); // We do not know how much data will be emitted for the safepoint table, so // force emission of the veneer pool. masm()->CheckVeneerPool(true, true); safepoints_.Emit(masm(), GetTotalFrameSlotCount()); return !is_aborted(); } void LCodeGen::FinishCode(Handle code) { DCHECK(is_done()); code->set_stack_slots(GetTotalFrameSlotCount()); code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); PopulateDeoptimizationData(code); } void LCodeGen::DeoptimizeBranch( LInstruction* instr, DeoptimizeReason deopt_reason, BranchType branch_type, Register reg, int bit, Deoptimizer::BailoutType* override_bailout_type) { LEnvironment* environment = instr->environment(); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); Deoptimizer::BailoutType bailout_type = info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; if (override_bailout_type != NULL) { bailout_type = *override_bailout_type; } DCHECK(environment->HasBeenRegistered()); int id = environment->deoptimization_index(); Address entry = Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); if (entry == NULL) { Abort(kBailoutWasNotPrepared); } if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) { Label not_zero; ExternalReference count = ExternalReference::stress_deopt_count(isolate()); __ Push(x0, x1, x2); __ Mrs(x2, NZCV); __ Mov(x0, count); __ Ldr(w1, MemOperand(x0)); __ Subs(x1, x1, 1); __ B(gt, ¬_zero); __ Mov(w1, FLAG_deopt_every_n_times); __ Str(w1, MemOperand(x0)); __ Pop(x2, x1, x0); DCHECK(frame_is_built_); __ Call(entry, RelocInfo::RUNTIME_ENTRY); __ Unreachable(); __ Bind(¬_zero); __ Str(w1, MemOperand(x0)); __ Msr(NZCV, x2); __ Pop(x2, x1, x0); } if (info()->ShouldTrapOnDeopt()) { Label dont_trap; __ B(&dont_trap, InvertBranchType(branch_type), reg, bit); __ Debug("trap_on_deopt", __LINE__, BREAK); __ Bind(&dont_trap); } Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id); DCHECK(info()->IsStub() || frame_is_built_); // Go through jump table if we need to build frame, or restore caller doubles. if (branch_type == always && frame_is_built_ && !info()->saves_caller_doubles()) { DeoptComment(deopt_info); __ Call(entry, RelocInfo::RUNTIME_ENTRY); } else { Deoptimizer::JumpTableEntry* table_entry = new (zone()) Deoptimizer::JumpTableEntry( entry, deopt_info, bailout_type, !frame_is_built_); // We often have several deopts to the same entry, reuse the last // jump entry if this is the case. if (FLAG_trace_deopt || isolate()->is_profiling() || jump_table_.is_empty() || !table_entry->IsEquivalentTo(*jump_table_.last())) { jump_table_.Add(table_entry, zone()); } __ B(&jump_table_.last()->label, branch_type, reg, bit); } } void LCodeGen::Deoptimize(LInstruction* instr, DeoptimizeReason deopt_reason, Deoptimizer::BailoutType* override_bailout_type) { DeoptimizeBranch(instr, deopt_reason, always, NoReg, -1, override_bailout_type); } void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr, DeoptimizeReason deopt_reason) { DeoptimizeBranch(instr, deopt_reason, static_cast(cond)); } void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr, DeoptimizeReason deopt_reason) { DeoptimizeBranch(instr, deopt_reason, reg_zero, rt); } void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr, DeoptimizeReason deopt_reason) { DeoptimizeBranch(instr, deopt_reason, reg_not_zero, rt); } void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr, DeoptimizeReason deopt_reason) { int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit; DeoptimizeIfBitSet(rt, sign_bit, instr, deopt_reason); } void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr, DeoptimizeReason deopt_reason) { DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, deopt_reason); } void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr, DeoptimizeReason deopt_reason) { DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, deopt_reason); } void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index, LInstruction* instr, DeoptimizeReason deopt_reason) { __ CompareRoot(rt, index); DeoptimizeIf(eq, instr, deopt_reason); } void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index, LInstruction* instr, DeoptimizeReason deopt_reason) { __ CompareRoot(rt, index); DeoptimizeIf(ne, instr, deopt_reason); } void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr, DeoptimizeReason deopt_reason) { __ TestForMinusZero(input); DeoptimizeIf(vs, instr, deopt_reason); } void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) { __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber); } void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr, DeoptimizeReason deopt_reason) { DeoptimizeBranch(instr, deopt_reason, reg_bit_set, rt, bit); } void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr, DeoptimizeReason deopt_reason) { DeoptimizeBranch(instr, deopt_reason, reg_bit_clear, rt, bit); } void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { if (info()->ShouldEnsureSpaceForLazyDeopt()) { // Ensure that we have enough space after the previous lazy-bailout // instruction for patching the code here. intptr_t current_pc = masm()->pc_offset(); if (current_pc < (last_lazy_deopt_pc_ + space_needed)) { ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; DCHECK((padding_size % kInstructionSize) == 0); InstructionAccurateScope instruction_accurate( masm(), padding_size / kInstructionSize); while (padding_size > 0) { __ nop(); padding_size -= kInstructionSize; } } } last_lazy_deopt_pc_ = masm()->pc_offset(); } Register LCodeGen::ToRegister(LOperand* op) const { // TODO(all): support zero register results, as ToRegister32. DCHECK((op != NULL) && op->IsRegister()); return Register::from_code(op->index()); } Register LCodeGen::ToRegister32(LOperand* op) const { DCHECK(op != NULL); if (op->IsConstantOperand()) { // If this is a constant operand, the result must be the zero register. DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0); return wzr; } else { return ToRegister(op).W(); } } Smi* LCodeGen::ToSmi(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); return Smi::FromInt(constant->Integer32Value()); } DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { DCHECK((op != NULL) && op->IsDoubleRegister()); return DoubleRegister::from_code(op->index()); } Operand LCodeGen::ToOperand(LOperand* op) { DCHECK(op != NULL); if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); HConstant* constant = chunk()->LookupConstant(const_op); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsSmi()) { DCHECK(constant->HasSmiValue()); return Operand(Smi::FromInt(constant->Integer32Value())); } else if (r.IsInteger32()) { DCHECK(constant->HasInteger32Value()); return Operand(constant->Integer32Value()); } else if (r.IsDouble()) { Abort(kToOperandUnsupportedDoubleImmediate); } DCHECK(r.IsTagged()); return Operand(constant->handle(isolate())); } else if (op->IsRegister()) { return Operand(ToRegister(op)); } else if (op->IsDoubleRegister()) { Abort(kToOperandIsDoubleRegisterUnimplemented); return Operand(0); } // Stack slots not implemented, use ToMemOperand instead. UNREACHABLE(); return Operand(0); } Operand LCodeGen::ToOperand32(LOperand* op) { DCHECK(op != NULL); if (op->IsRegister()) { return Operand(ToRegister32(op)); } else if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); HConstant* constant = chunk()->LookupConstant(const_op); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsInteger32()) { return Operand(constant->Integer32Value()); } else { // Other constants not implemented. Abort(kToOperand32UnsupportedImmediate); } } // Other cases are not implemented. UNREACHABLE(); return Operand(0); } static int64_t ArgumentsOffsetWithoutFrame(int index) { DCHECK(index < 0); return -(index + 1) * kPointerSize; } MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const { DCHECK(op != NULL); DCHECK(!op->IsRegister()); DCHECK(!op->IsDoubleRegister()); DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); if (NeedsEagerFrame()) { int fp_offset = FrameSlotToFPOffset(op->index()); // Loads and stores have a bigger reach in positive offset than negative. // We try to access using jssp (positive offset) first, then fall back to // fp (negative offset) if that fails. // // We can reference a stack slot from jssp only if we know how much we've // put on the stack. We don't know this in the following cases: // - stack_mode != kCanUseStackPointer: this is the case when deferred // code has saved the registers. // - saves_caller_doubles(): some double registers have been pushed, jssp // references the end of the double registers and not the end of the stack // slots. // In both of the cases above, we _could_ add the tracking information // required so that we can use jssp here, but in practice it isn't worth it. if ((stack_mode == kCanUseStackPointer) && !info()->saves_caller_doubles()) { int jssp_offset_to_fp = (pushed_arguments_ + GetTotalFrameSlotCount()) * kPointerSize - StandardFrameConstants::kFixedFrameSizeAboveFp; int jssp_offset = fp_offset + jssp_offset_to_fp; if (masm()->IsImmLSScaled(jssp_offset, LSDoubleWord)) { return MemOperand(masm()->StackPointer(), jssp_offset); } } return MemOperand(fp, fp_offset); } else { // Retrieve parameter without eager stack-frame relative to the // stack-pointer. return MemOperand(masm()->StackPointer(), ArgumentsOffsetWithoutFrame(op->index())); } } Handle LCodeGen::ToHandle(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); return constant->handle(isolate()); } template Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) { if (shift_info->shift() == NO_SHIFT) { return ToOperand32(right); } else { return Operand( ToRegister32(right), shift_info->shift(), JSShiftAmountFromLConstant(shift_info->shift_amount())); } } bool LCodeGen::IsSmi(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsSmi(); } bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); } int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); return constant->Integer32Value(); } double LCodeGen::ToDouble(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); DCHECK(constant->HasDoubleValue()); return constant->DoubleValue(); } Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { Condition cond = nv; switch (op) { case Token::EQ: case Token::EQ_STRICT: cond = eq; break; case Token::NE: case Token::NE_STRICT: cond = ne; break; case Token::LT: cond = is_unsigned ? lo : lt; break; case Token::GT: cond = is_unsigned ? hi : gt; break; case Token::LTE: cond = is_unsigned ? ls : le; break; case Token::GTE: cond = is_unsigned ? hs : ge; break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } return cond; } template void LCodeGen::EmitBranchGeneric(InstrType instr, const BranchGenerator& branch) { int left_block = instr->TrueDestination(chunk_); int right_block = instr->FalseDestination(chunk_); int next_block = GetNextEmittedBlock(); if (right_block == left_block) { EmitGoto(left_block); } else if (left_block == next_block) { branch.EmitInverted(chunk_->GetAssemblyLabel(right_block)); } else { branch.Emit(chunk_->GetAssemblyLabel(left_block)); if (right_block != next_block) { __ B(chunk_->GetAssemblyLabel(right_block)); } } } template void LCodeGen::EmitBranch(InstrType instr, Condition condition) { DCHECK((condition != al) && (condition != nv)); BranchOnCondition branch(this, condition); EmitBranchGeneric(instr, branch); } template void LCodeGen::EmitCompareAndBranch(InstrType instr, Condition condition, const Register& lhs, const Operand& rhs) { DCHECK((condition != al) && (condition != nv)); CompareAndBranch branch(this, condition, lhs, rhs); EmitBranchGeneric(instr, branch); } template void LCodeGen::EmitTestAndBranch(InstrType instr, Condition condition, const Register& value, uint64_t mask) { DCHECK((condition != al) && (condition != nv)); TestAndBranch branch(this, condition, value, mask); EmitBranchGeneric(instr, branch); } template void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr, const FPRegister& value, const FPRegister& scratch) { BranchIfNonZeroNumber branch(this, value, scratch); EmitBranchGeneric(instr, branch); } template void LCodeGen::EmitBranchIfHeapNumber(InstrType instr, const Register& value) { BranchIfHeapNumber branch(this, value); EmitBranchGeneric(instr, branch); } template void LCodeGen::EmitBranchIfRoot(InstrType instr, const Register& value, Heap::RootListIndex index) { BranchIfRoot branch(this, value, index); EmitBranchGeneric(instr, branch); } void LCodeGen::DoGap(LGap* gap) { for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION; i++) { LGap::InnerPosition inner_pos = static_cast(i); LParallelMove* move = gap->GetParallelMove(inner_pos); if (move != NULL) { resolver_.Resolve(move); } } } void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { Register arguments = ToRegister(instr->arguments()); Register result = ToRegister(instr->result()); // The pointer to the arguments array come from DoArgumentsElements. // It does not point directly to the arguments and there is an offest of // two words that we must take into account when accessing an argument. // Subtracting the index from length accounts for one, so we add one more. if (instr->length()->IsConstantOperand() && instr->index()->IsConstantOperand()) { int index = ToInteger32(LConstantOperand::cast(instr->index())); int length = ToInteger32(LConstantOperand::cast(instr->length())); int offset = ((length - index) + 1) * kPointerSize; __ Ldr(result, MemOperand(arguments, offset)); } else if (instr->index()->IsConstantOperand()) { Register length = ToRegister32(instr->length()); int index = ToInteger32(LConstantOperand::cast(instr->index())); int loc = index - 1; if (loc != 0) { __ Sub(result.W(), length, loc); __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2)); } else { __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2)); } } else { Register length = ToRegister32(instr->length()); Operand index = ToOperand32(instr->index()); __ Sub(result.W(), length, index); __ Add(result.W(), result.W(), 1); __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2)); } } void LCodeGen::DoAddE(LAddE* instr) { Register result = ToRegister(instr->result()); Register left = ToRegister(instr->left()); Operand right = Operand(x0); // Dummy initialization. if (instr->hydrogen()->external_add_type() == AddOfExternalAndTagged) { right = Operand(ToRegister(instr->right())); } else if (instr->right()->IsConstantOperand()) { right = ToInteger32(LConstantOperand::cast(instr->right())); } else { right = Operand(ToRegister32(instr->right()), SXTW); } DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)); __ Add(result, left, right); } void LCodeGen::DoAddI(LAddI* instr) { bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); Register result = ToRegister32(instr->result()); Register left = ToRegister32(instr->left()); Operand right = ToShiftedRightOperand32(instr->right(), instr); if (can_overflow) { __ Adds(result, left, right); DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); } else { __ Add(result, left, right); } } void LCodeGen::DoAddS(LAddS* instr) { bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); Register result = ToRegister(instr->result()); Register left = ToRegister(instr->left()); Operand right = ToOperand(instr->right()); if (can_overflow) { __ Adds(result, left, right); DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); } else { __ Add(result, left, right); } } void LCodeGen::DoAllocate(LAllocate* instr) { class DeferredAllocate: public LDeferredCode { public: DeferredAllocate(LCodeGen* codegen, LAllocate* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredAllocate(instr_); } virtual LInstruction* instr() { return instr_; } private: LAllocate* instr_; }; DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr); Register result = ToRegister(instr->result()); Register temp1 = ToRegister(instr->temp1()); Register temp2 = ToRegister(instr->temp2()); // Allocate memory for the object. AllocationFlags flags = NO_ALLOCATION_FLAGS; if (instr->hydrogen()->MustAllocateDoubleAligned()) { flags = static_cast(flags | DOUBLE_ALIGNMENT); } if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = static_cast(flags | PRETENURE); } if (instr->hydrogen()->IsAllocationFoldingDominator()) { flags = static_cast(flags | ALLOCATION_FOLDING_DOMINATOR); } DCHECK(!instr->hydrogen()->IsAllocationFolded()); if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); CHECK(size <= kMaxRegularHeapObjectSize); __ Allocate(size, result, temp1, temp2, deferred->entry(), flags); } else { Register size = ToRegister32(instr->size()); __ Sxtw(size.X(), size); __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags); } __ Bind(deferred->exit()); if (instr->hydrogen()->MustPrefillWithFiller()) { Register start = temp1; Register end = temp2; Register filler = ToRegister(instr->temp3()); __ Sub(start, result, kHeapObjectTag); if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); __ Add(end, start, size); } else { __ Add(end, start, ToRegister(instr->size())); } __ LoadRoot(filler, Heap::kOnePointerFillerMapRootIndex); __ InitializeFieldsWithFiller(start, end, filler); } else { DCHECK(instr->temp3() == NULL); } } void LCodeGen::DoDeferredAllocate(LAllocate* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Mov(ToRegister(instr->result()), Smi::kZero); PushSafepointRegistersScope scope(this); LoadContextFromDeferred(instr->context()); // We're in a SafepointRegistersScope so we can use any scratch registers. Register size = x0; if (instr->size()->IsConstantOperand()) { __ Mov(size, ToSmi(LConstantOperand::cast(instr->size()))); } else { __ SmiTag(size, ToRegister32(instr->size()).X()); } int flags = AllocateDoubleAlignFlag::encode( instr->hydrogen()->MustAllocateDoubleAligned()); if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = AllocateTargetSpace::update(flags, OLD_SPACE); } else { flags = AllocateTargetSpace::update(flags, NEW_SPACE); } __ Mov(x10, Smi::FromInt(flags)); __ Push(size, x10); CallRuntimeFromDeferred(Runtime::kAllocateInTargetSpace, 2, instr, nullptr); __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result())); if (instr->hydrogen()->IsAllocationFoldingDominator()) { AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS; if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); allocation_flags = static_cast(flags | PRETENURE); } // If the allocation folding dominator allocate triggered a GC, allocation // happend in the runtime. We have to reset the top pointer to virtually // undo the allocation. ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags); Register top_address = x10; __ Sub(x0, x0, Operand(kHeapObjectTag)); __ Mov(top_address, Operand(allocation_top)); __ Str(x0, MemOperand(top_address)); __ Add(x0, x0, Operand(kHeapObjectTag)); } } void LCodeGen::DoFastAllocate(LFastAllocate* instr) { DCHECK(instr->hydrogen()->IsAllocationFolded()); DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator()); Register result = ToRegister(instr->result()); Register scratch1 = ToRegister(instr->temp1()); Register scratch2 = ToRegister(instr->temp2()); AllocationFlags flags = ALLOCATION_FOLDED; if (instr->hydrogen()->MustAllocateDoubleAligned()) { flags = static_cast(flags | DOUBLE_ALIGNMENT); } if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = static_cast(flags | PRETENURE); } if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); CHECK(size <= kMaxRegularHeapObjectSize); __ FastAllocate(size, result, scratch1, scratch2, flags); } else { Register size = ToRegister(instr->size()); __ FastAllocate(size, result, scratch1, scratch2, flags); } } void LCodeGen::DoApplyArguments(LApplyArguments* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register length = ToRegister32(instr->length()); Register elements = ToRegister(instr->elements()); Register scratch = x5; DCHECK(receiver.Is(x0)); // Used for parameter count. DCHECK(function.Is(x1)); // Required by InvokeFunction. DCHECK(ToRegister(instr->result()).Is(x0)); DCHECK(instr->IsMarkedAsCall()); // Copy the arguments to this function possibly from the // adaptor frame below it. const uint32_t kArgumentsLimit = 1 * KB; __ Cmp(length, kArgumentsLimit); DeoptimizeIf(hi, instr, DeoptimizeReason::kTooManyArguments); // Push the receiver and use the register to keep the original // number of arguments. __ Push(receiver); Register argc = receiver; receiver = NoReg; __ Sxtw(argc, length); // The arguments are at a one pointer size offset from elements. __ Add(elements, elements, 1 * kPointerSize); // Loop through the arguments pushing them onto the execution // stack. Label invoke, loop; // length is a small non-negative integer, due to the test above. __ Cbz(length, &invoke); __ Bind(&loop); __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2)); __ Push(scratch); __ Subs(length, length, 1); __ B(ne, &loop); __ Bind(&invoke); InvokeFlag flag = CALL_FUNCTION; if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) { DCHECK(!info()->saves_caller_doubles()); // TODO(ishell): drop current frame before pushing arguments to the stack. flag = JUMP_FUNCTION; ParameterCount actual(x0); // It is safe to use x3, x4 and x5 as scratch registers here given that // 1) we are not going to return to caller function anyway, // 2) x3 (new.target) will be initialized below. PrepareForTailCall(actual, x3, x4, x5); } DCHECK(instr->HasPointerMap()); LPointerMap* pointers = instr->pointer_map(); SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); // The number of arguments is stored in argc (receiver) which is x0, as // expected by InvokeFunction. ParameterCount actual(argc); __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator); } void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { Register result = ToRegister(instr->result()); if (instr->hydrogen()->from_inlined()) { // When we are inside an inlined function, the arguments are the last things // that have been pushed on the stack. Therefore the arguments array can be // accessed directly from jssp. // However in the normal case, it is accessed via fp but there are two words // on the stack between fp and the arguments (the saved lr and fp) and the // LAccessArgumentsAt implementation take that into account. // In the inlined case we need to subtract the size of 2 words to jssp to // get a pointer which will work well with LAccessArgumentsAt. DCHECK(masm()->StackPointer().Is(jssp)); __ Sub(result, jssp, 2 * kPointerSize); } else if (instr->hydrogen()->arguments_adaptor()) { DCHECK(instr->temp() != NULL); Register previous_fp = ToRegister(instr->temp()); __ Ldr(previous_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ Ldr(result, MemOperand(previous_fp, CommonFrameConstants::kContextOrFrameTypeOffset)); __ Cmp(result, StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)); __ Csel(result, fp, previous_fp, ne); } else { __ Mov(result, fp); } } void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { Register elements = ToRegister(instr->elements()); Register result = ToRegister32(instr->result()); Label done; // If no arguments adaptor frame the number of arguments is fixed. __ Cmp(fp, elements); __ Mov(result, scope()->num_parameters()); __ B(eq, &done); // Arguments adaptor frame present. Get argument length from there. __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ Ldr(result, UntagSmiMemOperand(result.X(), ArgumentsAdaptorFrameConstants::kLengthOffset)); // Argument length is in result register. __ Bind(&done); } void LCodeGen::DoArithmeticD(LArithmeticD* instr) { DoubleRegister left = ToDoubleRegister(instr->left()); DoubleRegister right = ToDoubleRegister(instr->right()); DoubleRegister result = ToDoubleRegister(instr->result()); switch (instr->op()) { case Token::ADD: __ Fadd(result, left, right); break; case Token::SUB: __ Fsub(result, left, right); break; case Token::MUL: __ Fmul(result, left, right); break; case Token::DIV: __ Fdiv(result, left, right); break; case Token::MOD: { // The ECMA-262 remainder operator is the remainder from a truncating // (round-towards-zero) division. Note that this differs from IEEE-754. // // TODO(jbramley): See if it's possible to do this inline, rather than by // calling a helper function. With frintz (to produce the intermediate // quotient) and fmsub (to calculate the remainder without loss of // precision), it should be possible. However, we would need support for // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't // support that yet. DCHECK(left.Is(d0)); DCHECK(right.Is(d1)); __ CallCFunction( ExternalReference::mod_two_doubles_operation(isolate()), 0, 2); DCHECK(result.Is(d0)); break; } default: UNREACHABLE(); break; } } void LCodeGen::DoArithmeticT(LArithmeticT* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->left()).is(x1)); DCHECK(ToRegister(instr->right()).is(x0)); DCHECK(ToRegister(instr->result()).is(x0)); Handle code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code(); CallCode(code, RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoBitI(LBitI* instr) { Register result = ToRegister32(instr->result()); Register left = ToRegister32(instr->left()); Operand right = ToShiftedRightOperand32(instr->right(), instr); switch (instr->op()) { case Token::BIT_AND: __ And(result, left, right); break; case Token::BIT_OR: __ Orr(result, left, right); break; case Token::BIT_XOR: __ Eor(result, left, right); break; default: UNREACHABLE(); break; } } void LCodeGen::DoBitS(LBitS* instr) { Register result = ToRegister(instr->result()); Register left = ToRegister(instr->left()); Operand right = ToOperand(instr->right()); switch (instr->op()) { case Token::BIT_AND: __ And(result, left, right); break; case Token::BIT_OR: __ Orr(result, left, right); break; case Token::BIT_XOR: __ Eor(result, left, right); break; default: UNREACHABLE(); break; } } void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) { Condition cond = instr->hydrogen()->allow_equality() ? hi : hs; DCHECK(instr->hydrogen()->index()->representation().IsInteger32()); DCHECK(instr->hydrogen()->length()->representation().IsInteger32()); if (instr->index()->IsConstantOperand()) { Operand index = ToOperand32(instr->index()); Register length = ToRegister32(instr->length()); __ Cmp(length, index); cond = CommuteCondition(cond); } else { Register index = ToRegister32(instr->index()); Operand length = ToOperand32(instr->length()); __ Cmp(index, length); } if (FLAG_debug_code && instr->hydrogen()->skip_check()) { __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed); } else { DeoptimizeIf(cond, instr, DeoptimizeReason::kOutOfBounds); } } void LCodeGen::DoBranch(LBranch* instr) { Representation r = instr->hydrogen()->value()->representation(); Label* true_label = instr->TrueLabel(chunk_); Label* false_label = instr->FalseLabel(chunk_); if (r.IsInteger32()) { DCHECK(!info()->IsStub()); EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0); } else if (r.IsSmi()) { DCHECK(!info()->IsStub()); STATIC_ASSERT(kSmiTag == 0); EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0); } else if (r.IsDouble()) { DoubleRegister value = ToDoubleRegister(instr->value()); // Test the double value. Zero and NaN are false. EmitBranchIfNonZeroNumber(instr, value, double_scratch()); } else { DCHECK(r.IsTagged()); Register value = ToRegister(instr->value()); HType type = instr->hydrogen()->value()->type(); if (type.IsBoolean()) { DCHECK(!info()->IsStub()); __ CompareRoot(value, Heap::kTrueValueRootIndex); EmitBranch(instr, eq); } else if (type.IsSmi()) { DCHECK(!info()->IsStub()); EmitCompareAndBranch(instr, ne, value, Smi::kZero); } else if (type.IsJSArray()) { DCHECK(!info()->IsStub()); EmitGoto(instr->TrueDestination(chunk())); } else if (type.IsHeapNumber()) { DCHECK(!info()->IsStub()); __ Ldr(double_scratch(), FieldMemOperand(value, HeapNumber::kValueOffset)); // Test the double value. Zero and NaN are false. EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch()); } else if (type.IsString()) { DCHECK(!info()->IsStub()); Register temp = ToRegister(instr->temp1()); __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset)); EmitCompareAndBranch(instr, ne, temp, 0); } else { ToBooleanHints expected = instr->hydrogen()->expected_input_types(); // Avoid deopts in the case where we've never executed this path before. if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny; if (expected & ToBooleanHint::kUndefined) { // undefined -> false. __ JumpIfRoot( value, Heap::kUndefinedValueRootIndex, false_label); } if (expected & ToBooleanHint::kBoolean) { // Boolean -> its value. __ JumpIfRoot( value, Heap::kTrueValueRootIndex, true_label); __ JumpIfRoot( value, Heap::kFalseValueRootIndex, false_label); } if (expected & ToBooleanHint::kNull) { // 'null' -> false. __ JumpIfRoot( value, Heap::kNullValueRootIndex, false_label); } if (expected & ToBooleanHint::kSmallInteger) { // Smis: 0 -> false, all other -> true. DCHECK(Smi::kZero == 0); __ Cbz(value, false_label); __ JumpIfSmi(value, true_label); } else if (expected & ToBooleanHint::kNeedsMap) { // If we need a map later and have a smi, deopt. DeoptimizeIfSmi(value, instr, DeoptimizeReason::kSmi); } Register map = NoReg; Register scratch = NoReg; if (expected & ToBooleanHint::kNeedsMap) { DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); map = ToRegister(instr->temp1()); scratch = ToRegister(instr->temp2()); __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); if (expected & ToBooleanHint::kCanBeUndetectable) { // Undetectable -> false. __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); __ TestAndBranchIfAnySet( scratch, 1 << Map::kIsUndetectable, false_label); } } if (expected & ToBooleanHint::kReceiver) { // spec object -> true. __ CompareInstanceType(map, scratch, FIRST_JS_RECEIVER_TYPE); __ B(ge, true_label); } if (expected & ToBooleanHint::kString) { // String value -> false iff empty. Label not_string; __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE); __ B(ge, ¬_string); __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset)); __ Cbz(scratch, false_label); __ B(true_label); __ Bind(¬_string); } if (expected & ToBooleanHint::kSymbol) { // Symbol value -> true. __ CompareInstanceType(map, scratch, SYMBOL_TYPE); __ B(eq, true_label); } if (expected & ToBooleanHint::kHeapNumber) { Label not_heap_number; __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, ¬_heap_number); __ Ldr(double_scratch(), FieldMemOperand(value, HeapNumber::kValueOffset)); __ Fcmp(double_scratch(), 0.0); // If we got a NaN (overflow bit is set), jump to the false branch. __ B(vs, false_label); __ B(eq, false_label); __ B(true_label); __ Bind(¬_heap_number); } if (expected != ToBooleanHint::kAny) { // We've seen something for the first time -> deopt. // This can only happen if we are not generic already. Deoptimize(instr, DeoptimizeReason::kUnexpectedObject); } } } } void LCodeGen::CallKnownFunction(Handle function, int formal_parameter_count, int arity, bool is_tail_call, LInstruction* instr) { bool dont_adapt_arguments = formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; bool can_invoke_directly = dont_adapt_arguments || formal_parameter_count == arity; // The function interface relies on the following register assignments. Register function_reg = x1; Register arity_reg = x0; LPointerMap* pointers = instr->pointer_map(); if (FLAG_debug_code) { Label is_not_smi; // Try to confirm that function_reg (x1) is a tagged pointer. __ JumpIfNotSmi(function_reg, &is_not_smi); __ Abort(kExpectedFunctionObject); __ Bind(&is_not_smi); } if (can_invoke_directly) { // Change context. __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset)); // Always initialize new target and number of actual arguments. __ LoadRoot(x3, Heap::kUndefinedValueRootIndex); __ Mov(arity_reg, arity); bool is_self_call = function.is_identical_to(info()->closure()); // Invoke function. if (is_self_call) { Handle self(reinterpret_cast(__ CodeObject().location())); if (is_tail_call) { __ Jump(self, RelocInfo::CODE_TARGET); } else { __ Call(self, RelocInfo::CODE_TARGET); } } else { __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset)); if (is_tail_call) { __ Jump(x10); } else { __ Call(x10); } } if (!is_tail_call) { // Set up deoptimization. RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } } else { SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount actual(arity); ParameterCount expected(formal_parameter_count); InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION; __ InvokeFunction(function_reg, expected, actual, flag, generator); } } void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { DCHECK(instr->IsMarkedAsCall()); DCHECK(ToRegister(instr->result()).Is(x0)); if (instr->hydrogen()->IsTailCall()) { if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL); if (instr->target()->IsConstantOperand()) { LConstantOperand* target = LConstantOperand::cast(instr->target()); Handle code = Handle::cast(ToHandle(target)); // TODO(all): on ARM we use a call descriptor to specify a storage mode // but on ARM64 we only have one storage mode so it isn't necessary. Check // this understanding is correct. __ Jump(code, RelocInfo::CODE_TARGET); } else { DCHECK(instr->target()->IsRegister()); Register target = ToRegister(instr->target()); __ Add(target, target, Code::kHeaderSize - kHeapObjectTag); __ Br(target); } } else { LPointerMap* pointers = instr->pointer_map(); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); if (instr->target()->IsConstantOperand()) { LConstantOperand* target = LConstantOperand::cast(instr->target()); Handle code = Handle::cast(ToHandle(target)); generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); // TODO(all): on ARM we use a call descriptor to specify a storage mode // but on ARM64 we only have one storage mode so it isn't necessary. Check // this understanding is correct. __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None()); } else { DCHECK(instr->target()->IsRegister()); Register target = ToRegister(instr->target()); generator.BeforeCall(__ CallSize(target)); __ Add(target, target, Code::kHeaderSize - kHeapObjectTag); __ Call(target); } generator.AfterCall(); } HCallWithDescriptor* hinstr = instr->hydrogen(); RecordPushedArgumentsDelta(hinstr->argument_delta()); // HCallWithDescriptor instruction is translated to zero or more // LPushArguments (they handle parameters passed on the stack) followed by // a LCallWithDescriptor. Each LPushArguments instruction generated records // the number of arguments pushed thus we need to offset them here. // The |argument_delta()| used above "knows" only about JS parameters while // we are dealing here with particular calling convention details. RecordPushedArgumentsDelta(-hinstr->descriptor().GetStackParameterCount()); } void LCodeGen::DoCallRuntime(LCallRuntime* instr) { CallRuntime(instr->function(), instr->arity(), instr); RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); } void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { GenerateOsrPrologue(); } void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { Register temp = ToRegister(instr->temp()); Label deopt, done; // If the map is not deprecated the migration attempt does not make sense. __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); __ Ldr(temp, FieldMemOperand(temp, Map::kBitField3Offset)); __ Tst(temp, Operand(Map::Deprecated::kMask)); __ B(eq, &deopt); { PushSafepointRegistersScope scope(this); __ Push(object); __ Mov(cp, 0); __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); RecordSafepointWithRegisters( instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(x0, temp); } __ Tst(temp, Operand(kSmiTagMask)); __ B(ne, &done); __ bind(&deopt); Deoptimize(instr, DeoptimizeReason::kInstanceMigrationFailed); __ bind(&done); } void LCodeGen::DoCheckMaps(LCheckMaps* instr) { class DeferredCheckMaps: public LDeferredCode { public: DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) : LDeferredCode(codegen), instr_(instr), object_(object) { SetExit(check_maps()); } virtual void Generate() { codegen()->DoDeferredInstanceMigration(instr_, object_); } Label* check_maps() { return &check_maps_; } virtual LInstruction* instr() { return instr_; } private: LCheckMaps* instr_; Label check_maps_; Register object_; }; if (instr->hydrogen()->IsStabilityCheck()) { const UniqueSet* maps = instr->hydrogen()->maps(); for (int i = 0; i < maps->size(); ++i) { AddStabilityDependency(maps->at(i).handle()); } return; } Register object = ToRegister(instr->value()); Register map_reg = ToRegister(instr->temp()); __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset)); DeferredCheckMaps* deferred = NULL; if (instr->hydrogen()->HasMigrationTarget()) { deferred = new(zone()) DeferredCheckMaps(this, instr, object); __ Bind(deferred->check_maps()); } const UniqueSet* maps = instr->hydrogen()->maps(); Label success; for (int i = 0; i < maps->size() - 1; i++) { Handle map = maps->at(i).handle(); __ CompareMap(map_reg, map); __ B(eq, &success); } Handle map = maps->at(maps->size() - 1).handle(); __ CompareMap(map_reg, map); // We didn't match a map. if (instr->hydrogen()->HasMigrationTarget()) { __ B(ne, deferred->entry()); } else { DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap); } __ Bind(&success); } void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { if (!instr->hydrogen()->value()->type().IsHeapObject()) { DeoptimizeIfSmi(ToRegister(instr->value()), instr, DeoptimizeReason::kSmi); } } void LCodeGen::DoCheckSmi(LCheckSmi* instr) { Register value = ToRegister(instr->value()); DCHECK(!instr->result() || ToRegister(instr->result()).Is(value)); DeoptimizeIfNotSmi(value, instr, DeoptimizeReason::kNotASmi); } void LCodeGen::DoCheckArrayBufferNotNeutered( LCheckArrayBufferNotNeutered* instr) { UseScratchRegisterScope temps(masm()); Register view = ToRegister(instr->view()); Register scratch = temps.AcquireX(); __ Ldr(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset)); __ Ldr(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset)); __ Tst(scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift)); DeoptimizeIf(ne, instr, DeoptimizeReason::kOutOfBounds); } void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { Register input = ToRegister(instr->value()); Register scratch = ToRegister(instr->temp()); __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); if (instr->hydrogen()->is_interval_check()) { InstanceType first, last; instr->hydrogen()->GetCheckInterval(&first, &last); __ Cmp(scratch, first); if (first == last) { // If there is only one type in the interval check for equality. DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType); } else if (last == LAST_TYPE) { // We don't need to compare with the higher bound of the interval. DeoptimizeIf(lo, instr, DeoptimizeReason::kWrongInstanceType); } else { // If we are below the lower bound, set the C flag and clear the Z flag // to force a deopt. __ Ccmp(scratch, last, CFlag, hs); DeoptimizeIf(hi, instr, DeoptimizeReason::kWrongInstanceType); } } else { uint8_t mask; uint8_t tag; instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); if (base::bits::IsPowerOfTwo32(mask)) { DCHECK((tag == 0) || (tag == mask)); if (tag == 0) { DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr, DeoptimizeReason::kWrongInstanceType); } else { DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr, DeoptimizeReason::kWrongInstanceType); } } else { if (tag == 0) { __ Tst(scratch, mask); } else { __ And(scratch, scratch, mask); __ Cmp(scratch, tag); } DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType); } } } void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { DoubleRegister input = ToDoubleRegister(instr->unclamped()); Register result = ToRegister32(instr->result()); __ ClampDoubleToUint8(result, input, double_scratch()); } void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { Register input = ToRegister32(instr->unclamped()); Register result = ToRegister32(instr->result()); __ ClampInt32ToUint8(result, input); } void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { Register input = ToRegister(instr->unclamped()); Register result = ToRegister32(instr->result()); Label done; // Both smi and heap number cases are handled. Label is_not_smi; __ JumpIfNotSmi(input, &is_not_smi); __ SmiUntag(result.X(), input); __ ClampInt32ToUint8(result); __ B(&done); __ Bind(&is_not_smi); // Check for heap number. Label is_heap_number; __ JumpIfHeapNumber(input, &is_heap_number); // Check for undefined. Undefined is coverted to zero for clamping conversion. DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr, DeoptimizeReason::kNotAHeapNumberUndefined); __ Mov(result, 0); __ B(&done); // Heap number case. __ Bind(&is_heap_number); DoubleRegister dbl_scratch = double_scratch(); DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1()); __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset)); __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2); __ Bind(&done); } void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { Handle class_name = instr->hydrogen()->class_name(); Label* true_label = instr->TrueLabel(chunk_); Label* false_label = instr->FalseLabel(chunk_); Register input = ToRegister(instr->value()); Register scratch1 = ToRegister(instr->temp1()); Register scratch2 = ToRegister(instr->temp2()); __ JumpIfSmi(input, false_label); Register map = scratch2; __ CompareObjectType(input, map, scratch1, FIRST_FUNCTION_TYPE); STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); if (String::Equals(isolate()->factory()->Function_string(), class_name)) { __ B(hs, true_label); } else { __ B(hs, false_label); } // Check if the constructor in the map is a function. { UseScratchRegisterScope temps(masm()); Register instance_type = temps.AcquireX(); __ GetMapConstructor(scratch1, map, scratch2, instance_type); __ Cmp(instance_type, JS_FUNCTION_TYPE); } // Objects with a non-function constructor have class 'Object'. if (String::Equals(class_name, isolate()->factory()->Object_string())) { __ B(ne, true_label); } else { __ B(ne, false_label); } // The constructor function is in scratch1. Get its instance class name. __ Ldr(scratch1, FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(scratch1, FieldMemOperand(scratch1, SharedFunctionInfo::kInstanceClassNameOffset)); // The class name we are testing against is internalized since it's a literal. // The name in the constructor is internalized because of the way the context // is booted. This routine isn't expected to work for random API-created // classes and it doesn't have to because you can't access it with natives // syntax. Since both sides are internalized it is sufficient to use an // identity comparison. EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name)); } void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) { DCHECK(instr->hydrogen()->representation().IsDouble()); FPRegister object = ToDoubleRegister(instr->object()); Register temp = ToRegister(instr->temp()); // If we don't have a NaN, we don't have the hole, so branch now to avoid the // (relatively expensive) hole-NaN check. __ Fcmp(object, object); __ B(vc, instr->FalseLabel(chunk_)); // We have a NaN, but is it the hole? __ Fmov(temp, object); EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64); } void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) { DCHECK(instr->hydrogen()->representation().IsTagged()); Register object = ToRegister(instr->object()); EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex); } void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { Register value = ToRegister(instr->value()); Register map = ToRegister(instr->temp()); __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); EmitCompareAndBranch(instr, eq, map, Operand(instr->map())); } void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); bool is_unsigned = instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); Condition cond = TokenToCondition(instr->op(), is_unsigned); if (left->IsConstantOperand() && right->IsConstantOperand()) { // We can statically evaluate the comparison. double left_val = ToDouble(LConstantOperand::cast(left)); double right_val = ToDouble(LConstantOperand::cast(right)); int next_block = Token::EvalComparison(instr->op(), left_val, right_val) ? instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); EmitGoto(next_block); } else { if (instr->is_double()) { __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right)); // If a NaN is involved, i.e. the result is unordered (V set), // jump to false block label. __ B(vs, instr->FalseLabel(chunk_)); EmitBranch(instr, cond); } else { if (instr->hydrogen_value()->representation().IsInteger32()) { if (right->IsConstantOperand()) { EmitCompareAndBranch(instr, cond, ToRegister32(left), ToOperand32(right)); } else { // Commute the operands and the condition. EmitCompareAndBranch(instr, CommuteCondition(cond), ToRegister32(right), ToOperand32(left)); } } else { DCHECK(instr->hydrogen_value()->representation().IsSmi()); if (right->IsConstantOperand()) { int32_t value = ToInteger32(LConstantOperand::cast(right)); EmitCompareAndBranch(instr, cond, ToRegister(left), Operand(Smi::FromInt(value))); } else if (left->IsConstantOperand()) { // Commute the operands and the condition. int32_t value = ToInteger32(LConstantOperand::cast(left)); EmitCompareAndBranch(instr, CommuteCondition(cond), ToRegister(right), Operand(Smi::FromInt(value))); } else { EmitCompareAndBranch(instr, cond, ToRegister(left), ToRegister(right)); } } } } } void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { Register left = ToRegister(instr->left()); Register right = ToRegister(instr->right()); EmitCompareAndBranch(instr, eq, left, right); } void LCodeGen::DoCmpT(LCmpT* instr) { DCHECK(ToRegister(instr->context()).is(cp)); Token::Value op = instr->op(); Condition cond = TokenToCondition(op, false); DCHECK(ToRegister(instr->left()).Is(x1)); DCHECK(ToRegister(instr->right()).Is(x0)); Handle ic = CodeFactory::CompareIC(isolate(), op).code(); CallCode(ic, RelocInfo::CODE_TARGET, instr); // Signal that we don't inline smi code before this stub. InlineSmiCheckInfo::EmitNotInlined(masm()); // Return true or false depending on CompareIC result. // This instruction is marked as call. We can clobber any register. DCHECK(instr->IsMarkedAsCall()); __ LoadTrueFalseRoots(x1, x2); __ Cmp(x0, 0); __ Csel(ToRegister(instr->result()), x1, x2, cond); } void LCodeGen::DoConstantD(LConstantD* instr) { DCHECK(instr->result()->IsDoubleRegister()); DoubleRegister result = ToDoubleRegister(instr->result()); if (instr->value() == 0) { if (copysign(1.0, instr->value()) == 1.0) { __ Fmov(result, fp_zero); } else { __ Fneg(result, fp_zero); } } else { __ Fmov(result, instr->value()); } } void LCodeGen::DoConstantE(LConstantE* instr) { __ Mov(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantI(LConstantI* instr) { DCHECK(is_int32(instr->value())); // Cast the value here to ensure that the value isn't sign extended by the // implicit Operand constructor. __ Mov(ToRegister32(instr->result()), static_cast(instr->value())); } void LCodeGen::DoConstantS(LConstantS* instr) { __ Mov(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantT(LConstantT* instr) { Handle object = instr->value(isolate()); AllowDeferredHandleDereference smi_check; __ LoadObject(ToRegister(instr->result()), object); } void LCodeGen::DoContext(LContext* instr) { // If there is a non-return use, the context must be moved to a register. Register result = ToRegister(instr->result()); if (info()->IsOptimizing()) { __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset)); } else { // If there is no frame, the context must be in cp. DCHECK(result.is(cp)); } } void LCodeGen::DoCheckValue(LCheckValue* instr) { Register reg = ToRegister(instr->value()); Handle object = instr->hydrogen()->object().handle(); AllowDeferredHandleDereference smi_check; if (isolate()->heap()->InNewSpace(*object)) { UseScratchRegisterScope temps(masm()); Register temp = temps.AcquireX(); Handle cell = isolate()->factory()->NewCell(object); __ Mov(temp, Operand(cell)); __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset)); __ Cmp(reg, temp); } else { __ Cmp(reg, Operand(object)); } DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch); } void LCodeGen::DoLazyBailout(LLazyBailout* instr) { last_lazy_deopt_pc_ = masm()->pc_offset(); DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoDeoptimize(LDeoptimize* instr) { Deoptimizer::BailoutType type = instr->hydrogen()->type(); // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the // needed return address), even though the implementation of LAZY and EAGER is // now identical. When LAZY is eventually completely folded into EAGER, remove // the special case below. if (info()->IsStub() && (type == Deoptimizer::EAGER)) { type = Deoptimizer::LAZY; } Deoptimize(instr, instr->hydrogen()->reason(), &type); } void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { Register dividend = ToRegister32(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister32(instr->result()); DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); DCHECK(!result.is(dividend)); // Check for (0 / -x) that will produce negative zero. HDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { DeoptimizeIfZero(dividend, instr, DeoptimizeReason::kDivisionByZero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { // Test dividend for kMinInt by subtracting one (cmp) and checking for // overflow. __ Cmp(dividend, 1); DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); } // Deoptimize if remainder will not be 0. if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && divisor != 1 && divisor != -1) { int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); __ Tst(dividend, mask); DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision); } if (divisor == -1) { // Nice shortcut, not needed for correctness. __ Neg(result, dividend); return; } int32_t shift = WhichPowerOf2Abs(divisor); if (shift == 0) { __ Mov(result, dividend); } else if (shift == 1) { __ Add(result, dividend, Operand(dividend, LSR, 31)); } else { __ Mov(result, Operand(dividend, ASR, 31)); __ Add(result, dividend, Operand(result, LSR, 32 - shift)); } if (shift > 0) __ Mov(result, Operand(result, ASR, shift)); if (divisor < 0) __ Neg(result, result); } void LCodeGen::DoDivByConstI(LDivByConstI* instr) { Register dividend = ToRegister32(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister32(instr->result()); DCHECK(!AreAliased(dividend, result)); if (divisor == 0) { Deoptimize(instr, DeoptimizeReason::kDivisionByZero); return; } // Check for (0 / -x) that will produce negative zero. HDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { DeoptimizeIfZero(dividend, instr, DeoptimizeReason::kMinusZero); } __ TruncatingDiv(result, dividend, Abs(divisor)); if (divisor < 0) __ Neg(result, result); if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { Register temp = ToRegister32(instr->temp()); DCHECK(!AreAliased(dividend, result, temp)); __ Sxtw(dividend.X(), dividend); __ Mov(temp, divisor); __ Smsubl(temp.X(), result, temp, dividend.X()); DeoptimizeIfNotZero(temp, instr, DeoptimizeReason::kLostPrecision); } } // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. void LCodeGen::DoDivI(LDivI* instr) { HBinaryOperation* hdiv = instr->hydrogen(); Register dividend = ToRegister32(instr->dividend()); Register divisor = ToRegister32(instr->divisor()); Register result = ToRegister32(instr->result()); // Issue the division first, and then check for any deopt cases whilst the // result is computed. __ Sdiv(result, dividend, divisor); if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { DCHECK(!instr->temp()); return; } // Check for x / 0. if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { DeoptimizeIfZero(divisor, instr, DeoptimizeReason::kDivisionByZero); } // Check for (0 / -x) as that will produce negative zero. if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { __ Cmp(divisor, 0); // If the divisor < 0 (mi), compare the dividend, and deopt if it is // zero, ie. zero dividend with negative divisor deopts. // If the divisor >= 0 (pl, the opposite of mi) set the flags to // condition ne, so we don't deopt, ie. positive divisor doesn't deopt. __ Ccmp(dividend, 0, NoFlag, mi); DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow)) { // Test dividend for kMinInt by subtracting one (cmp) and checking for // overflow. __ Cmp(dividend, 1); // If overflow is set, ie. dividend = kMinInt, compare the divisor with // -1. If overflow is clear, set the flags for condition ne, as the // dividend isn't -1, and thus we shouldn't deopt. __ Ccmp(divisor, -1, NoFlag, vs); DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow); } // Compute remainder and deopt if it's not zero. Register remainder = ToRegister32(instr->temp()); __ Msub(remainder, result, divisor, dividend); DeoptimizeIfNotZero(remainder, instr, DeoptimizeReason::kLostPrecision); } void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); Register result = ToRegister32(instr->result()); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIfMinusZero(input, instr, DeoptimizeReason::kMinusZero); } __ TryRepresentDoubleAsInt32(result, input, double_scratch()); DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN); if (instr->tag_result()) { __ SmiTag(result.X()); } } void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); RecordPushedArgumentsDelta(instr->hydrogen_value()->argument_delta()); } void LCodeGen::DoDummy(LDummy* instr) { // Nothing to see here, move on! } void LCodeGen::DoDummyUse(LDummyUse* instr) { // Nothing to see here, move on! } void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { Register map = ToRegister(instr->map()); Register result = ToRegister(instr->result()); Label load_cache, done; __ EnumLengthUntagged(result, map); __ Cbnz(result, &load_cache); __ Mov(result, Operand(isolate()->factory()->empty_fixed_array())); __ B(&done); __ Bind(&load_cache); __ LoadInstanceDescriptors(map, result); __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset)); __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); DeoptimizeIfZero(result, instr, DeoptimizeReason::kNoCache); __ Bind(&done); } void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { Register object = ToRegister(instr->object()); DCHECK(instr->IsMarkedAsCall()); DCHECK(object.Is(x0)); Label use_cache, call_runtime; __ CheckEnumCache(object, x5, x1, x2, x3, x4, &call_runtime); __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset)); __ B(&use_cache); // Get the set of properties to enumerate. __ Bind(&call_runtime); __ Push(object); CallRuntime(Runtime::kForInEnumerate, instr); __ Bind(&use_cache); } void LCodeGen::EmitGoto(int block) { // Do not emit jump if we are emitting a goto to the next block. if (!IsNextEmittedBlock(block)) { __ B(chunk_->GetAssemblyLabel(LookupDestination(block))); } } void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); } // HHasInstanceTypeAndBranch instruction is built with an interval of type // to test but is only used in very restricted ways. The only possible kinds // of intervals are: // - [ FIRST_TYPE, instr->to() ] // - [ instr->form(), LAST_TYPE ] // - instr->from() == instr->to() // // These kinds of intervals can be check with only one compare instruction // providing the correct value and test condition are used. // // TestType() will return the value to use in the compare instruction and // BranchCondition() will return the condition to use depending on the kind // of interval actually specified in the instruction. static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == FIRST_TYPE) return to; DCHECK((from == to) || (to == LAST_TYPE)); return from; } // See comment above TestType function for what this function does. static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == to) return eq; if (to == LAST_TYPE) return hs; if (from == FIRST_TYPE) return ls; UNREACHABLE(); return eq; } void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { Register input = ToRegister(instr->value()); Register scratch = ToRegister(instr->temp()); if (!instr->hydrogen()->value()->type().IsHeapObject()) { __ JumpIfSmi(input, instr->FalseLabel(chunk_)); } __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); EmitBranch(instr, BranchCondition(instr->hydrogen())); } void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { Register result = ToRegister(instr->result()); Register base = ToRegister(instr->base_object()); if (instr->offset()->IsConstantOperand()) { __ Add(result, base, ToOperand32(instr->offset())); } else { __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW)); } } void LCodeGen::DoHasInPrototypeChainAndBranch( LHasInPrototypeChainAndBranch* instr) { Register const object = ToRegister(instr->object()); Register const object_map = ToRegister(instr->scratch1()); Register const object_instance_type = ToRegister(instr->scratch2()); Register const object_prototype = object_map; Register const prototype = ToRegister(instr->prototype()); // The {object} must be a spec object. It's sufficient to know that {object} // is not a smi, since all other non-spec objects have {null} prototypes and // will be ruled out below. if (instr->hydrogen()->ObjectNeedsSmiCheck()) { __ JumpIfSmi(object, instr->FalseLabel(chunk_)); } // Loop through the {object}s prototype chain looking for the {prototype}. __ Ldr(object_map, FieldMemOperand(object, HeapObject::kMapOffset)); Label loop; __ Bind(&loop); // Deoptimize if the object needs to be access checked. __ Ldrb(object_instance_type, FieldMemOperand(object_map, Map::kBitFieldOffset)); __ Tst(object_instance_type, Operand(1 << Map::kIsAccessCheckNeeded)); DeoptimizeIf(ne, instr, DeoptimizeReason::kAccessCheck); // Deoptimize for proxies. __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE); DeoptimizeIf(eq, instr, DeoptimizeReason::kProxy); __ Ldr(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset)); __ CompareRoot(object_prototype, Heap::kNullValueRootIndex); __ B(eq, instr->FalseLabel(chunk_)); __ Cmp(object_prototype, prototype); __ B(eq, instr->TrueLabel(chunk_)); __ Ldr(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset)); __ B(&loop); } void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); } void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { Register value = ToRegister32(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); __ Scvtf(result, value); } void LCodeGen::PrepareForTailCall(const ParameterCount& actual, Register scratch1, Register scratch2, Register scratch3) { #if DEBUG if (actual.is_reg()) { DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3)); } else { DCHECK(!AreAliased(scratch1, scratch2, scratch3)); } #endif if (FLAG_code_comments) { if (actual.is_reg()) { Comment(";;; PrepareForTailCall, actual: %s {", RegisterConfiguration::Crankshaft()->GetGeneralRegisterName( actual.reg().code())); } else { Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate()); } } // Check if next frame is an arguments adaptor frame. Register caller_args_count_reg = scratch1; Label no_arguments_adaptor, formal_parameter_count_loaded; __ Ldr(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ Ldr(scratch3, MemOperand(scratch2, StandardFrameConstants::kContextOffset)); __ Cmp(scratch3, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ B(ne, &no_arguments_adaptor); // Drop current frame and load arguments count from arguments adaptor frame. __ mov(fp, scratch2); __ Ldr(caller_args_count_reg, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(caller_args_count_reg); __ B(&formal_parameter_count_loaded); __ bind(&no_arguments_adaptor); // Load caller's formal parameter count __ Mov(caller_args_count_reg, Immediate(info()->literal()->parameter_count())); __ bind(&formal_parameter_count_loaded); __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3); Comment(";;; }"); } void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { HInvokeFunction* hinstr = instr->hydrogen(); DCHECK(ToRegister(instr->context()).is(cp)); // The function is required to be in x1. DCHECK(ToRegister(instr->function()).is(x1)); DCHECK(instr->HasPointerMap()); bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow; if (is_tail_call) { DCHECK(!info()->saves_caller_doubles()); ParameterCount actual(instr->arity()); // It is safe to use x3, x4 and x5 as scratch registers here given that // 1) we are not going to return to caller function anyway, // 2) x3 (new.target) will be initialized below. PrepareForTailCall(actual, x3, x4, x5); } Handle known_function = hinstr->known_function(); if (known_function.is_null()) { LPointerMap* pointers = instr->pointer_map(); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount actual(instr->arity()); InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION; __ InvokeFunction(x1, no_reg, actual, flag, generator); } else { CallKnownFunction(known_function, hinstr->formal_parameter_count(), instr->arity(), is_tail_call, instr); } RecordPushedArgumentsDelta(instr->hydrogen()->argument_delta()); } Condition LCodeGen::EmitIsString(Register input, Register temp1, Label* is_not_string, SmiCheck check_needed = INLINE_SMI_CHECK) { if (check_needed == INLINE_SMI_CHECK) { __ JumpIfSmi(input, is_not_string); } __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE); return lt; } void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { Register val = ToRegister(instr->value()); Register scratch = ToRegister(instr->temp()); SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; Condition true_cond = EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed); EmitBranch(instr, true_cond); } void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { Register value = ToRegister(instr->value()); STATIC_ASSERT(kSmiTag == 0); EmitTestAndBranch(instr, eq, value, kSmiTagMask); } void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); if (!instr->hydrogen()->value()->type().IsHeapObject()) { __ JumpIfSmi(input, instr->FalseLabel(chunk_)); } __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable); } static const char* LabelType(LLabel* label) { if (label->is_loop_header()) return " (loop header)"; if (label->is_osr_entry()) return " (OSR entry)"; return ""; } void LCodeGen::DoLabel(LLabel* label) { Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", current_instruction_, label->hydrogen_value()->id(), label->block_id(), LabelType(label)); // Inherit pushed_arguments_ from the predecessor's argument count. if (label->block()->HasPredecessor()) { pushed_arguments_ = label->block()->predecessors()->at(0)->argument_count(); #ifdef DEBUG for (auto p : *label->block()->predecessors()) { DCHECK_EQ(p->argument_count(), pushed_arguments_); } #endif } __ Bind(label->label()); current_block_ = label->block_id(); DoGap(label); } void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ Ldr(result, ContextMemOperand(context, instr->slot_index())); if (instr->hydrogen()->RequiresHoleCheck()) { if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, DeoptimizeReason::kHole); } else { Label not_the_hole; __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, ¬_the_hole); __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ Bind(¬_the_hole); } } } void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { Register function = ToRegister(instr->function()); Register result = ToRegister(instr->result()); Register temp = ToRegister(instr->temp()); // Get the prototype or initial map from the function. __ Ldr(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // Check that the function has a prototype or an initial map. DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, DeoptimizeReason::kHole); // If the function does not have an initial map, we're done. Label done; __ CompareObjectType(result, temp, temp, MAP_TYPE); __ B(ne, &done); // Get the prototype from the initial map. __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); // All done. __ Bind(&done); } MemOperand LCodeGen::PrepareKeyedExternalArrayOperand( Register key, Register base, Register scratch, bool key_is_smi, bool key_is_constant, int constant_key, ElementsKind elements_kind, int base_offset) { int element_size_shift = ElementsKindToShiftSize(elements_kind); if (key_is_constant) { int key_offset = constant_key << element_size_shift; return MemOperand(base, key_offset + base_offset); } if (key_is_smi) { __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift)); return MemOperand(scratch, base_offset); } if (base_offset == 0) { return MemOperand(base, key, SXTW, element_size_shift); } DCHECK(!AreAliased(scratch, key)); __ Add(scratch, base, base_offset); return MemOperand(scratch, key, SXTW, element_size_shift); } void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) { Register ext_ptr = ToRegister(instr->elements()); Register scratch; ElementsKind elements_kind = instr->elements_kind(); bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); bool key_is_constant = instr->key()->IsConstantOperand(); Register key = no_reg; int constant_key = 0; if (key_is_constant) { DCHECK(instr->temp() == NULL); constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xf0000000) { Abort(kArrayIndexConstantValueTooBig); } } else { scratch = ToRegister(instr->temp()); key = ToRegister(instr->key()); } MemOperand mem_op = PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi, key_is_constant, constant_key, elements_kind, instr->base_offset()); if (elements_kind == FLOAT32_ELEMENTS) { DoubleRegister result = ToDoubleRegister(instr->result()); __ Ldr(result.S(), mem_op); __ Fcvt(result, result.S()); } else if (elements_kind == FLOAT64_ELEMENTS) { DoubleRegister result = ToDoubleRegister(instr->result()); __ Ldr(result, mem_op); } else { Register result = ToRegister(instr->result()); switch (elements_kind) { case INT8_ELEMENTS: __ Ldrsb(result, mem_op); break; case UINT8_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: __ Ldrb(result, mem_op); break; case INT16_ELEMENTS: __ Ldrsh(result, mem_op); break; case UINT16_ELEMENTS: __ Ldrh(result, mem_op); break; case INT32_ELEMENTS: __ Ldrsw(result, mem_op); break; case UINT32_ELEMENTS: __ Ldr(result.W(), mem_op); if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { // Deopt if value > 0x80000000. __ Tst(result, 0xFFFFFFFF80000000); DeoptimizeIf(ne, instr, DeoptimizeReason::kNegativeValue); } break; case FLOAT32_ELEMENTS: case FLOAT64_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case DICTIONARY_ELEMENTS: case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: case NO_ELEMENTS: UNREACHABLE(); break; } } } MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base, Register elements, Register key, bool key_is_tagged, ElementsKind elements_kind, Representation representation, int base_offset) { STATIC_ASSERT(static_cast(kSmiValueSize) == kWRegSizeInBits); STATIC_ASSERT(kSmiTag == 0); int element_size_shift = ElementsKindToShiftSize(elements_kind); // Even though the HLoad/StoreKeyed instructions force the input // representation for the key to be an integer, the input gets replaced during // bounds check elimination with the index argument to the bounds check, which // can be tagged, so that case must be handled here, too. if (key_is_tagged) { __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift)); if (representation.IsInteger32()) { DCHECK(elements_kind == FAST_SMI_ELEMENTS); // Read or write only the smi payload in the case of fast smi arrays. return UntagSmiMemOperand(base, base_offset); } else { return MemOperand(base, base_offset); } } else { // Sign extend key because it could be a 32-bit negative value or contain // garbage in the top 32-bits. The address computation happens in 64-bit. DCHECK((element_size_shift >= 0) && (element_size_shift <= 4)); if (representation.IsInteger32()) { DCHECK(elements_kind == FAST_SMI_ELEMENTS); // Read or write only the smi payload in the case of fast smi arrays. __ Add(base, elements, Operand(key, SXTW, element_size_shift)); return UntagSmiMemOperand(base, base_offset); } else { __ Add(base, elements, base_offset); return MemOperand(base, key, SXTW, element_size_shift); } } } void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) { Register elements = ToRegister(instr->elements()); DoubleRegister result = ToDoubleRegister(instr->result()); MemOperand mem_op; if (instr->key()->IsConstantOperand()) { DCHECK(instr->hydrogen()->RequiresHoleCheck() || (instr->temp() == NULL)); int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xf0000000) { Abort(kArrayIndexConstantValueTooBig); } int offset = instr->base_offset() + constant_key * kDoubleSize; mem_op = MemOperand(elements, offset); } else { Register load_base = ToRegister(instr->temp()); Register key = ToRegister(instr->key()); bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged, instr->hydrogen()->elements_kind(), instr->hydrogen()->representation(), instr->base_offset()); } __ Ldr(result, mem_op); if (instr->hydrogen()->RequiresHoleCheck()) { Register scratch = ToRegister(instr->temp()); __ Fmov(scratch, result); __ Eor(scratch, scratch, kHoleNanInt64); DeoptimizeIfZero(scratch, instr, DeoptimizeReason::kHole); } } void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) { Register elements = ToRegister(instr->elements()); Register result = ToRegister(instr->result()); MemOperand mem_op; Representation representation = instr->hydrogen()->representation(); if (instr->key()->IsConstantOperand()) { DCHECK(instr->temp() == NULL); LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); int offset = instr->base_offset() + ToInteger32(const_operand) * kPointerSize; if (representation.IsInteger32()) { DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS); STATIC_ASSERT(static_cast(kSmiValueSize) == kWRegSizeInBits); STATIC_ASSERT(kSmiTag == 0); mem_op = UntagSmiMemOperand(elements, offset); } else { mem_op = MemOperand(elements, offset); } } else { Register load_base = ToRegister(instr->temp()); Register key = ToRegister(instr->key()); bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged, instr->hydrogen()->elements_kind(), representation, instr->base_offset()); } __ Load(result, mem_op, representation); if (instr->hydrogen()->RequiresHoleCheck()) { if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { DeoptimizeIfNotSmi(result, instr, DeoptimizeReason::kNotASmi); } else { DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, DeoptimizeReason::kHole); } } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) { DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS); Label done; __ CompareRoot(result, Heap::kTheHoleValueRootIndex); __ B(ne, &done); if (info()->IsStub()) { // A stub can safely convert the hole to undefined only if the array // protector cell contains (Smi) Isolate::kProtectorValid. Otherwise // it needs to bail out. __ LoadRoot(result, Heap::kArrayProtectorRootIndex); __ Ldr(result, FieldMemOperand(result, PropertyCell::kValueOffset)); __ Cmp(result, Operand(Smi::FromInt(Isolate::kProtectorValid))); DeoptimizeIf(ne, instr, DeoptimizeReason::kHole); } __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ Bind(&done); } } void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { HObjectAccess access = instr->hydrogen()->access(); int offset = access.offset(); Register object = ToRegister(instr->object()); if (access.IsExternalMemory()) { Register result = ToRegister(instr->result()); __ Load(result, MemOperand(object, offset), access.representation()); return; } if (instr->hydrogen()->representation().IsDouble()) { DCHECK(access.IsInobject()); FPRegister result = ToDoubleRegister(instr->result()); __ Ldr(result, FieldMemOperand(object, offset)); return; } Register result = ToRegister(instr->result()); Register source; if (access.IsInobject()) { source = object; } else { // Load the properties array, using result as a scratch register. __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); source = result; } if (access.representation().IsSmi() && instr->hydrogen()->representation().IsInteger32()) { // Read int value directly from upper half of the smi. STATIC_ASSERT(static_cast(kSmiValueSize) == kWRegSizeInBits); STATIC_ASSERT(kSmiTag == 0); __ Load(result, UntagSmiFieldMemOperand(source, offset), Representation::Integer32()); } else { __ Load(result, FieldMemOperand(source, offset), access.representation()); } } void LCodeGen::DoLoadRoot(LLoadRoot* instr) { Register result = ToRegister(instr->result()); __ LoadRoot(result, instr->index()); } void LCodeGen::DoMathAbs(LMathAbs* instr) { Representation r = instr->hydrogen()->value()->representation(); if (r.IsDouble()) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); __ Fabs(result, input); } else if (r.IsSmi() || r.IsInteger32()) { Register input = r.IsSmi() ? ToRegister(instr->value()) : ToRegister32(instr->value()); Register result = r.IsSmi() ? ToRegister(instr->result()) : ToRegister32(instr->result()); __ Abs(result, input); DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); } } void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr, Label* exit, Label* allocation_entry) { // Handle the tricky cases of MathAbsTagged: // - HeapNumber inputs. // - Negative inputs produce a positive result, so a new HeapNumber is // allocated to hold it. // - Positive inputs are returned as-is, since there is no need to allocate // a new HeapNumber for the result. // - The (smi) input -0x80000000, produces +0x80000000, which does not fit // a smi. In this case, the inline code sets the result and jumps directly // to the allocation_entry label. DCHECK(instr->context() != NULL); DCHECK(ToRegister(instr->context()).is(cp)); Register input = ToRegister(instr->value()); Register temp1 = ToRegister(instr->temp1()); Register temp2 = ToRegister(instr->temp2()); Register result_bits = ToRegister(instr->temp3()); Register result = ToRegister(instr->result()); Label runtime_allocation; // Deoptimize if the input is not a HeapNumber. DeoptimizeIfNotHeapNumber(input, instr); // If the argument is positive, we can return it as-is, without any need to // allocate a new HeapNumber for the result. We have to do this in integer // registers (rather than with fabs) because we need to be able to distinguish // the two zeroes. __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset)); __ Mov(result, input); __ Tbz(result_bits, kXSignBit, exit); // Calculate abs(input) by clearing the sign bit. __ Bic(result_bits, result_bits, kXSignMask); // Allocate a new HeapNumber to hold the result. // result_bits The bit representation of the (double) result. __ Bind(allocation_entry); __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2); // The inline (non-deferred) code will store result_bits into result. __ B(exit); __ Bind(&runtime_allocation); if (FLAG_debug_code) { // Because result is in the pointer map, we need to make sure it has a valid // tagged value before we call the runtime. We speculatively set it to the // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already // be valid. Label result_ok; Register input = ToRegister(instr->value()); __ JumpIfSmi(result, &result_ok); __ Cmp(input, result); __ Assert(eq, kUnexpectedValue); __ Bind(&result_ok); } { PushSafepointRegistersScope scope(this); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, instr->context()); __ StoreToSafepointRegisterSlot(x0, result); } // The inline (non-deferred) code will store result_bits into result. } void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) { // Class for deferred case. class DeferredMathAbsTagged: public LDeferredCode { public: DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredMathAbsTagged(instr_, exit(), allocation_entry()); } virtual LInstruction* instr() { return instr_; } Label* allocation_entry() { return &allocation; } private: LMathAbsTagged* instr_; Label allocation; }; // TODO(jbramley): The early-exit mechanism would skip the new frame handling // in GenerateDeferredCode. Tidy this up. DCHECK(!NeedsDeferredFrame()); DeferredMathAbsTagged* deferred = new(zone()) DeferredMathAbsTagged(this, instr); DCHECK(instr->hydrogen()->value()->representation().IsTagged() || instr->hydrogen()->value()->representation().IsSmi()); Register input = ToRegister(instr->value()); Register result_bits = ToRegister(instr->temp3()); Register result = ToRegister(instr->result()); Label done; // Handle smis inline. // We can treat smis as 64-bit integers, since the (low-order) tag bits will // never get set by the negation. This is therefore the same as the Integer32 // case in DoMathAbs, except that it operates on 64-bit values. STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0)); __ JumpIfNotSmi(input, deferred->entry()); __ Abs(result, input, NULL, &done); // The result is the magnitude (abs) of the smallest value a smi can // represent, encoded as a double. __ Mov(result_bits, double_to_rawbits(0x80000000)); __ B(deferred->allocation_entry()); __ Bind(deferred->exit()); __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset)); __ Bind(&done); } void LCodeGen::DoMathCos(LMathCos* instr) { DCHECK(instr->IsMarkedAsCall()); DCHECK(ToDoubleRegister(instr->value()).is(d0)); __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1); DCHECK(ToDoubleRegister(instr->result()).Is(d0)); } void LCodeGen::DoMathSin(LMathSin* instr) { DCHECK(instr->IsMarkedAsCall()); DCHECK(ToDoubleRegister(instr->value()).is(d0)); __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1); DCHECK(ToDoubleRegister(instr->result()).Is(d0)); } void LCodeGen::DoMathExp(LMathExp* instr) { DCHECK(instr->IsMarkedAsCall()); DCHECK(ToDoubleRegister(instr->value()).is(d0)); __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1); DCHECK(ToDoubleRegister(instr->result()).Is(d0)); } void LCodeGen::DoMathFloorD(LMathFloorD* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); __ Frintm(result, input); } void LCodeGen::DoMathFloorI(LMathFloorI* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); Register result = ToRegister(instr->result()); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIfMinusZero(input, instr, DeoptimizeReason::kMinusZero); } __ Fcvtms(result, input); // Check that the result fits into a 32-bit integer. // - The result did not overflow. __ Cmp(result, Operand(result, SXTW)); // - The input was not NaN. __ Fccmp(input, input, NoFlag, eq); DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN); } void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { Register dividend = ToRegister32(instr->dividend()); Register result = ToRegister32(instr->result()); int32_t divisor = instr->divisor(); // If the divisor is 1, return the dividend. if (divisor == 1) { __ Mov(result, dividend, kDiscardForSameWReg); return; } // If the divisor is positive, things are easy: There can be no deopts and we // can simply do an arithmetic right shift. int32_t shift = WhichPowerOf2Abs(divisor); if (divisor > 1) { __ Mov(result, Operand(dividend, ASR, shift)); return; } // If the divisor is negative, we have to negate and handle edge cases. __ Negs(result, dividend); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); } // Dividing by -1 is basically negation, unless we overflow. if (divisor == -1) { if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); } return; } // If the negation could not overflow, simply shifting is OK. if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { __ Mov(result, Operand(dividend, ASR, shift)); return; } __ Asr(result, result, shift); __ Csel(result, result, kMinInt / divisor, vc); } void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { Register dividend = ToRegister32(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister32(instr->result()); DCHECK(!AreAliased(dividend, result)); if (divisor == 0) { Deoptimize(instr, DeoptimizeReason::kDivisionByZero); return; } // Check for (0 / -x) that will produce negative zero. HMathFloorOfDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { DeoptimizeIfZero(dividend, instr, DeoptimizeReason::kMinusZero); } // Easy case: We need no dynamic check for the dividend and the flooring // division is the same as the truncating division. if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { __ TruncatingDiv(result, dividend, Abs(divisor)); if (divisor < 0) __ Neg(result, result); return; } // In the general case we may need to adjust before and after the truncating // division to get a flooring division. Register temp = ToRegister32(instr->temp()); DCHECK(!AreAliased(temp, dividend, result)); Label needs_adjustment, done; __ Cmp(dividend, 0); __ B(divisor > 0 ? lt : gt, &needs_adjustment); __ TruncatingDiv(result, dividend, Abs(divisor)); if (divisor < 0) __ Neg(result, result); __ B(&done); __ Bind(&needs_adjustment); __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1)); __ TruncatingDiv(result, temp, Abs(divisor)); if (divisor < 0) __ Neg(result, result); __ Sub(result, result, Operand(1)); __ Bind(&done); } // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { Register dividend = ToRegister32(instr->dividend()); Register divisor = ToRegister32(instr->divisor()); Register remainder = ToRegister32(instr->temp()); Register result = ToRegister32(instr->result()); // This can't cause an exception on ARM, so we can speculatively // execute it already now. __ Sdiv(result, dividend, divisor); // Check for x / 0. DeoptimizeIfZero(divisor, instr, DeoptimizeReason::kDivisionByZero); // Check for (kMinInt / -1). if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { // The V flag will be set iff dividend == kMinInt. __ Cmp(dividend, 1); __ Ccmp(divisor, -1, NoFlag, vs); DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow); } // Check for (0 / -x) that will produce negative zero. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ Cmp(divisor, 0); __ Ccmp(dividend, 0, ZFlag, mi); // "divisor" can't be null because the code would have already been // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0). // In this case we need to deoptimize to produce a -0. DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); } Label done; // If both operands have the same sign then we are done. __ Eor(remainder, dividend, divisor); __ Tbz(remainder, kWSignBit, &done); // Check if the result needs to be corrected. __ Msub(remainder, result, divisor, dividend); __ Cbz(remainder, &done); __ Sub(result, result, 1); __ Bind(&done); } void LCodeGen::DoMathLog(LMathLog* instr) { DCHECK(instr->IsMarkedAsCall()); DCHECK(ToDoubleRegister(instr->value()).is(d0)); __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1); DCHECK(ToDoubleRegister(instr->result()).Is(d0)); } void LCodeGen::DoMathClz32(LMathClz32* instr) { Register input = ToRegister32(instr->value()); Register result = ToRegister32(instr->result()); __ Clz(result, input); } void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); Label done; // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases: // Math.pow(-Infinity, 0.5) == +Infinity // Math.pow(-0.0, 0.5) == +0.0 // Catch -infinity inputs first. // TODO(jbramley): A constant infinity register would be helpful here. __ Fmov(double_scratch(), kFP64NegativeInfinity); __ Fcmp(double_scratch(), input); __ Fabs(result, input); __ B(&done, eq); // Add +0.0 to convert -0.0 to +0.0. __ Fadd(double_scratch(), input, fp_zero); __ Fsqrt(result, double_scratch()); __ Bind(&done); } void LCodeGen::DoPower(LPower* instr) { Representation exponent_type = instr->hydrogen()->right()->representation(); // Having marked this as a call, we can use any registers. // Just make sure that the input/output registers are the expected ones. Register tagged_exponent = MathPowTaggedDescriptor::exponent(); Register integer_exponent = MathPowIntegerDescriptor::exponent(); DCHECK(!instr->right()->IsDoubleRegister() || ToDoubleRegister(instr->right()).is(d1)); DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() || ToRegister(instr->right()).is(tagged_exponent)); DCHECK(!exponent_type.IsInteger32() || ToRegister(instr->right()).is(integer_exponent)); DCHECK(ToDoubleRegister(instr->left()).is(d0)); DCHECK(ToDoubleRegister(instr->result()).is(d0)); if (exponent_type.IsSmi()) { MathPowStub stub(isolate(), MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsTagged()) { Label no_deopt; __ JumpIfSmi(tagged_exponent, &no_deopt); DeoptimizeIfNotHeapNumber(tagged_exponent, instr); __ Bind(&no_deopt); MathPowStub stub(isolate(), MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsInteger32()) { // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub // supports large integer exponents. __ Sxtw(integer_exponent, integer_exponent); MathPowStub stub(isolate(), MathPowStub::INTEGER); __ CallStub(&stub); } else { DCHECK(exponent_type.IsDouble()); MathPowStub stub(isolate(), MathPowStub::DOUBLE); __ CallStub(&stub); } } void LCodeGen::DoMathRoundD(LMathRoundD* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); DoubleRegister scratch_d = double_scratch(); DCHECK(!AreAliased(input, result, scratch_d)); Label done; __ Frinta(result, input); __ Fcmp(input, 0.0); __ Fccmp(result, input, ZFlag, lt); // The result is correct if the input was in [-0, +infinity], or was a // negative integral value. __ B(eq, &done); // Here the input is negative, non integral, with an exponent lower than 52. // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff) // case. So we can safely add 0.5. __ Fmov(scratch_d, 0.5); __ Fadd(result, input, scratch_d); __ Frintm(result, result); // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative. __ Fabs(result, result); __ Fneg(result, result); __ Bind(&done); } void LCodeGen::DoMathRoundI(LMathRoundI* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister temp = ToDoubleRegister(instr->temp1()); DoubleRegister dot_five = double_scratch(); Register result = ToRegister(instr->result()); Label done; // Math.round() rounds to the nearest integer, with ties going towards // +infinity. This does not match any IEEE-754 rounding mode. // - Infinities and NaNs are propagated unchanged, but cause deopts because // they can't be represented as integers. // - The sign of the result is the same as the sign of the input. This means // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a // result of -0.0. // Add 0.5 and round towards -infinity. __ Fmov(dot_five, 0.5); __ Fadd(temp, input, dot_five); __ Fcvtms(result, temp); // The result is correct if: // result is not 0, as the input could be NaN or [-0.5, -0.0]. // result is not 1, as 0.499...94 will wrongly map to 1. // result fits in 32 bits. __ Cmp(result, Operand(result.W(), SXTW)); __ Ccmp(result, 1, ZFlag, eq); __ B(hi, &done); // At this point, we have to handle possible inputs of NaN or numbers in the // range [-0.5, 1.5[, or numbers larger than 32 bits. // Deoptimize if the result > 1, as it must be larger than 32 bits. __ Cmp(result, 1); DeoptimizeIf(hi, instr, DeoptimizeReason::kOverflow); // Deoptimize for negative inputs, which at this point are only numbers in // the range [-0.5, -0.0] if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ Fmov(result, input); DeoptimizeIfNegative(result, instr, DeoptimizeReason::kMinusZero); } // Deoptimize if the input was NaN. __ Fcmp(input, dot_five); DeoptimizeIf(vs, instr, DeoptimizeReason::kNaN); // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[ // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1, // else 0; we avoid dealing with 0.499...94 directly. __ Cset(result, ge); __ Bind(&done); } void LCodeGen::DoMathFround(LMathFround* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); __ Fcvt(result.S(), input); __ Fcvt(result, result.S()); } void LCodeGen::DoMathSqrt(LMathSqrt* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); __ Fsqrt(result, input); } void LCodeGen::DoMathMinMax(LMathMinMax* instr) { HMathMinMax::Operation op = instr->hydrogen()->operation(); if (instr->hydrogen()->representation().IsInteger32()) { Register result = ToRegister32(instr->result()); Register left = ToRegister32(instr->left()); Operand right = ToOperand32(instr->right()); __ Cmp(left, right); __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le); } else if (instr->hydrogen()->representation().IsSmi()) { Register result = ToRegister(instr->result()); Register left = ToRegister(instr->left()); Operand right = ToOperand(instr->right()); __ Cmp(left, right); __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le); } else { DCHECK(instr->hydrogen()->representation().IsDouble()); DoubleRegister result = ToDoubleRegister(instr->result()); DoubleRegister left = ToDoubleRegister(instr->left()); DoubleRegister right = ToDoubleRegister(instr->right()); if (op == HMathMinMax::kMathMax) { __ Fmax(result, left, right); } else { DCHECK(op == HMathMinMax::kMathMin); __ Fmin(result, left, right); } } } void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { Register dividend = ToRegister32(instr->dividend()); int32_t divisor = instr->divisor(); DCHECK(dividend.is(ToRegister32(instr->result()))); // Theoretically, a variation of the branch-free code for integer division by // a power of 2 (calculating the remainder via an additional multiplication // (which gets simplified to an 'and') and subtraction) should be faster, and // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to // indicate that positive dividends are heavily favored, so the branching // version performs better. HMod* hmod = instr->hydrogen(); int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); Label dividend_is_not_negative, done; if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { __ Tbz(dividend, kWSignBit, ÷nd_is_not_negative); // Note that this is correct even for kMinInt operands. __ Neg(dividend, dividend); __ And(dividend, dividend, mask); __ Negs(dividend, dividend); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); } __ B(&done); } __ bind(÷nd_is_not_negative); __ And(dividend, dividend, mask); __ bind(&done); } void LCodeGen::DoModByConstI(LModByConstI* instr) { Register dividend = ToRegister32(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister32(instr->result()); Register temp = ToRegister32(instr->temp()); DCHECK(!AreAliased(dividend, result, temp)); if (divisor == 0) { Deoptimize(instr, DeoptimizeReason::kDivisionByZero); return; } __ TruncatingDiv(result, dividend, Abs(divisor)); __ Sxtw(dividend.X(), dividend); __ Mov(temp, Abs(divisor)); __ Smsubl(result.X(), result, temp, dividend.X()); // Check for negative zero. HMod* hmod = instr->hydrogen(); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { Label remainder_not_zero; __ Cbnz(result, &remainder_not_zero); DeoptimizeIfNegative(dividend, instr, DeoptimizeReason::kMinusZero); __ bind(&remainder_not_zero); } } void LCodeGen::DoModI(LModI* instr) { Register dividend = ToRegister32(instr->left()); Register divisor = ToRegister32(instr->right()); Register result = ToRegister32(instr->result()); Label done; // modulo = dividend - quotient * divisor __ Sdiv(result, dividend, divisor); if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { DeoptimizeIfZero(divisor, instr, DeoptimizeReason::kDivisionByZero); } __ Msub(result, result, divisor, dividend); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ Cbnz(result, &done); DeoptimizeIfNegative(dividend, instr, DeoptimizeReason::kMinusZero); } __ Bind(&done); } void LCodeGen::DoMulConstIS(LMulConstIS* instr) { DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32()); bool is_smi = instr->hydrogen()->representation().IsSmi(); Register result = is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result()); Register left = is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left()); int32_t right = ToInteger32(instr->right()); DCHECK((right > -kMaxInt) && (right < kMaxInt)); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); bool bailout_on_minus_zero = instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); if (bailout_on_minus_zero) { if (right < 0) { // The result is -0 if right is negative and left is zero. DeoptimizeIfZero(left, instr, DeoptimizeReason::kMinusZero); } else if (right == 0) { // The result is -0 if the right is zero and the left is negative. DeoptimizeIfNegative(left, instr, DeoptimizeReason::kMinusZero); } } switch (right) { // Cases which can detect overflow. case -1: if (can_overflow) { // Only 0x80000000 can overflow here. __ Negs(result, left); DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); } else { __ Neg(result, left); } break; case 0: // This case can never overflow. __ Mov(result, 0); break; case 1: // This case can never overflow. __ Mov(result, left, kDiscardForSameWReg); break; case 2: if (can_overflow) { __ Adds(result, left, left); DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); } else { __ Add(result, left, left); } break; default: // Multiplication by constant powers of two (and some related values) // can be done efficiently with shifted operands. int32_t right_abs = Abs(right); if (base::bits::IsPowerOfTwo32(right_abs)) { int right_log2 = WhichPowerOf2(right_abs); if (can_overflow) { Register scratch = result; DCHECK(!AreAliased(scratch, left)); __ Cls(scratch, left); __ Cmp(scratch, right_log2); DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow); } if (right >= 0) { // result = left << log2(right) __ Lsl(result, left, right_log2); } else { // result = -left << log2(-right) if (can_overflow) { __ Negs(result, Operand(left, LSL, right_log2)); DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); } else { __ Neg(result, Operand(left, LSL, right_log2)); } } return; } // For the following cases, we could perform a conservative overflow check // with CLS as above. However the few cycles saved are likely not worth // the risk of deoptimizing more often than required. DCHECK(!can_overflow); if (right >= 0) { if (base::bits::IsPowerOfTwo32(right - 1)) { // result = left + left << log2(right - 1) __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1))); } else if (base::bits::IsPowerOfTwo32(right + 1)) { // result = -left + left << log2(right + 1) __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1))); __ Neg(result, result); } else { UNREACHABLE(); } } else { if (base::bits::IsPowerOfTwo32(-right + 1)) { // result = left - left << log2(-right + 1) __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1))); } else if (base::bits::IsPowerOfTwo32(-right - 1)) { // result = -left - left << log2(-right - 1) __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1))); __ Neg(result, result); } else { UNREACHABLE(); } } } } void LCodeGen::DoMulI(LMulI* instr) { Register result = ToRegister32(instr->result()); Register left = ToRegister32(instr->left()); Register right = ToRegister32(instr->right()); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); bool bailout_on_minus_zero = instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); if (bailout_on_minus_zero && !left.Is(right)) { // If one operand is zero and the other is negative, the result is -0. // - Set Z (eq) if either left or right, or both, are 0. __ Cmp(left, 0); __ Ccmp(right, 0, ZFlag, ne); // - If so (eq), set N (mi) if left + right is negative. // - Otherwise, clear N. __ Ccmn(left, right, NoFlag, eq); DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero); } if (can_overflow) { __ Smull(result.X(), left, right); __ Cmp(result.X(), Operand(result, SXTW)); DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow); } else { __ Mul(result, left, right); } } void LCodeGen::DoMulS(LMulS* instr) { Register result = ToRegister(instr->result()); Register left = ToRegister(instr->left()); Register right = ToRegister(instr->right()); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); bool bailout_on_minus_zero = instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); if (bailout_on_minus_zero && !left.Is(right)) { // If one operand is zero and the other is negative, the result is -0. // - Set Z (eq) if either left or right, or both, are 0. __ Cmp(left, 0); __ Ccmp(right, 0, ZFlag, ne); // - If so (eq), set N (mi) if left + right is negative. // - Otherwise, clear N. __ Ccmn(left, right, NoFlag, eq); DeoptimizeIf(mi, instr, DeoptimizeReason::kMinusZero); } STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0)); if (can_overflow) { __ Smulh(result, left, right); __ Cmp(result, Operand(result.W(), SXTW)); __ SmiTag(result); DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow); } else { if (AreAliased(result, left, right)) { // All three registers are the same: half untag the input and then // multiply, giving a tagged result. STATIC_ASSERT((kSmiShift % 2) == 0); __ Asr(result, left, kSmiShift / 2); __ Mul(result, result, result); } else if (result.Is(left) && !left.Is(right)) { // Registers result and left alias, right is distinct: untag left into // result, and then multiply by right, giving a tagged result. __ SmiUntag(result, left); __ Mul(result, result, right); } else { DCHECK(!left.Is(result)); // Registers result and right alias, left is distinct, or all registers // are distinct: untag right into result, and then multiply by left, // giving a tagged result. __ SmiUntag(result, right); __ Mul(result, left, result); } } } void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register result = ToRegister(instr->result()); __ Mov(result, 0); PushSafepointRegistersScope scope(this); // Reset the context register. if (!result.is(cp)) { __ Mov(cp, 0); } __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(x0, result); } void LCodeGen::DoNumberTagD(LNumberTagD* instr) { class DeferredNumberTagD: public LDeferredCode { public: DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); } virtual LInstruction* instr() { return instr_; } private: LNumberTagD* instr_; }; DoubleRegister input = ToDoubleRegister(instr->value()); Register result = ToRegister(instr->result()); Register temp1 = ToRegister(instr->temp1()); Register temp2 = ToRegister(instr->temp2()); DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); if (FLAG_inline_new) { __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2); } else { __ B(deferred->entry()); } __ Bind(deferred->exit()); __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset)); } void LCodeGen::DoDeferredNumberTagU(LInstruction* instr, LOperand* value, LOperand* temp1, LOperand* temp2) { Label slow, convert_and_store; Register src = ToRegister32(value); Register dst = ToRegister(instr->result()); Register scratch1 = ToRegister(temp1); if (FLAG_inline_new) { Register scratch2 = ToRegister(temp2); __ AllocateHeapNumber(dst, &slow, scratch1, scratch2); __ B(&convert_and_store); } // Slow case: call the runtime system to do the number allocation. __ Bind(&slow); // TODO(3095996): Put a valid pointer value in the stack slot where the result // register is stored, as this register is in the pointer map, but contains an // integer value. __ Mov(dst, 0); { // Preserve the value of all registers. PushSafepointRegistersScope scope(this); // Reset the context register. if (!dst.is(cp)) { __ Mov(cp, 0); } __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(x0, dst); } // Convert number to floating point and store in the newly allocated heap // number. __ Bind(&convert_and_store); DoubleRegister dbl_scratch = double_scratch(); __ Ucvtf(dbl_scratch, src); __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset)); } void LCodeGen::DoNumberTagU(LNumberTagU* instr) { class DeferredNumberTagU: public LDeferredCode { public: DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredNumberTagU(instr_, instr_->value(), instr_->temp1(), instr_->temp2()); } virtual LInstruction* instr() { return instr_; } private: LNumberTagU* instr_; }; Register value = ToRegister32(instr->value()); Register result = ToRegister(instr->result()); DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); __ Cmp(value, Smi::kMaxValue); __ B(hi, deferred->entry()); __ SmiTag(result, value.X()); __ Bind(deferred->exit()); } void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { Register input = ToRegister(instr->value()); Register scratch = ToRegister(instr->temp()); DoubleRegister result = ToDoubleRegister(instr->result()); bool can_convert_undefined_to_nan = instr->truncating(); Label done, load_smi; // Work out what untag mode we're working with. HValue* value = instr->hydrogen()->value(); NumberUntagDMode mode = value->representation().IsSmi() ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { __ JumpIfSmi(input, &load_smi); Label convert_undefined; // Heap number map check. if (can_convert_undefined_to_nan) { __ JumpIfNotHeapNumber(input, &convert_undefined); } else { DeoptimizeIfNotHeapNumber(input, instr); } // Load heap number. __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset)); if (instr->hydrogen()->deoptimize_on_minus_zero()) { DeoptimizeIfMinusZero(result, instr, DeoptimizeReason::kMinusZero); } __ B(&done); if (can_convert_undefined_to_nan) { __ Bind(&convert_undefined); DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr, DeoptimizeReason::kNotAHeapNumberUndefined); __ LoadRoot(scratch, Heap::kNanValueRootIndex); __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset)); __ B(&done); } } else { DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); // Fall through to load_smi. } // Smi to double register conversion. __ Bind(&load_smi); __ SmiUntagToDouble(result, input); __ Bind(&done); } void LCodeGen::DoOsrEntry(LOsrEntry* instr) { // This is a pseudo-instruction that ensures that the environment here is // properly registered for deoptimization and records the assembler's PC // offset. LEnvironment* environment = instr->environment(); // If the environment were already registered, we would have no way of // backpatching it with the spill slot operands. DCHECK(!environment->HasBeenRegistered()); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); GenerateOsrPrologue(); } void LCodeGen::DoParameter(LParameter* instr) { // Nothing to do. } void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) { __ PushPreamble(instr->argc(), kPointerSize); } void LCodeGen::DoPushArguments(LPushArguments* instr) { MacroAssembler::PushPopQueue args(masm()); for (int i = 0; i < instr->ArgumentCount(); ++i) { LOperand* arg = instr->argument(i); if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) { Abort(kDoPushArgumentNotImplementedForDoubleType); return; } args.Queue(ToRegister(arg)); } // The preamble was done by LPreparePushArguments. args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE); RecordPushedArgumentsDelta(instr->ArgumentCount()); } void LCodeGen::DoReturn(LReturn* instr) { if (FLAG_trace && info()->IsOptimizing()) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in x0. We're leaving the code // managed by the register allocator and tearing down the frame, it's // safe to write to the context register. __ Push(x0); __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kTraceExit); } if (info()->saves_caller_doubles()) { RestoreCallerDoubles(); } if (NeedsEagerFrame()) { Register stack_pointer = masm()->StackPointer(); __ Mov(stack_pointer, fp); __ Pop(fp, lr); } if (instr->has_constant_parameter_count()) { int parameter_count = ToInteger32(instr->constant_parameter_count()); __ Drop(parameter_count + 1); } else { DCHECK(info()->IsStub()); // Functions would need to drop one more value. Register parameter_count = ToRegister(instr->parameter_count()); __ DropBySMI(parameter_count); } __ Ret(); } MemOperand LCodeGen::BuildSeqStringOperand(Register string, Register temp, LOperand* index, String::Encoding encoding) { if (index->IsConstantOperand()) { int offset = ToInteger32(LConstantOperand::cast(index)); if (encoding == String::TWO_BYTE_ENCODING) { offset *= kUC16Size; } STATIC_ASSERT(kCharSize == 1); return FieldMemOperand(string, SeqString::kHeaderSize + offset); } __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag); if (encoding == String::ONE_BYTE_ENCODING) { return MemOperand(temp, ToRegister32(index), SXTW); } else { STATIC_ASSERT(kUC16Size == 2); return MemOperand(temp, ToRegister32(index), SXTW, 1); } } void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { String::Encoding encoding = instr->hydrogen()->encoding(); Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); Register temp = ToRegister(instr->temp()); if (FLAG_debug_code) { // Even though this lithium instruction comes with a temp register, we // can't use it here because we want to use "AtStart" constraints on the // inputs and the debug code here needs a scratch register. UseScratchRegisterScope temps(masm()); Register dbg_temp = temps.AcquireX(); __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset)); __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset)); __ And(dbg_temp, dbg_temp, Operand(kStringRepresentationMask | kStringEncodingMask)); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type : two_byte_seq_type)); __ Check(eq, kUnexpectedStringType); } MemOperand operand = BuildSeqStringOperand(string, temp, instr->index(), encoding); if (encoding == String::ONE_BYTE_ENCODING) { __ Ldrb(result, operand); } else { __ Ldrh(result, operand); } } void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { String::Encoding encoding = instr->hydrogen()->encoding(); Register string = ToRegister(instr->string()); Register value = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); if (FLAG_debug_code) { DCHECK(ToRegister(instr->context()).is(cp)); Register index = ToRegister(instr->index()); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; int encoding_mask = instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING ? one_byte_seq_type : two_byte_seq_type; __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp, encoding_mask); } MemOperand operand = BuildSeqStringOperand(string, temp, instr->index(), encoding); if (encoding == String::ONE_BYTE_ENCODING) { __ Strb(value, operand); } else { __ Strh(value, operand); } } void LCodeGen::DoSmiTag(LSmiTag* instr) { HChange* hchange = instr->hydrogen(); Register input = ToRegister(instr->value()); Register output = ToRegister(instr->result()); if (hchange->CheckFlag(HValue::kCanOverflow) && hchange->value()->CheckFlag(HValue::kUint32)) { DeoptimizeIfNegative(input.W(), instr, DeoptimizeReason::kOverflow); } __ SmiTag(output, input); } void LCodeGen::DoSmiUntag(LSmiUntag* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); Label done, untag; if (instr->needs_check()) { DeoptimizeIfNotSmi(input, instr, DeoptimizeReason::kNotASmi); } __ Bind(&untag); __ SmiUntag(result, input); __ Bind(&done); } void LCodeGen::DoShiftI(LShiftI* instr) { LOperand* right_op = instr->right(); Register left = ToRegister32(instr->left()); Register result = ToRegister32(instr->result()); if (right_op->IsRegister()) { Register right = ToRegister32(instr->right()); switch (instr->op()) { case Token::ROR: __ Ror(result, left, right); break; case Token::SAR: __ Asr(result, left, right); break; case Token::SHL: __ Lsl(result, left, right); break; case Token::SHR: __ Lsr(result, left, right); if (instr->can_deopt()) { // If `left >>> right` >= 0x80000000, the result is not representable // in a signed 32-bit smi. DeoptimizeIfNegative(result, instr, DeoptimizeReason::kNegativeValue); } break; default: UNREACHABLE(); } } else { DCHECK(right_op->IsConstantOperand()); int shift_count = JSShiftAmountFromLConstant(right_op); if (shift_count == 0) { if ((instr->op() == Token::SHR) && instr->can_deopt()) { DeoptimizeIfNegative(left, instr, DeoptimizeReason::kNegativeValue); } __ Mov(result, left, kDiscardForSameWReg); } else { switch (instr->op()) { case Token::ROR: __ Ror(result, left, shift_count); break; case Token::SAR: __ Asr(result, left, shift_count); break; case Token::SHL: __ Lsl(result, left, shift_count); break; case Token::SHR: __ Lsr(result, left, shift_count); break; default: UNREACHABLE(); } } } } void LCodeGen::DoShiftS(LShiftS* instr) { LOperand* right_op = instr->right(); Register left = ToRegister(instr->left()); Register result = ToRegister(instr->result()); if (right_op->IsRegister()) { Register right = ToRegister(instr->right()); // JavaScript shifts only look at the bottom 5 bits of the 'right' operand. // Since we're handling smis in X registers, we have to extract these bits // explicitly. __ Ubfx(result, right, kSmiShift, 5); switch (instr->op()) { case Token::ROR: { // This is the only case that needs a scratch register. To keep things // simple for the other cases, borrow a MacroAssembler scratch register. UseScratchRegisterScope temps(masm()); Register temp = temps.AcquireW(); __ SmiUntag(temp, left); __ Ror(result.W(), temp.W(), result.W()); __ SmiTag(result); break; } case Token::SAR: __ Asr(result, left, result); __ Bic(result, result, kSmiShiftMask); break; case Token::SHL: __ Lsl(result, left, result); break; case Token::SHR: __ Lsr(result, left, result); __ Bic(result, result, kSmiShiftMask); if (instr->can_deopt()) { // If `left >>> right` >= 0x80000000, the result is not representable // in a signed 32-bit smi. DeoptimizeIfNegative(result, instr, DeoptimizeReason::kNegativeValue); } break; default: UNREACHABLE(); } } else { DCHECK(right_op->IsConstantOperand()); int shift_count = JSShiftAmountFromLConstant(right_op); if (shift_count == 0) { if ((instr->op() == Token::SHR) && instr->can_deopt()) { DeoptimizeIfNegative(left, instr, DeoptimizeReason::kNegativeValue); } __ Mov(result, left); } else { switch (instr->op()) { case Token::ROR: __ SmiUntag(result, left); __ Ror(result.W(), result.W(), shift_count); __ SmiTag(result); break; case Token::SAR: __ Asr(result, left, shift_count); __ Bic(result, result, kSmiShiftMask); break; case Token::SHL: __ Lsl(result, left, shift_count); break; case Token::SHR: __ Lsr(result, left, shift_count); __ Bic(result, result, kSmiShiftMask); break; default: UNREACHABLE(); } } } } void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ Debug("LDebugBreak", 0, BREAK); } void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { DCHECK(ToRegister(instr->context()).is(cp)); Register scratch1 = x5; Register scratch2 = x6; DCHECK(instr->IsMarkedAsCall()); // TODO(all): if Mov could handle object in new space then it could be used // here. __ LoadHeapObject(scratch1, instr->hydrogen()->declarations()); __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags())); __ Push(scratch1, scratch2); __ LoadHeapObject(scratch1, instr->hydrogen()->feedback_vector()); __ Push(scratch1); CallRuntime(Runtime::kDeclareGlobals, instr); } void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { PushSafepointRegistersScope scope(this); LoadContextFromDeferred(instr->context()); __ CallRuntimeSaveDoubles(Runtime::kStackGuard); RecordSafepointWithLazyDeopt( instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoStackCheck(LStackCheck* instr) { class DeferredStackCheck: public LDeferredCode { public: DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); } virtual LInstruction* instr() { return instr_; } private: LStackCheck* instr_; }; DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); // There is no LLazyBailout instruction for stack-checks. We have to // prepare for lazy deoptimization explicitly here. if (instr->hydrogen()->is_function_entry()) { // Perform stack overflow check. Label done; __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex); __ B(hs, &done); PredictableCodeSizeScope predictable(masm_, Assembler::kCallSizeWithRelocation); DCHECK(instr->context()->IsRegister()); DCHECK(ToRegister(instr->context()).is(cp)); CallCode(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET, instr); __ Bind(&done); } else { DCHECK(instr->hydrogen()->is_backwards_branch()); // Perform stack overflow check if this goto needs it before jumping. DeferredStackCheck* deferred_stack_check = new(zone()) DeferredStackCheck(this, instr); __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex); __ B(lo, deferred_stack_check->entry()); EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); __ Bind(instr->done_label()); deferred_stack_check->SetExit(instr->done_label()); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); // Don't record a deoptimization index for the safepoint here. // This will be done explicitly when emitting call and the safepoint in // the deferred code. } } void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { Register function = ToRegister(instr->function()); Register code_object = ToRegister(instr->code_object()); Register temp = ToRegister(instr->temp()); __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag); __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); } void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { Register context = ToRegister(instr->context()); Register value = ToRegister(instr->value()); Register scratch = ToRegister(instr->temp()); MemOperand target = ContextMemOperand(context, instr->slot_index()); Label skip_assignment; if (instr->hydrogen()->RequiresHoleCheck()) { __ Ldr(scratch, target); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr, DeoptimizeReason::kHole); } else { __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment); } } __ Str(value, target); if (instr->hydrogen()->NeedsWriteBarrier()) { SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; __ RecordWriteContextSlot(context, static_cast(target.offset()), value, scratch, GetLinkRegisterState(), kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } __ Bind(&skip_assignment); } void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) { Register ext_ptr = ToRegister(instr->elements()); Register key = no_reg; Register scratch; ElementsKind elements_kind = instr->elements_kind(); bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); bool key_is_constant = instr->key()->IsConstantOperand(); int constant_key = 0; if (key_is_constant) { DCHECK(instr->temp() == NULL); constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xf0000000) { Abort(kArrayIndexConstantValueTooBig); } } else { key = ToRegister(instr->key()); scratch = ToRegister(instr->temp()); } MemOperand dst = PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi, key_is_constant, constant_key, elements_kind, instr->base_offset()); if (elements_kind == FLOAT32_ELEMENTS) { DoubleRegister value = ToDoubleRegister(instr->value()); DoubleRegister dbl_scratch = double_scratch(); __ Fcvt(dbl_scratch.S(), value); __ Str(dbl_scratch.S(), dst); } else if (elements_kind == FLOAT64_ELEMENTS) { DoubleRegister value = ToDoubleRegister(instr->value()); __ Str(value, dst); } else { Register value = ToRegister(instr->value()); switch (elements_kind) { case UINT8_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: case INT8_ELEMENTS: __ Strb(value, dst); break; case INT16_ELEMENTS: case UINT16_ELEMENTS: __ Strh(value, dst); break; case INT32_ELEMENTS: case UINT32_ELEMENTS: __ Str(value.W(), dst); break; case FLOAT32_ELEMENTS: case FLOAT64_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case DICTIONARY_ELEMENTS: case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: case NO_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) { Register elements = ToRegister(instr->elements()); DoubleRegister value = ToDoubleRegister(instr->value()); MemOperand mem_op; if (instr->key()->IsConstantOperand()) { int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xf0000000) { Abort(kArrayIndexConstantValueTooBig); } int offset = instr->base_offset() + constant_key * kDoubleSize; mem_op = MemOperand(elements, offset); } else { Register store_base = ToRegister(instr->temp()); Register key = ToRegister(instr->key()); bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged, instr->hydrogen()->elements_kind(), instr->hydrogen()->representation(), instr->base_offset()); } if (instr->NeedsCanonicalization()) { __ CanonicalizeNaN(double_scratch(), value); __ Str(double_scratch(), mem_op); } else { __ Str(value, mem_op); } } void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) { Register value = ToRegister(instr->value()); Register elements = ToRegister(instr->elements()); Register scratch = no_reg; Register store_base = no_reg; Register key = no_reg; MemOperand mem_op; if (!instr->key()->IsConstantOperand() || instr->hydrogen()->NeedsWriteBarrier()) { scratch = ToRegister(instr->temp()); } Representation representation = instr->hydrogen()->value()->representation(); if (instr->key()->IsConstantOperand()) { LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); int offset = instr->base_offset() + ToInteger32(const_operand) * kPointerSize; store_base = elements; if (representation.IsInteger32()) { DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS); STATIC_ASSERT(static_cast(kSmiValueSize) == kWRegSizeInBits); STATIC_ASSERT(kSmiTag == 0); mem_op = UntagSmiMemOperand(store_base, offset); } else { mem_op = MemOperand(store_base, offset); } } else { store_base = scratch; key = ToRegister(instr->key()); bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi(); mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged, instr->hydrogen()->elements_kind(), representation, instr->base_offset()); } __ Store(value, mem_op, representation); if (instr->hydrogen()->NeedsWriteBarrier()) { DCHECK(representation.IsTagged()); // This assignment may cause element_addr to alias store_base. Register element_addr = scratch; SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; // Compute address of modified element and store it into key register. __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand()); __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(), kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed, instr->hydrogen()->PointersToHereCheckForValue()); } } void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) { class DeferredMaybeGrowElements final : public LDeferredCode { public: DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr) : LDeferredCode(codegen), instr_(instr) {} void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); } LInstruction* instr() override { return instr_; } private: LMaybeGrowElements* instr_; }; Register result = x0; DeferredMaybeGrowElements* deferred = new (zone()) DeferredMaybeGrowElements(this, instr); LOperand* key = instr->key(); LOperand* current_capacity = instr->current_capacity(); DCHECK(instr->hydrogen()->key()->representation().IsInteger32()); DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32()); DCHECK(key->IsConstantOperand() || key->IsRegister()); DCHECK(current_capacity->IsConstantOperand() || current_capacity->IsRegister()); if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) { int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); int32_t constant_capacity = ToInteger32(LConstantOperand::cast(current_capacity)); if (constant_key >= constant_capacity) { // Deferred case. __ B(deferred->entry()); } } else if (key->IsConstantOperand()) { int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); __ Cmp(ToRegister(current_capacity), Operand(constant_key)); __ B(le, deferred->entry()); } else if (current_capacity->IsConstantOperand()) { int32_t constant_capacity = ToInteger32(LConstantOperand::cast(current_capacity)); __ Cmp(ToRegister(key), Operand(constant_capacity)); __ B(ge, deferred->entry()); } else { __ Cmp(ToRegister(key), ToRegister(current_capacity)); __ B(ge, deferred->entry()); } __ Mov(result, ToRegister(instr->elements())); __ Bind(deferred->exit()); } void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register result = x0; __ Mov(result, 0); // We have to call a stub. { PushSafepointRegistersScope scope(this); __ Move(result, ToRegister(instr->object())); LOperand* key = instr->key(); if (key->IsConstantOperand()) { __ Mov(x3, Operand(ToSmi(LConstantOperand::cast(key)))); } else { __ Mov(x3, ToRegister(key)); __ SmiTag(x3); } GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind()); __ CallStub(&stub); RecordSafepointWithLazyDeopt( instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); __ StoreToSafepointRegisterSlot(result, result); } // Deopt on smi, which means the elements array changed to dictionary mode. DeoptimizeIfSmi(result, instr, DeoptimizeReason::kSmi); } void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { Representation representation = instr->representation(); Register object = ToRegister(instr->object()); HObjectAccess access = instr->hydrogen()->access(); int offset = access.offset(); if (access.IsExternalMemory()) { DCHECK(!instr->hydrogen()->has_transition()); DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); Register value = ToRegister(instr->value()); __ Store(value, MemOperand(object, offset), representation); return; } __ AssertNotSmi(object); if (!FLAG_unbox_double_fields && representation.IsDouble()) { DCHECK(access.IsInobject()); DCHECK(!instr->hydrogen()->has_transition()); DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); FPRegister value = ToDoubleRegister(instr->value()); __ Str(value, FieldMemOperand(object, offset)); return; } DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() || IsInteger32Constant(LConstantOperand::cast(instr->value()))); if (instr->hydrogen()->has_transition()) { Handle transition = instr->hydrogen()->transition_map(); AddDeprecationDependency(transition); // Store the new map value. Register new_map_value = ToRegister(instr->temp0()); __ Mov(new_map_value, Operand(transition)); __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset)); if (instr->hydrogen()->NeedsWriteBarrierForMap()) { // Update the write barrier for the map field. __ RecordWriteForMap(object, new_map_value, ToRegister(instr->temp1()), GetLinkRegisterState(), kSaveFPRegs); } } // Do the store. Register destination; if (access.IsInobject()) { destination = object; } else { Register temp0 = ToRegister(instr->temp0()); __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset)); destination = temp0; } if (FLAG_unbox_double_fields && representation.IsDouble()) { DCHECK(access.IsInobject()); FPRegister value = ToDoubleRegister(instr->value()); __ Str(value, FieldMemOperand(object, offset)); } else if (representation.IsSmi() && instr->hydrogen()->value()->representation().IsInteger32()) { DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY); #ifdef DEBUG Register temp0 = ToRegister(instr->temp0()); __ Ldr(temp0, FieldMemOperand(destination, offset)); __ AssertSmi(temp0); // If destination aliased temp0, restore it to the address calculated // earlier. if (destination.Is(temp0)) { DCHECK(!access.IsInobject()); __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset)); } #endif STATIC_ASSERT(static_cast(kSmiValueSize) == kWRegSizeInBits); STATIC_ASSERT(kSmiTag == 0); Register value = ToRegister(instr->value()); __ Store(value, UntagSmiFieldMemOperand(destination, offset), Representation::Integer32()); } else { Register value = ToRegister(instr->value()); __ Store(value, FieldMemOperand(destination, offset), representation); } if (instr->hydrogen()->NeedsWriteBarrier()) { Register value = ToRegister(instr->value()); __ RecordWriteField(destination, offset, value, // Clobbered. ToRegister(instr->temp1()), // Clobbered. GetLinkRegisterState(), kSaveFPRegs, EMIT_REMEMBERED_SET, instr->hydrogen()->SmiCheckForWriteBarrier(), instr->hydrogen()->PointersToHereCheckForValue()); } } void LCodeGen::DoStringAdd(LStringAdd* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->left()).Is(x1)); DCHECK(ToRegister(instr->right()).Is(x0)); StringAddStub stub(isolate(), instr->hydrogen()->flags(), instr->hydrogen()->pretenure_flag()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { class DeferredStringCharCodeAt: public LDeferredCode { public: DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); } virtual LInstruction* instr() { return instr_; } private: LStringCharCodeAt* instr_; }; DeferredStringCharCodeAt* deferred = new(zone()) DeferredStringCharCodeAt(this, instr); StringCharLoadGenerator::Generate(masm(), ToRegister(instr->string()), ToRegister32(instr->index()), ToRegister(instr->result()), deferred->entry()); __ Bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Mov(result, 0); PushSafepointRegistersScope scope(this); __ Push(string); // Push the index as a smi. This is safe because of the checks in // DoStringCharCodeAt above. Register index = ToRegister(instr->index()); __ SmiTagAndPush(index); CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr, instr->context()); __ AssertSmi(x0); __ SmiUntag(x0); __ StoreToSafepointRegisterSlot(x0, result); } void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { class DeferredStringCharFromCode: public LDeferredCode { public: DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); } virtual LInstruction* instr() { return instr_; } private: LStringCharFromCode* instr_; }; DeferredStringCharFromCode* deferred = new(zone()) DeferredStringCharFromCode(this, instr); DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); Register char_code = ToRegister32(instr->char_code()); Register result = ToRegister(instr->result()); __ Cmp(char_code, String::kMaxOneByteCharCode); __ B(hi, deferred->entry()); __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag); __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2)); __ CompareRoot(result, Heap::kUndefinedValueRootIndex); __ B(eq, deferred->entry()); __ Bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Mov(result, 0); PushSafepointRegistersScope scope(this); __ SmiTagAndPush(char_code); CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr, instr->context()); __ StoreToSafepointRegisterSlot(x0, result); } void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->left()).is(x1)); DCHECK(ToRegister(instr->right()).is(x0)); Handle code = CodeFactory::StringCompare(isolate(), instr->op()).code(); CallCode(code, RelocInfo::CODE_TARGET, instr); __ CompareRoot(x0, Heap::kTrueValueRootIndex); EmitBranch(instr, eq); } void LCodeGen::DoSubI(LSubI* instr) { bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); Register result = ToRegister32(instr->result()); Register left = ToRegister32(instr->left()); Operand right = ToShiftedRightOperand32(instr->right(), instr); if (can_overflow) { __ Subs(result, left, right); DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); } else { __ Sub(result, left, right); } } void LCodeGen::DoSubS(LSubS* instr) { bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); Register result = ToRegister(instr->result()); Register left = ToRegister(instr->left()); Operand right = ToOperand(instr->right()); if (can_overflow) { __ Subs(result, left, right); DeoptimizeIf(vs, instr, DeoptimizeReason::kOverflow); } else { __ Sub(result, left, right); } } void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, LOperand* value, LOperand* temp1, LOperand* temp2) { Register input = ToRegister(value); Register scratch1 = ToRegister(temp1); DoubleRegister dbl_scratch1 = double_scratch(); Label done; if (instr->truncating()) { UseScratchRegisterScope temps(masm()); Register output = ToRegister(instr->result()); Register input_map = temps.AcquireX(); Register input_instance_type = input_map; Label truncate; __ CompareObjectType(input, input_map, input_instance_type, HEAP_NUMBER_TYPE); __ B(eq, &truncate); __ Cmp(input_instance_type, ODDBALL_TYPE); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotANumberOrOddball); __ Bind(&truncate); __ TruncateHeapNumberToI(output, input); } else { Register output = ToRegister32(instr->result()); DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2); DeoptimizeIfNotHeapNumber(input, instr); // A heap number: load value and convert to int32 using non-truncating // function. If the result is out of range, branch to deoptimize. __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset)); __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2); DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ Cmp(output, 0); __ B(ne, &done); __ Fmov(scratch1, dbl_scratch1); DeoptimizeIfNegative(scratch1, instr, DeoptimizeReason::kMinusZero); } } __ Bind(&done); } void LCodeGen::DoTaggedToI(LTaggedToI* instr) { class DeferredTaggedToI: public LDeferredCode { public: DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) : LDeferredCode(codegen), instr_(instr) { } virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(), instr_->temp2()); } virtual LInstruction* instr() { return instr_; } private: LTaggedToI* instr_; }; Register input = ToRegister(instr->value()); Register output = ToRegister(instr->result()); if (instr->hydrogen()->value()->representation().IsSmi()) { __ SmiUntag(output, input); } else { DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); __ JumpIfNotSmi(input, deferred->entry()); __ SmiUntag(output, input); __ Bind(deferred->exit()); } } void LCodeGen::DoThisFunction(LThisFunction* instr) { Register result = ToRegister(instr->result()); __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { Register object = ToRegister(instr->object()); Handle from_map = instr->original_map(); Handle to_map = instr->transitioned_map(); ElementsKind from_kind = instr->from_kind(); ElementsKind to_kind = instr->to_kind(); Label not_applicable; if (IsSimpleMapChangeTransition(from_kind, to_kind)) { Register temp1 = ToRegister(instr->temp1()); Register new_map = ToRegister(instr->temp2()); __ CheckMap(object, temp1, from_map, ¬_applicable, DONT_DO_SMI_CHECK); __ Mov(new_map, Operand(to_map)); __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset)); // Write barrier. __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(), kDontSaveFPRegs); } else { { UseScratchRegisterScope temps(masm()); // Use the temp register only in a restricted scope - the codegen checks // that we do not use any register across a call. __ CheckMap(object, temps.AcquireX(), from_map, ¬_applicable, DONT_DO_SMI_CHECK); } DCHECK(object.is(x0)); DCHECK(ToRegister(instr->context()).is(cp)); PushSafepointRegistersScope scope(this); __ Mov(x1, Operand(to_map)); TransitionElementsKindStub stub(isolate(), from_kind, to_kind); __ CallStub(&stub); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kLazyDeopt); } __ Bind(¬_applicable); } void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { Register object = ToRegister(instr->object()); Register temp1 = ToRegister(instr->temp1()); Register temp2 = ToRegister(instr->temp2()); Label no_memento_found; __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found); DeoptimizeIf(eq, instr, DeoptimizeReason::kMementoFound); __ Bind(&no_memento_found); } void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); Register result = ToRegister(instr->result()); __ TruncateDoubleToI(result, input); if (instr->tag_result()) { __ SmiTag(result, result); } } void LCodeGen::DoTypeof(LTypeof* instr) { DCHECK(ToRegister(instr->value()).is(x3)); DCHECK(ToRegister(instr->result()).is(x0)); Label end, do_call; Register value_register = ToRegister(instr->value()); __ JumpIfNotSmi(value_register, &do_call); __ Mov(x0, Immediate(isolate()->factory()->number_string())); __ B(&end); __ Bind(&do_call); Callable callable = CodeFactory::Typeof(isolate()); CallCode(callable.code(), RelocInfo::CODE_TARGET, instr); __ Bind(&end); } void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { Handle type_name = instr->type_literal(); Label* true_label = instr->TrueLabel(chunk_); Label* false_label = instr->FalseLabel(chunk_); Register value = ToRegister(instr->value()); Factory* factory = isolate()->factory(); if (String::Equals(type_name, factory->number_string())) { __ JumpIfSmi(value, true_label); int true_block = instr->TrueDestination(chunk_); int false_block = instr->FalseDestination(chunk_); int next_block = GetNextEmittedBlock(); if (true_block == false_block) { EmitGoto(true_block); } else if (true_block == next_block) { __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block)); } else { __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block)); if (false_block != next_block) { __ B(chunk_->GetAssemblyLabel(false_block)); } } } else if (String::Equals(type_name, factory->string_string())) { DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); Register map = ToRegister(instr->temp1()); Register scratch = ToRegister(instr->temp2()); __ JumpIfSmi(value, false_label); __ CompareObjectType(value, map, scratch, FIRST_NONSTRING_TYPE); EmitBranch(instr, lt); } else if (String::Equals(type_name, factory->symbol_string())) { DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); Register map = ToRegister(instr->temp1()); Register scratch = ToRegister(instr->temp2()); __ JumpIfSmi(value, false_label); __ CompareObjectType(value, map, scratch, SYMBOL_TYPE); EmitBranch(instr, eq); } else if (String::Equals(type_name, factory->boolean_string())) { __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label); __ CompareRoot(value, Heap::kFalseValueRootIndex); EmitBranch(instr, eq); } else if (String::Equals(type_name, factory->undefined_string())) { DCHECK(instr->temp1() != NULL); Register scratch = ToRegister(instr->temp1()); __ JumpIfRoot(value, Heap::kNullValueRootIndex, false_label); __ JumpIfSmi(value, false_label); // Check for undetectable objects and jump to the true branch in this case. __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable); } else if (String::Equals(type_name, factory->function_string())) { DCHECK(instr->temp1() != NULL); Register scratch = ToRegister(instr->temp1()); __ JumpIfSmi(value, false_label); __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ And(scratch, scratch, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); EmitCompareAndBranch(instr, eq, scratch, 1 << Map::kIsCallable); } else if (String::Equals(type_name, factory->object_string())) { DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL)); Register map = ToRegister(instr->temp1()); Register scratch = ToRegister(instr->temp2()); __ JumpIfSmi(value, false_label); __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ JumpIfObjectType(value, map, scratch, FIRST_JS_RECEIVER_TYPE, false_label, lt); // Check for callable or undetectable objects => false. __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); EmitTestAndBranch(instr, eq, scratch, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); } else { __ B(false_label); } } void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value())); } void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { Register object = ToRegister(instr->value()); Register map = ToRegister(instr->map()); Register temp = ToRegister(instr->temp()); __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset)); __ Cmp(map, temp); DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap); } void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register result = ToRegister(instr->result()); // If the receiver is null or undefined, we have to pass the global object as // a receiver to normal functions. Values have to be passed unchanged to // builtins and strict-mode functions. Label global_object, done, copy_receiver; if (!instr->hydrogen()->known_function()) { __ Ldr(result, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); // CompilerHints is an int32 field. See objects.h. __ Ldr(result.W(), FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset)); // Do not transform the receiver to object for strict mode functions. __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, ©_receiver); // Do not transform the receiver to object for builtins. __ Tbnz(result, SharedFunctionInfo::kNative, ©_receiver); } // Normal function. Replace undefined or null with global receiver. __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object); __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object); // Deoptimize if the receiver is not a JS object. DeoptimizeIfSmi(receiver, instr, DeoptimizeReason::kSmi); __ CompareObjectType(receiver, result, result, FIRST_JS_RECEIVER_TYPE); __ B(ge, ©_receiver); Deoptimize(instr, DeoptimizeReason::kNotAJavaScriptObject); __ Bind(&global_object); __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset)); __ Ldr(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX)); __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX)); __ B(&done); __ Bind(©_receiver); __ Mov(result, receiver); __ Bind(&done); } void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, Register result, Register object, Register index) { PushSafepointRegistersScope scope(this); __ Push(object); __ Push(index); __ Mov(cp, 0); __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); RecordSafepointWithRegisters( instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(x0, result); } void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { class DeferredLoadMutableDouble final : public LDeferredCode { public: DeferredLoadMutableDouble(LCodeGen* codegen, LLoadFieldByIndex* instr, Register result, Register object, Register index) : LDeferredCode(codegen), instr_(instr), result_(result), object_(object), index_(index) { } void Generate() override { codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_); } LInstruction* instr() override { return instr_; } private: LLoadFieldByIndex* instr_; Register result_; Register object_; Register index_; }; Register object = ToRegister(instr->object()); Register index = ToRegister(instr->index()); Register result = ToRegister(instr->result()); __ AssertSmi(index); DeferredLoadMutableDouble* deferred; deferred = new(zone()) DeferredLoadMutableDouble( this, instr, result, object, index); Label out_of_object, done; __ TestAndBranchIfAnySet( index, reinterpret_cast(Smi::FromInt(1)), deferred->entry()); __ Mov(index, Operand(index, ASR, 1)); __ Cmp(index, Smi::kZero); __ B(lt, &out_of_object); STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize); __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize)); __ B(&done); __ Bind(&out_of_object); __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); // Index is equal to negated out of object property index plus 1. __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2)); __ Ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize - kPointerSize)); __ Bind(deferred->exit()); __ Bind(&done); } } // namespace internal } // namespace v8