// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_X64 #include "src/crankshaft/x64/lithium-codegen-x64.h" #include "src/base/bits.h" #include "src/builtins/builtins-constructor.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/crankshaft/hydrogen-osr.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" #include "src/objects-inl.h" namespace v8 { namespace internal { // When invoking builtins, we need to record the safepoint in the middle of // the invoke instruction sequence generated by the macro assembler. class SafepointGenerator final : public CallWrapper { public: SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers, Safepoint::DeoptMode mode) : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) { } virtual ~SafepointGenerator() {} void BeforeCall(int call_size) const override {} void AfterCall() const override { codegen_->RecordSafepoint(pointers_, deopt_mode_); } private: LCodeGen* codegen_; LPointerMap* pointers_; Safepoint::DeoptMode deopt_mode_; }; #define __ masm()-> bool LCodeGen::GenerateCode() { LPhase phase("Z_Code generation", chunk()); DCHECK(is_unused()); status_ = GENERATING; // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done in GeneratePrologue). FrameScope frame_scope(masm_, StackFrame::MANUAL); return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && GenerateJumpTable() && GenerateSafepointTable(); } void LCodeGen::FinishCode(Handle code) { DCHECK(is_done()); code->set_stack_slots(GetTotalFrameSlotCount()); code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); PopulateDeoptimizationData(code); } #ifdef _MSC_VER void LCodeGen::MakeSureStackPagesMapped(int offset) { const int kPageSize = 4 * KB; for (offset -= kPageSize; offset > 0; offset -= kPageSize) { __ movp(Operand(rsp, offset), rax); } } #endif void LCodeGen::SaveCallerDoubles() { DCHECK(info()->saves_caller_doubles()); DCHECK(NeedsEagerFrame()); Comment(";;; Save clobbered callee double registers"); int count = 0; BitVector* doubles = chunk()->allocated_double_registers(); BitVector::Iterator save_iterator(doubles); while (!save_iterator.Done()) { __ Movsd(MemOperand(rsp, count * kDoubleSize), XMMRegister::from_code(save_iterator.Current())); save_iterator.Advance(); count++; } } void LCodeGen::RestoreCallerDoubles() { DCHECK(info()->saves_caller_doubles()); DCHECK(NeedsEagerFrame()); Comment(";;; Restore clobbered callee double registers"); BitVector* doubles = chunk()->allocated_double_registers(); BitVector::Iterator save_iterator(doubles); int count = 0; while (!save_iterator.Done()) { __ Movsd(XMMRegister::from_code(save_iterator.Current()), MemOperand(rsp, count * kDoubleSize)); save_iterator.Advance(); count++; } } bool LCodeGen::GeneratePrologue() { DCHECK(is_generating()); if (info()->IsOptimizing()) { ProfileEntryHookStub::MaybeCallEntryHook(masm_); } info()->set_prologue_offset(masm_->pc_offset()); if (NeedsEagerFrame()) { DCHECK(!frame_is_built_); frame_is_built_ = true; if (info()->IsStub()) { __ StubPrologue(StackFrame::STUB); } else { __ Prologue(info()->GeneratePreagedPrologue()); } } // Reserve space for the stack slots needed by the code. int slots = GetStackSlotCount(); if (slots > 0) { if (FLAG_debug_code) { __ subp(rsp, Immediate(slots * kPointerSize)); #ifdef _MSC_VER MakeSureStackPagesMapped(slots * kPointerSize); #endif __ Push(rax); __ Set(rax, slots); __ Set(kScratchRegister, kSlotsZapValue); Label loop; __ bind(&loop); __ movp(MemOperand(rsp, rax, times_pointer_size, 0), kScratchRegister); __ decl(rax); __ j(not_zero, &loop); __ Pop(rax); } else { __ subp(rsp, Immediate(slots * kPointerSize)); #ifdef _MSC_VER MakeSureStackPagesMapped(slots * kPointerSize); #endif } if (info()->saves_caller_doubles()) { SaveCallerDoubles(); } } return !is_aborted(); } void LCodeGen::DoPrologue(LPrologue* instr) { Comment(";;; Prologue begin"); // Possibly allocate a local context. if (info_->scope()->NeedsContext()) { Comment(";;; Allocate local context"); bool need_write_barrier = true; // Argument to NewContext is the function, which is still in rdi. int slots = info_->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; if (info()->scope()->is_script_scope()) { __ Push(rdi); __ Push(info()->scope()->scope_info()); __ CallRuntime(Runtime::kNewScriptContext); deopt_mode = Safepoint::kLazyDeopt; } else { if (slots <= ConstructorBuiltinsAssembler::MaximumFunctionContextSlots()) { Callable callable = CodeFactory::FastNewFunctionContext( isolate(), info()->scope()->scope_type()); __ Set(FastNewFunctionContextDescriptor::SlotsRegister(), slots); __ Call(callable.code(), RelocInfo::CODE_TARGET); // Result of FastNewFunctionContextStub is always in new space. need_write_barrier = false; } else { __ Push(rdi); __ Push(Smi::FromInt(info()->scope()->scope_type())); __ CallRuntime(Runtime::kNewFunctionContext); } } RecordSafepoint(deopt_mode); // Context is returned in rax. It replaces the context passed to us. // It's saved in the stack and kept live in rsi. __ movp(rsi, rax); __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax); // Copy any necessary parameters into the context. int num_parameters = info()->scope()->num_parameters(); int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0; for (int i = first_parameter; i < num_parameters; i++) { Variable* var = (i == -1) ? info()->scope()->receiver() : info()->scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ movp(rax, Operand(rbp, parameter_offset)); // Store it in the context. int context_offset = Context::SlotOffset(var->index()); __ movp(Operand(rsi, context_offset), rax); // Update the write barrier. This clobbers rax and rbx. if (need_write_barrier) { __ RecordWriteContextSlot(rsi, context_offset, rax, rbx, kSaveFPRegs); } else if (FLAG_debug_code) { Label done; __ JumpIfInNewSpace(rsi, rax, &done, Label::kNear); __ Abort(kExpectedNewSpaceObject); __ bind(&done); } } } Comment(";;; End allocate local context"); } Comment(";;; Prologue end"); } void LCodeGen::GenerateOsrPrologue() { // Generate the OSR entry prologue at the first unknown OSR value, or if there // are none, at the OSR entrypoint instruction. if (osr_pc_offset_ >= 0) return; osr_pc_offset_ = masm()->pc_offset(); // Adjust the frame size, subsuming the unoptimized frame into the // optimized frame. int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); DCHECK(slots >= 0); __ subp(rsp, Immediate(slots * kPointerSize)); } void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { if (instr->IsCall()) { EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); } if (!instr->IsLazyBailout() && !instr->IsGap()) { safepoints_.BumpLastLazySafepointIndex(); } } void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) { if (FLAG_debug_code && FLAG_enable_slow_asserts && instr->HasResult() && instr->hydrogen_value()->representation().IsInteger32() && instr->result()->IsRegister()) { __ AssertZeroExtended(ToRegister(instr->result())); } if (instr->HasResult() && instr->MustSignExtendResult(chunk())) { // We sign extend the dehoisted key at the definition point when the pointer // size is 64-bit. For x32 port, we sign extend the dehoisted key at the use // points and MustSignExtendResult is always false. We can't use // STATIC_ASSERT here as the pointer size is 32-bit for x32. DCHECK(kPointerSize == kInt64Size); if (instr->result()->IsRegister()) { Register result_reg = ToRegister(instr->result()); __ movsxlq(result_reg, result_reg); } else { // Sign extend the 32bit result in the stack slots. DCHECK(instr->result()->IsStackSlot()); Operand src = ToOperand(instr->result()); __ movsxlq(kScratchRegister, src); __ movq(src, kScratchRegister); } } } bool LCodeGen::GenerateJumpTable() { if (jump_table_.length() == 0) return !is_aborted(); Label needs_frame; Comment(";;; -------------------- Jump table --------------------"); for (int i = 0; i < jump_table_.length(); i++) { Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i]; __ bind(&table_entry->label); Address entry = table_entry->address; DeoptComment(table_entry->deopt_info); if (table_entry->needs_frame) { DCHECK(!info()->saves_caller_doubles()); __ Move(kScratchRegister, ExternalReference::ForDeoptEntry(entry)); __ call(&needs_frame); } else { if (info()->saves_caller_doubles()) { DCHECK(info()->IsStub()); RestoreCallerDoubles(); } __ call(entry, RelocInfo::RUNTIME_ENTRY); } } if (needs_frame.is_linked()) { __ bind(&needs_frame); /* stack layout 3: return address <-- rsp 2: garbage 1: garbage 0: garbage */ // Reserve space for stub marker. __ subp(rsp, Immediate(TypedFrameConstants::kFrameTypeSize)); __ Push(MemOperand( rsp, TypedFrameConstants::kFrameTypeSize)); // Copy return address. __ Push(kScratchRegister); /* stack layout 3: return address 2: garbage 1: return address 0: entry address <-- rsp */ // Create a stack frame. __ movp(MemOperand(rsp, 3 * kPointerSize), rbp); __ leap(rbp, MemOperand(rsp, 3 * kPointerSize)); // This variant of deopt can only be used with stubs. Since we don't // have a function pointer to install in the stack frame that we're // building, install a special marker there instead. DCHECK(info()->IsStub()); __ movp(MemOperand(rsp, 2 * kPointerSize), Immediate(StackFrame::TypeToMarker(StackFrame::STUB))); /* stack layout 3: old rbp 2: stub marker 1: return address 0: entry address <-- rsp */ __ ret(0); } return !is_aborted(); } bool LCodeGen::GenerateDeferredCode() { DCHECK(is_generating()); if (deferred_.length() > 0) { for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { LDeferredCode* code = deferred_[i]; HValue* value = instructions_->at(code->instruction_index())->hydrogen_value(); RecordAndWritePosition(value->position()); Comment(";;; <@%d,#%d> " "-------------------- Deferred %s --------------------", code->instruction_index(), code->instr()->hydrogen_value()->id(), code->instr()->Mnemonic()); __ bind(code->entry()); if (NeedsDeferredFrame()) { Comment(";;; Build frame"); DCHECK(!frame_is_built_); DCHECK(info()->IsStub()); frame_is_built_ = true; // Build the frame in such a way that esi isn't trashed. __ pushq(rbp); // Caller's frame pointer. __ Push(Immediate(StackFrame::TypeToMarker(StackFrame::STUB))); __ leap(rbp, Operand(rsp, TypedFrameConstants::kFixedFrameSizeFromFp)); Comment(";;; Deferred code"); } code->Generate(); if (NeedsDeferredFrame()) { __ bind(code->done()); Comment(";;; Destroy frame"); DCHECK(frame_is_built_); frame_is_built_ = false; __ movp(rsp, rbp); __ popq(rbp); } __ jmp(code->exit()); } } // Deferred code is the last part of the instruction sequence. Mark // the generated code as done unless we bailed out. if (!is_aborted()) status_ = DONE; return !is_aborted(); } bool LCodeGen::GenerateSafepointTable() { DCHECK(is_done()); safepoints_.Emit(masm(), GetTotalFrameSlotCount()); return !is_aborted(); } Register LCodeGen::ToRegister(int index) const { return Register::from_code(index); } XMMRegister LCodeGen::ToDoubleRegister(int index) const { return XMMRegister::from_code(index); } Register LCodeGen::ToRegister(LOperand* op) const { DCHECK(op->IsRegister()); return ToRegister(op->index()); } XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const { DCHECK(op->IsDoubleRegister()); return ToDoubleRegister(op->index()); } bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); } bool LCodeGen::IsExternalConstant(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsExternal(); } bool LCodeGen::IsDehoistedKeyConstant(LConstantOperand* op) const { return op->IsConstantOperand() && chunk_->IsDehoistedKey(chunk_->LookupConstant(op)); } bool LCodeGen::IsSmiConstant(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsSmi(); } int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { return ToRepresentation(op, Representation::Integer32()); } int32_t LCodeGen::ToRepresentation(LConstantOperand* op, const Representation& r) const { HConstant* constant = chunk_->LookupConstant(op); int32_t value = constant->Integer32Value(); if (r.IsInteger32()) return value; DCHECK(SmiValuesAre31Bits() && r.IsSmiOrTagged()); return static_cast(reinterpret_cast(Smi::FromInt(value))); } Smi* LCodeGen::ToSmi(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); return Smi::FromInt(constant->Integer32Value()); } double LCodeGen::ToDouble(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); DCHECK(constant->HasDoubleValue()); return constant->DoubleValue(); } ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); DCHECK(constant->HasExternalReferenceValue()); return constant->ExternalReferenceValue(); } Handle LCodeGen::ToHandle(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); return constant->handle(isolate()); } static int ArgumentsOffsetWithoutFrame(int index) { DCHECK(index < 0); return -(index + 1) * kPointerSize + kPCOnStackSize; } Operand LCodeGen::ToOperand(LOperand* op) const { // Does not handle registers. In X64 assembler, plain registers are not // representable as an Operand. DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); if (NeedsEagerFrame()) { return Operand(rbp, FrameSlotToFPOffset(op->index())); } else { // Retrieve parameter without eager stack-frame relative to the // stack-pointer. return Operand(rsp, ArgumentsOffsetWithoutFrame(op->index())); } } void LCodeGen::WriteTranslation(LEnvironment* environment, Translation* translation) { if (environment == NULL) return; // The translation includes one command per value in the environment. int translation_size = environment->translation_size(); WriteTranslation(environment->outer(), translation); WriteTranslationFrame(environment, translation); int object_index = 0; int dematerialized_index = 0; for (int i = 0; i < translation_size; ++i) { LOperand* value = environment->values()->at(i); AddToTranslation( environment, translation, value, environment->HasTaggedValueAt(i), environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); } } void LCodeGen::AddToTranslation(LEnvironment* environment, Translation* translation, LOperand* op, bool is_tagged, bool is_uint32, int* object_index_pointer, int* dematerialized_index_pointer) { if (op == LEnvironment::materialization_marker()) { int object_index = (*object_index_pointer)++; if (environment->ObjectIsDuplicateAt(object_index)) { int dupe_of = environment->ObjectDuplicateOfAt(object_index); translation->DuplicateObject(dupe_of); return; } int object_length = environment->ObjectLengthAt(object_index); if (environment->ObjectIsArgumentsAt(object_index)) { translation->BeginArgumentsObject(object_length); } else { translation->BeginCapturedObject(object_length); } int dematerialized_index = *dematerialized_index_pointer; int env_offset = environment->translation_size() + dematerialized_index; *dematerialized_index_pointer += object_length; for (int i = 0; i < object_length; ++i) { LOperand* value = environment->values()->at(env_offset + i); AddToTranslation(environment, translation, value, environment->HasTaggedValueAt(env_offset + i), environment->HasUint32ValueAt(env_offset + i), object_index_pointer, dematerialized_index_pointer); } return; } if (op->IsStackSlot()) { int index = op->index(); if (is_tagged) { translation->StoreStackSlot(index); } else if (is_uint32) { translation->StoreUint32StackSlot(index); } else { translation->StoreInt32StackSlot(index); } } else if (op->IsDoubleStackSlot()) { int index = op->index(); translation->StoreDoubleStackSlot(index); } else if (op->IsRegister()) { Register reg = ToRegister(op); if (is_tagged) { translation->StoreRegister(reg); } else if (is_uint32) { translation->StoreUint32Register(reg); } else { translation->StoreInt32Register(reg); } } else if (op->IsDoubleRegister()) { XMMRegister reg = ToDoubleRegister(op); translation->StoreDoubleRegister(reg); } else if (op->IsConstantOperand()) { HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); translation->StoreLiteral(src_index); } else { UNREACHABLE(); } } void LCodeGen::CallCodeGeneric(Handle code, RelocInfo::Mode mode, LInstruction* instr, SafepointMode safepoint_mode, int argc) { DCHECK(instr != NULL); __ call(code, mode); RecordSafepointWithLazyDeopt(instr, safepoint_mode, argc); // Signal that we don't inline smi code before these stubs in the // optimizing code generator. if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) { __ nop(); } } void LCodeGen::CallCode(Handle code, RelocInfo::Mode mode, LInstruction* instr) { CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0); } void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments, LInstruction* instr, SaveFPRegsMode save_doubles) { DCHECK(instr != NULL); DCHECK(instr->HasPointerMap()); __ CallRuntime(function, num_arguments, save_doubles); RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0); } void LCodeGen::LoadContextFromDeferred(LOperand* context) { if (context->IsRegister()) { if (!ToRegister(context).is(rsi)) { __ movp(rsi, ToRegister(context)); } } else if (context->IsStackSlot()) { __ movp(rsi, ToOperand(context)); } else if (context->IsConstantOperand()) { HConstant* constant = chunk_->LookupConstant(LConstantOperand::cast(context)); __ Move(rsi, Handle::cast(constant->handle(isolate()))); } else { UNREACHABLE(); } } void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, LInstruction* instr, LOperand* context) { LoadContextFromDeferred(context); __ CallRuntimeSaveDoubles(id); RecordSafepointWithRegisters( instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); } void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, Safepoint::DeoptMode mode) { environment->set_has_been_used(); if (!environment->HasBeenRegistered()) { // Physical stack frame layout: // -x ............. -4 0 ..................................... y // [incoming arguments] [spill slots] [pushed outgoing arguments] // Layout of the environment: // 0 ..................................................... size-1 // [parameters] [locals] [expression stack including arguments] // Layout of the translation: // 0 ........................................................ size - 1 + 4 // [expression stack including arguments] [locals] [4 words] [parameters] // |>------------ translation_size ------------<| int frame_count = 0; int jsframe_count = 0; for (LEnvironment* e = environment; e != NULL; e = e->outer()) { ++frame_count; if (e->frame_type() == JS_FUNCTION) { ++jsframe_count; } } Translation translation(&translations_, frame_count, jsframe_count, zone()); WriteTranslation(environment, &translation); int deoptimization_index = deoptimizations_.length(); int pc_offset = masm()->pc_offset(); environment->Register(deoptimization_index, translation.index(), (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); deoptimizations_.Add(environment, environment->zone()); } } void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr, DeoptimizeReason deopt_reason, Deoptimizer::BailoutType bailout_type) { LEnvironment* environment = instr->environment(); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); DCHECK(environment->HasBeenRegistered()); int id = environment->deoptimization_index(); Address entry = Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); if (entry == NULL) { Abort(kBailoutWasNotPrepared); return; } if (DeoptEveryNTimes()) { ExternalReference count = ExternalReference::stress_deopt_count(isolate()); Label no_deopt; __ pushfq(); __ pushq(rax); Operand count_operand = masm()->ExternalOperand(count, kScratchRegister); __ movl(rax, count_operand); __ subl(rax, Immediate(1)); __ j(not_zero, &no_deopt, Label::kNear); if (FLAG_trap_on_deopt) __ int3(); __ movl(rax, Immediate(FLAG_deopt_every_n_times)); __ movl(count_operand, rax); __ popq(rax); __ popfq(); DCHECK(frame_is_built_); __ call(entry, RelocInfo::RUNTIME_ENTRY); __ bind(&no_deopt); __ movl(count_operand, rax); __ popq(rax); __ popfq(); } if (info()->ShouldTrapOnDeopt()) { Label done; if (cc != no_condition) { __ j(NegateCondition(cc), &done, Label::kNear); } __ int3(); __ bind(&done); } Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id); DCHECK(info()->IsStub() || frame_is_built_); // Go through jump table if we need to handle condition, build frame, or // restore caller doubles. if (cc == no_condition && frame_is_built_ && !info()->saves_caller_doubles()) { DeoptComment(deopt_info); __ call(entry, RelocInfo::RUNTIME_ENTRY); } else { Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type, !frame_is_built_); // We often have several deopts to the same entry, reuse the last // jump entry if this is the case. if (FLAG_trace_deopt || isolate()->is_profiling() || jump_table_.is_empty() || !table_entry.IsEquivalentTo(jump_table_.last())) { jump_table_.Add(table_entry, zone()); } if (cc == no_condition) { __ jmp(&jump_table_.last().label); } else { __ j(cc, &jump_table_.last().label); } } } void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr, DeoptimizeReason deopt_reason) { Deoptimizer::BailoutType bailout_type = info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; DeoptimizeIf(cc, instr, deopt_reason, bailout_type); } void LCodeGen::RecordSafepointWithLazyDeopt( LInstruction* instr, SafepointMode safepoint_mode, int argc) { if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); } else { DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS); RecordSafepointWithRegisters( instr->pointer_map(), argc, Safepoint::kLazyDeopt); } } void LCodeGen::RecordSafepoint( LPointerMap* pointers, Safepoint::Kind kind, int arguments, Safepoint::DeoptMode deopt_mode) { DCHECK(kind == expected_safepoint_kind_); const ZoneList* operands = pointers->GetNormalizedOperands(); Safepoint safepoint = safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode); for (int i = 0; i < operands->length(); i++) { LOperand* pointer = operands->at(i); if (pointer->IsStackSlot()) { safepoint.DefinePointerSlot(pointer->index(), zone()); } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { safepoint.DefinePointerRegister(ToRegister(pointer), zone()); } } } void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode deopt_mode) { RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); } void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { LPointerMap empty_pointers(zone()); RecordSafepoint(&empty_pointers, deopt_mode); } void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) { RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode); } static const char* LabelType(LLabel* label) { if (label->is_loop_header()) return " (loop header)"; if (label->is_osr_entry()) return " (OSR entry)"; return ""; } void LCodeGen::DoLabel(LLabel* label) { Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", current_instruction_, label->hydrogen_value()->id(), label->block_id(), LabelType(label)); __ bind(label->label()); current_block_ = label->block_id(); DoGap(label); } void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); } void LCodeGen::DoGap(LGap* gap) { for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION; i++) { LGap::InnerPosition inner_pos = static_cast(i); LParallelMove* move = gap->GetParallelMove(inner_pos); if (move != NULL) DoParallelMove(move); } } void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); } void LCodeGen::DoParameter(LParameter* instr) { // Nothing to do. } void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { GenerateOsrPrologue(); } void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); DCHECK(dividend.is(ToRegister(instr->result()))); // Theoretically, a variation of the branch-free code for integer division by // a power of 2 (calculating the remainder via an additional multiplication // (which gets simplified to an 'and') and subtraction) should be faster, and // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to // indicate that positive dividends are heavily favored, so the branching // version performs better. HMod* hmod = instr->hydrogen(); int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); Label dividend_is_not_negative, done; if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { __ testl(dividend, dividend); __ j(not_sign, ÷nd_is_not_negative, Label::kNear); // Note that this is correct even for kMinInt operands. __ negl(dividend); __ andl(dividend, Immediate(mask)); __ negl(dividend); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); } __ jmp(&done, Label::kNear); } __ bind(÷nd_is_not_negative); __ andl(dividend, Immediate(mask)); __ bind(&done); } void LCodeGen::DoModByConstI(LModByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); DCHECK(ToRegister(instr->result()).is(rax)); if (divisor == 0) { DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero); return; } __ TruncatingDiv(dividend, Abs(divisor)); __ imull(rdx, rdx, Immediate(Abs(divisor))); __ movl(rax, dividend); __ subl(rax, rdx); // Check for negative zero. HMod* hmod = instr->hydrogen(); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { Label remainder_not_zero; __ j(not_zero, &remainder_not_zero, Label::kNear); __ cmpl(dividend, Immediate(0)); DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero); __ bind(&remainder_not_zero); } } void LCodeGen::DoModI(LModI* instr) { HMod* hmod = instr->hydrogen(); Register left_reg = ToRegister(instr->left()); DCHECK(left_reg.is(rax)); Register right_reg = ToRegister(instr->right()); DCHECK(!right_reg.is(rax)); DCHECK(!right_reg.is(rdx)); Register result_reg = ToRegister(instr->result()); DCHECK(result_reg.is(rdx)); Label done; // Check for x % 0, idiv would signal a divide error. We have to // deopt in this case because we can't return a NaN. if (hmod->CheckFlag(HValue::kCanBeDivByZero)) { __ testl(right_reg, right_reg); DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero); } // Check for kMinInt % -1, idiv would signal a divide error. We // have to deopt if we care about -0, because we can't return that. if (hmod->CheckFlag(HValue::kCanOverflow)) { Label no_overflow_possible; __ cmpl(left_reg, Immediate(kMinInt)); __ j(not_zero, &no_overflow_possible, Label::kNear); __ cmpl(right_reg, Immediate(-1)); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(equal, instr, DeoptimizeReason::kMinusZero); } else { __ j(not_equal, &no_overflow_possible, Label::kNear); __ Set(result_reg, 0); __ jmp(&done, Label::kNear); } __ bind(&no_overflow_possible); } // Sign extend dividend in eax into edx:eax, since we are using only the low // 32 bits of the values. __ cdq(); // If we care about -0, test if the dividend is <0 and the result is 0. if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { Label positive_left; __ testl(left_reg, left_reg); __ j(not_sign, &positive_left, Label::kNear); __ idivl(right_reg); __ testl(result_reg, result_reg); DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); __ jmp(&done, Label::kNear); __ bind(&positive_left); } __ idivl(right_reg); __ bind(&done); } void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); DCHECK(dividend.is(ToRegister(instr->result()))); // If the divisor is positive, things are easy: There can be no deopts and we // can simply do an arithmetic right shift. if (divisor == 1) return; int32_t shift = WhichPowerOf2Abs(divisor); if (divisor > 1) { __ sarl(dividend, Immediate(shift)); return; } // If the divisor is negative, we have to negate and handle edge cases. __ negl(dividend); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); } // Dividing by -1 is basically negation, unless we overflow. if (divisor == -1) { if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } return; } // If the negation could not overflow, simply shifting is OK. if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { __ sarl(dividend, Immediate(shift)); return; } Label not_kmin_int, done; __ j(no_overflow, ¬_kmin_int, Label::kNear); __ movl(dividend, Immediate(kMinInt / divisor)); __ jmp(&done, Label::kNear); __ bind(¬_kmin_int); __ sarl(dividend, Immediate(shift)); __ bind(&done); } void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); DCHECK(ToRegister(instr->result()).is(rdx)); if (divisor == 0) { DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero); return; } // Check for (0 / -x) that will produce negative zero. HMathFloorOfDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { __ testl(dividend, dividend); DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); } // Easy case: We need no dynamic check for the dividend and the flooring // division is the same as the truncating division. if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { __ TruncatingDiv(dividend, Abs(divisor)); if (divisor < 0) __ negl(rdx); return; } // In the general case we may need to adjust before and after the truncating // division to get a flooring division. Register temp = ToRegister(instr->temp3()); DCHECK(!temp.is(dividend) && !temp.is(rax) && !temp.is(rdx)); Label needs_adjustment, done; __ cmpl(dividend, Immediate(0)); __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear); __ TruncatingDiv(dividend, Abs(divisor)); if (divisor < 0) __ negl(rdx); __ jmp(&done, Label::kNear); __ bind(&needs_adjustment); __ leal(temp, Operand(dividend, divisor > 0 ? 1 : -1)); __ TruncatingDiv(temp, Abs(divisor)); if (divisor < 0) __ negl(rdx); __ decl(rdx); __ bind(&done); } // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { HBinaryOperation* hdiv = instr->hydrogen(); Register dividend = ToRegister(instr->dividend()); Register divisor = ToRegister(instr->divisor()); Register remainder = ToRegister(instr->temp()); Register result = ToRegister(instr->result()); DCHECK(dividend.is(rax)); DCHECK(remainder.is(rdx)); DCHECK(result.is(rax)); DCHECK(!divisor.is(rax)); DCHECK(!divisor.is(rdx)); // Check for x / 0. if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { __ testl(divisor, divisor); DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero); } // Check for (0 / -x) that will produce negative zero. if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { Label dividend_not_zero; __ testl(dividend, dividend); __ j(not_zero, ÷nd_not_zero, Label::kNear); __ testl(divisor, divisor); DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero); __ bind(÷nd_not_zero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow)) { Label dividend_not_min_int; __ cmpl(dividend, Immediate(kMinInt)); __ j(not_zero, ÷nd_not_min_int, Label::kNear); __ cmpl(divisor, Immediate(-1)); DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow); __ bind(÷nd_not_min_int); } // Sign extend to rdx (= remainder). __ cdq(); __ idivl(divisor); Label done; __ testl(remainder, remainder); __ j(zero, &done, Label::kNear); __ xorl(remainder, divisor); __ sarl(remainder, Immediate(31)); __ addl(result, remainder); __ bind(&done); } void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister(instr->result()); DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); DCHECK(!result.is(dividend)); // Check for (0 / -x) that will produce negative zero. HDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { __ testl(dividend, dividend); DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { __ cmpl(dividend, Immediate(kMinInt)); DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow); } // Deoptimize if remainder will not be 0. if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && divisor != 1 && divisor != -1) { int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); __ testl(dividend, Immediate(mask)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision); } __ Move(result, dividend); int32_t shift = WhichPowerOf2Abs(divisor); if (shift > 0) { // The arithmetic shift is always OK, the 'if' is an optimization only. if (shift > 1) __ sarl(result, Immediate(31)); __ shrl(result, Immediate(32 - shift)); __ addl(result, dividend); __ sarl(result, Immediate(shift)); } if (divisor < 0) __ negl(result); } void LCodeGen::DoDivByConstI(LDivByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); DCHECK(ToRegister(instr->result()).is(rdx)); if (divisor == 0) { DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero); return; } // Check for (0 / -x) that will produce negative zero. HDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { __ testl(dividend, dividend); DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero); } __ TruncatingDiv(dividend, Abs(divisor)); if (divisor < 0) __ negl(rdx); if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { __ movl(rax, rdx); __ imull(rax, rax, Immediate(divisor)); __ subl(rax, dividend); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kLostPrecision); } } // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. void LCodeGen::DoDivI(LDivI* instr) { HBinaryOperation* hdiv = instr->hydrogen(); Register dividend = ToRegister(instr->dividend()); Register divisor = ToRegister(instr->divisor()); Register remainder = ToRegister(instr->temp()); DCHECK(dividend.is(rax)); DCHECK(remainder.is(rdx)); DCHECK(ToRegister(instr->result()).is(rax)); DCHECK(!divisor.is(rax)); DCHECK(!divisor.is(rdx)); // Check for x / 0. if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { __ testl(divisor, divisor); DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero); } // Check for (0 / -x) that will produce negative zero. if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { Label dividend_not_zero; __ testl(dividend, dividend); __ j(not_zero, ÷nd_not_zero, Label::kNear); __ testl(divisor, divisor); DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero); __ bind(÷nd_not_zero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow)) { Label dividend_not_min_int; __ cmpl(dividend, Immediate(kMinInt)); __ j(not_zero, ÷nd_not_min_int, Label::kNear); __ cmpl(divisor, Immediate(-1)); DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow); __ bind(÷nd_not_min_int); } // Sign extend to rdx (= remainder). __ cdq(); __ idivl(divisor); if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { // Deoptimize if remainder is not 0. __ testl(remainder, remainder); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision); } } void LCodeGen::DoMulI(LMulI* instr) { Register left = ToRegister(instr->left()); LOperand* right = instr->right(); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { if (instr->hydrogen_value()->representation().IsSmi()) { __ movp(kScratchRegister, left); } else { __ movl(kScratchRegister, left); } } bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (right->IsConstantOperand()) { int32_t right_value = ToInteger32(LConstantOperand::cast(right)); if (right_value == -1) { __ negl(left); } else if (right_value == 0) { __ xorl(left, left); } else if (right_value == 2) { __ addl(left, left); } else if (!can_overflow) { // If the multiplication is known to not overflow, we // can use operations that don't set the overflow flag // correctly. switch (right_value) { case 1: // Do nothing. break; case 3: __ leal(left, Operand(left, left, times_2, 0)); break; case 4: __ shll(left, Immediate(2)); break; case 5: __ leal(left, Operand(left, left, times_4, 0)); break; case 8: __ shll(left, Immediate(3)); break; case 9: __ leal(left, Operand(left, left, times_8, 0)); break; case 16: __ shll(left, Immediate(4)); break; default: __ imull(left, left, Immediate(right_value)); break; } } else { __ imull(left, left, Immediate(right_value)); } } else if (right->IsStackSlot()) { if (instr->hydrogen_value()->representation().IsSmi()) { __ SmiToInteger64(left, left); __ imulp(left, ToOperand(right)); } else { __ imull(left, ToOperand(right)); } } else { if (instr->hydrogen_value()->representation().IsSmi()) { __ SmiToInteger64(left, left); __ imulp(left, ToRegister(right)); } else { __ imull(left, ToRegister(right)); } } if (can_overflow) { DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Bail out if the result is supposed to be negative zero. Label done; if (instr->hydrogen_value()->representation().IsSmi()) { __ testp(left, left); } else { __ testl(left, left); } __ j(not_zero, &done, Label::kNear); if (right->IsConstantOperand()) { // Constant can't be represented as 32-bit Smi due to immediate size // limit. DCHECK(SmiValuesAre32Bits() ? !instr->hydrogen_value()->representation().IsSmi() : SmiValuesAre31Bits()); if (ToInteger32(LConstantOperand::cast(right)) < 0) { DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero); } else if (ToInteger32(LConstantOperand::cast(right)) == 0) { __ cmpl(kScratchRegister, Immediate(0)); DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero); } } else if (right->IsStackSlot()) { if (instr->hydrogen_value()->representation().IsSmi()) { __ orp(kScratchRegister, ToOperand(right)); } else { __ orl(kScratchRegister, ToOperand(right)); } DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero); } else { // Test the non-zero operand for negative sign. if (instr->hydrogen_value()->representation().IsSmi()) { __ orp(kScratchRegister, ToRegister(right)); } else { __ orl(kScratchRegister, ToRegister(right)); } DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero); } __ bind(&done); } } void LCodeGen::DoBitI(LBitI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); DCHECK(left->Equals(instr->result())); DCHECK(left->IsRegister()); if (right->IsConstantOperand()) { int32_t right_operand = ToRepresentation(LConstantOperand::cast(right), instr->hydrogen()->right()->representation()); switch (instr->op()) { case Token::BIT_AND: __ andl(ToRegister(left), Immediate(right_operand)); break; case Token::BIT_OR: __ orl(ToRegister(left), Immediate(right_operand)); break; case Token::BIT_XOR: if (right_operand == int32_t(~0)) { __ notl(ToRegister(left)); } else { __ xorl(ToRegister(left), Immediate(right_operand)); } break; default: UNREACHABLE(); break; } } else if (right->IsStackSlot()) { switch (instr->op()) { case Token::BIT_AND: if (instr->IsInteger32()) { __ andl(ToRegister(left), ToOperand(right)); } else { __ andp(ToRegister(left), ToOperand(right)); } break; case Token::BIT_OR: if (instr->IsInteger32()) { __ orl(ToRegister(left), ToOperand(right)); } else { __ orp(ToRegister(left), ToOperand(right)); } break; case Token::BIT_XOR: if (instr->IsInteger32()) { __ xorl(ToRegister(left), ToOperand(right)); } else { __ xorp(ToRegister(left), ToOperand(right)); } break; default: UNREACHABLE(); break; } } else { DCHECK(right->IsRegister()); switch (instr->op()) { case Token::BIT_AND: if (instr->IsInteger32()) { __ andl(ToRegister(left), ToRegister(right)); } else { __ andp(ToRegister(left), ToRegister(right)); } break; case Token::BIT_OR: if (instr->IsInteger32()) { __ orl(ToRegister(left), ToRegister(right)); } else { __ orp(ToRegister(left), ToRegister(right)); } break; case Token::BIT_XOR: if (instr->IsInteger32()) { __ xorl(ToRegister(left), ToRegister(right)); } else { __ xorp(ToRegister(left), ToRegister(right)); } break; default: UNREACHABLE(); break; } } } void LCodeGen::DoShiftI(LShiftI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); DCHECK(left->Equals(instr->result())); DCHECK(left->IsRegister()); if (right->IsRegister()) { DCHECK(ToRegister(right).is(rcx)); switch (instr->op()) { case Token::ROR: __ rorl_cl(ToRegister(left)); break; case Token::SAR: __ sarl_cl(ToRegister(left)); break; case Token::SHR: __ shrl_cl(ToRegister(left)); if (instr->can_deopt()) { __ testl(ToRegister(left), ToRegister(left)); DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue); } break; case Token::SHL: __ shll_cl(ToRegister(left)); break; default: UNREACHABLE(); break; } } else { int32_t value = ToInteger32(LConstantOperand::cast(right)); uint8_t shift_count = static_cast(value & 0x1F); switch (instr->op()) { case Token::ROR: if (shift_count != 0) { __ rorl(ToRegister(left), Immediate(shift_count)); } break; case Token::SAR: if (shift_count != 0) { __ sarl(ToRegister(left), Immediate(shift_count)); } break; case Token::SHR: if (shift_count != 0) { __ shrl(ToRegister(left), Immediate(shift_count)); } else if (instr->can_deopt()) { __ testl(ToRegister(left), ToRegister(left)); DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue); } break; case Token::SHL: if (shift_count != 0) { if (instr->hydrogen_value()->representation().IsSmi()) { if (SmiValuesAre32Bits()) { __ shlp(ToRegister(left), Immediate(shift_count)); } else { DCHECK(SmiValuesAre31Bits()); if (instr->can_deopt()) { if (shift_count != 1) { __ shll(ToRegister(left), Immediate(shift_count - 1)); } __ Integer32ToSmi(ToRegister(left), ToRegister(left)); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } else { __ shll(ToRegister(left), Immediate(shift_count)); } } } else { __ shll(ToRegister(left), Immediate(shift_count)); } } break; default: UNREACHABLE(); break; } } } void LCodeGen::DoSubI(LSubI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); DCHECK(left->Equals(instr->result())); if (right->IsConstantOperand()) { int32_t right_operand = ToRepresentation(LConstantOperand::cast(right), instr->hydrogen()->right()->representation()); __ subl(ToRegister(left), Immediate(right_operand)); } else if (right->IsRegister()) { if (instr->hydrogen_value()->representation().IsSmi()) { __ subp(ToRegister(left), ToRegister(right)); } else { __ subl(ToRegister(left), ToRegister(right)); } } else { if (instr->hydrogen_value()->representation().IsSmi()) { __ subp(ToRegister(left), ToOperand(right)); } else { __ subl(ToRegister(left), ToOperand(right)); } } if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } } void LCodeGen::DoConstantI(LConstantI* instr) { Register dst = ToRegister(instr->result()); if (instr->value() == 0) { __ xorl(dst, dst); } else { __ movl(dst, Immediate(instr->value())); } } void LCodeGen::DoConstantS(LConstantS* instr) { __ Move(ToRegister(instr->result()), instr->value()); } void LCodeGen::DoConstantD(LConstantD* instr) { __ Move(ToDoubleRegister(instr->result()), instr->bits()); } void LCodeGen::DoConstantE(LConstantE* instr) { __ LoadAddress(ToRegister(instr->result()), instr->value()); } void LCodeGen::DoConstantT(LConstantT* instr) { Handle object = instr->value(isolate()); AllowDeferredHandleDereference smi_check; __ Move(ToRegister(instr->result()), object); } Operand LCodeGen::BuildSeqStringOperand(Register string, LOperand* index, String::Encoding encoding) { if (index->IsConstantOperand()) { int offset = ToInteger32(LConstantOperand::cast(index)); if (encoding == String::TWO_BYTE_ENCODING) { offset *= kUC16Size; } STATIC_ASSERT(kCharSize == 1); return FieldOperand(string, SeqString::kHeaderSize + offset); } return FieldOperand( string, ToRegister(index), encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2, SeqString::kHeaderSize); } void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { String::Encoding encoding = instr->hydrogen()->encoding(); Register result = ToRegister(instr->result()); Register string = ToRegister(instr->string()); if (FLAG_debug_code) { __ Push(string); __ movp(string, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbp(string, FieldOperand(string, Map::kInstanceTypeOffset)); __ andb(string, Immediate(kStringRepresentationMask | kStringEncodingMask)); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; __ cmpp(string, Immediate(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type : two_byte_seq_type)); __ Check(equal, kUnexpectedStringType); __ Pop(string); } Operand operand = BuildSeqStringOperand(string, instr->index(), encoding); if (encoding == String::ONE_BYTE_ENCODING) { __ movzxbl(result, operand); } else { __ movzxwl(result, operand); } } void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { String::Encoding encoding = instr->hydrogen()->encoding(); Register string = ToRegister(instr->string()); if (FLAG_debug_code) { Register value = ToRegister(instr->value()); Register index = ToRegister(instr->index()); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; int encoding_mask = instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING ? one_byte_seq_type : two_byte_seq_type; __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask); } Operand operand = BuildSeqStringOperand(string, instr->index(), encoding); if (instr->value()->IsConstantOperand()) { int value = ToInteger32(LConstantOperand::cast(instr->value())); DCHECK_LE(0, value); if (encoding == String::ONE_BYTE_ENCODING) { DCHECK_LE(value, String::kMaxOneByteCharCode); __ movb(operand, Immediate(value)); } else { DCHECK_LE(value, String::kMaxUtf16CodeUnit); __ movw(operand, Immediate(value)); } } else { Register value = ToRegister(instr->value()); if (encoding == String::ONE_BYTE_ENCODING) { __ movb(operand, value); } else { __ movw(operand, value); } } } void LCodeGen::DoAddI(LAddI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); Representation target_rep = instr->hydrogen()->representation(); bool is_p = target_rep.IsSmi() || target_rep.IsExternal(); if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) { if (right->IsConstantOperand()) { // No support for smi-immediates for 32-bit SMI. DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits()); int32_t offset = ToRepresentation(LConstantOperand::cast(right), instr->hydrogen()->right()->representation()); if (is_p) { __ leap(ToRegister(instr->result()), MemOperand(ToRegister(left), offset)); } else { __ leal(ToRegister(instr->result()), MemOperand(ToRegister(left), offset)); } } else { Operand address(ToRegister(left), ToRegister(right), times_1, 0); if (is_p) { __ leap(ToRegister(instr->result()), address); } else { __ leal(ToRegister(instr->result()), address); } } } else { if (right->IsConstantOperand()) { // No support for smi-immediates for 32-bit SMI. DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits()); int32_t right_operand = ToRepresentation(LConstantOperand::cast(right), instr->hydrogen()->right()->representation()); if (is_p) { __ addp(ToRegister(left), Immediate(right_operand)); } else { __ addl(ToRegister(left), Immediate(right_operand)); } } else if (right->IsRegister()) { if (is_p) { __ addp(ToRegister(left), ToRegister(right)); } else { __ addl(ToRegister(left), ToRegister(right)); } } else { if (is_p) { __ addp(ToRegister(left), ToOperand(right)); } else { __ addl(ToRegister(left), ToOperand(right)); } } if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } } } void LCodeGen::DoMathMinMax(LMathMinMax* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); DCHECK(left->Equals(instr->result())); HMathMinMax::Operation operation = instr->hydrogen()->operation(); if (instr->hydrogen()->representation().IsSmiOrInteger32()) { Label return_left; Condition condition = (operation == HMathMinMax::kMathMin) ? less_equal : greater_equal; Register left_reg = ToRegister(left); if (right->IsConstantOperand()) { Immediate right_imm = Immediate( ToRepresentation(LConstantOperand::cast(right), instr->hydrogen()->right()->representation())); DCHECK(SmiValuesAre32Bits() ? !instr->hydrogen()->representation().IsSmi() : SmiValuesAre31Bits()); __ cmpl(left_reg, right_imm); __ j(condition, &return_left, Label::kNear); __ movl(left_reg, right_imm); } else if (right->IsRegister()) { Register right_reg = ToRegister(right); if (instr->hydrogen_value()->representation().IsSmi()) { __ cmpp(left_reg, right_reg); } else { __ cmpl(left_reg, right_reg); } __ j(condition, &return_left, Label::kNear); __ movp(left_reg, right_reg); } else { Operand right_op = ToOperand(right); if (instr->hydrogen_value()->representation().IsSmi()) { __ cmpp(left_reg, right_op); } else { __ cmpl(left_reg, right_op); } __ j(condition, &return_left, Label::kNear); __ movp(left_reg, right_op); } __ bind(&return_left); } else { DCHECK(instr->hydrogen()->representation().IsDouble()); Label not_nan, distinct, return_left, return_right; Condition condition = (operation == HMathMinMax::kMathMin) ? below : above; XMMRegister left_reg = ToDoubleRegister(left); XMMRegister right_reg = ToDoubleRegister(right); __ Ucomisd(left_reg, right_reg); __ j(parity_odd, ¬_nan, Label::kNear); // Both are not NaN. // One of the numbers is NaN. Find which one and return it. __ Ucomisd(left_reg, left_reg); __ j(parity_even, &return_left, Label::kNear); // left is NaN. __ jmp(&return_right, Label::kNear); // right is NaN. __ bind(¬_nan); __ j(not_equal, &distinct, Label::kNear); // left != right. // left == right XMMRegister xmm_scratch = double_scratch0(); __ Xorpd(xmm_scratch, xmm_scratch); __ Ucomisd(left_reg, xmm_scratch); __ j(not_equal, &return_left, Label::kNear); // left == right != 0. // At this point, both left and right are either +0 or -0. if (operation == HMathMinMax::kMathMin) { __ Orpd(left_reg, right_reg); } else { __ Andpd(left_reg, right_reg); } __ jmp(&return_left, Label::kNear); __ bind(&distinct); __ j(condition, &return_left, Label::kNear); __ bind(&return_right); __ Movapd(left_reg, right_reg); __ bind(&return_left); } } void LCodeGen::DoArithmeticD(LArithmeticD* instr) { XMMRegister left = ToDoubleRegister(instr->left()); XMMRegister right = ToDoubleRegister(instr->right()); XMMRegister result = ToDoubleRegister(instr->result()); switch (instr->op()) { case Token::ADD: if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(masm(), AVX); __ vaddsd(result, left, right); } else { DCHECK(result.is(left)); __ addsd(left, right); } break; case Token::SUB: if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(masm(), AVX); __ vsubsd(result, left, right); } else { DCHECK(result.is(left)); __ subsd(left, right); } break; case Token::MUL: if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(masm(), AVX); __ vmulsd(result, left, right); } else { DCHECK(result.is(left)); __ mulsd(left, right); } break; case Token::DIV: if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(masm(), AVX); __ vdivsd(result, left, right); } else { DCHECK(result.is(left)); __ divsd(left, right); } // Don't delete this mov. It may improve performance on some CPUs, // when there is a (v)mulsd depending on the result __ Movapd(result, result); break; case Token::MOD: { DCHECK(left.is(xmm0)); DCHECK(right.is(xmm1)); DCHECK(result.is(xmm0)); __ PrepareCallCFunction(2); __ CallCFunction( ExternalReference::mod_two_doubles_operation(isolate()), 2); break; } default: UNREACHABLE(); break; } } void LCodeGen::DoArithmeticT(LArithmeticT* instr) { DCHECK(ToRegister(instr->context()).is(rsi)); DCHECK(ToRegister(instr->left()).is(rdx)); DCHECK(ToRegister(instr->right()).is(rax)); DCHECK(ToRegister(instr->result()).is(rax)); Handle code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code(); CallCode(code, RelocInfo::CODE_TARGET, instr); } template void LCodeGen::EmitBranch(InstrType instr, Condition cc) { int left_block = instr->TrueDestination(chunk_); int right_block = instr->FalseDestination(chunk_); int next_block = GetNextEmittedBlock(); if (right_block == left_block || cc == no_condition) { EmitGoto(left_block); } else if (left_block == next_block) { __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block)); } else if (right_block == next_block) { __ j(cc, chunk_->GetAssemblyLabel(left_block)); } else { __ j(cc, chunk_->GetAssemblyLabel(left_block)); if (cc != always) { __ jmp(chunk_->GetAssemblyLabel(right_block)); } } } template void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) { int true_block = instr->TrueDestination(chunk_); __ j(cc, chunk_->GetAssemblyLabel(true_block)); } template void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) { int false_block = instr->FalseDestination(chunk_); __ j(cc, chunk_->GetAssemblyLabel(false_block)); } void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ int3(); } void LCodeGen::DoBranch(LBranch* instr) { Representation r = instr->hydrogen()->value()->representation(); if (r.IsInteger32()) { DCHECK(!info()->IsStub()); Register reg = ToRegister(instr->value()); __ testl(reg, reg); EmitBranch(instr, not_zero); } else if (r.IsSmi()) { DCHECK(!info()->IsStub()); Register reg = ToRegister(instr->value()); __ testp(reg, reg); EmitBranch(instr, not_zero); } else if (r.IsDouble()) { DCHECK(!info()->IsStub()); XMMRegister reg = ToDoubleRegister(instr->value()); XMMRegister xmm_scratch = double_scratch0(); __ Xorpd(xmm_scratch, xmm_scratch); __ Ucomisd(reg, xmm_scratch); EmitBranch(instr, not_equal); } else { DCHECK(r.IsTagged()); Register reg = ToRegister(instr->value()); HType type = instr->hydrogen()->value()->type(); if (type.IsBoolean()) { DCHECK(!info()->IsStub()); __ CompareRoot(reg, Heap::kTrueValueRootIndex); EmitBranch(instr, equal); } else if (type.IsSmi()) { DCHECK(!info()->IsStub()); __ SmiCompare(reg, Smi::kZero); EmitBranch(instr, not_equal); } else if (type.IsJSArray()) { DCHECK(!info()->IsStub()); EmitBranch(instr, no_condition); } else if (type.IsHeapNumber()) { DCHECK(!info()->IsStub()); XMMRegister xmm_scratch = double_scratch0(); __ Xorpd(xmm_scratch, xmm_scratch); __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset)); EmitBranch(instr, not_equal); } else if (type.IsString()) { DCHECK(!info()->IsStub()); __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0)); EmitBranch(instr, not_equal); } else { ToBooleanHints expected = instr->hydrogen()->expected_input_types(); // Avoid deopts in the case where we've never executed this path before. if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny; if (expected & ToBooleanHint::kUndefined) { // undefined -> false. __ CompareRoot(reg, Heap::kUndefinedValueRootIndex); __ j(equal, instr->FalseLabel(chunk_)); } if (expected & ToBooleanHint::kBoolean) { // true -> true. __ CompareRoot(reg, Heap::kTrueValueRootIndex); __ j(equal, instr->TrueLabel(chunk_)); // false -> false. __ CompareRoot(reg, Heap::kFalseValueRootIndex); __ j(equal, instr->FalseLabel(chunk_)); } if (expected & ToBooleanHint::kNull) { // 'null' -> false. __ CompareRoot(reg, Heap::kNullValueRootIndex); __ j(equal, instr->FalseLabel(chunk_)); } if (expected & ToBooleanHint::kSmallInteger) { // Smis: 0 -> false, all other -> true. __ Cmp(reg, Smi::kZero); __ j(equal, instr->FalseLabel(chunk_)); __ JumpIfSmi(reg, instr->TrueLabel(chunk_)); } else if (expected & ToBooleanHint::kNeedsMap) { // If we need a map later and have a Smi -> deopt. __ testb(reg, Immediate(kSmiTagMask)); DeoptimizeIf(zero, instr, DeoptimizeReason::kSmi); } const Register map = kScratchRegister; if (expected & ToBooleanHint::kNeedsMap) { __ movp(map, FieldOperand(reg, HeapObject::kMapOffset)); if (expected & ToBooleanHint::kCanBeUndetectable) { // Undetectable -> false. __ testb(FieldOperand(map, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, instr->FalseLabel(chunk_)); } } if (expected & ToBooleanHint::kReceiver) { // spec object -> true. __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE); __ j(above_equal, instr->TrueLabel(chunk_)); } if (expected & ToBooleanHint::kString) { // String value -> false iff empty. Label not_string; __ CmpInstanceType(map, FIRST_NONSTRING_TYPE); __ j(above_equal, ¬_string, Label::kNear); __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0)); __ j(not_zero, instr->TrueLabel(chunk_)); __ jmp(instr->FalseLabel(chunk_)); __ bind(¬_string); } if (expected & ToBooleanHint::kSymbol) { // Symbol value -> true. __ CmpInstanceType(map, SYMBOL_TYPE); __ j(equal, instr->TrueLabel(chunk_)); } if (expected & ToBooleanHint::kHeapNumber) { // heap number -> false iff +0, -0, or NaN. Label not_heap_number; __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); __ j(not_equal, ¬_heap_number, Label::kNear); XMMRegister xmm_scratch = double_scratch0(); __ Xorpd(xmm_scratch, xmm_scratch); __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset)); __ j(zero, instr->FalseLabel(chunk_)); __ jmp(instr->TrueLabel(chunk_)); __ bind(¬_heap_number); } if (expected != ToBooleanHint::kAny) { // We've seen something for the first time -> deopt. // This can only happen if we are not generic already. DeoptimizeIf(no_condition, instr, DeoptimizeReason::kUnexpectedObject); } } } } void LCodeGen::EmitGoto(int block) { if (!IsNextEmittedBlock(block)) { __ jmp(chunk_->GetAssemblyLabel(chunk_->LookupDestination(block))); } } void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); } inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { Condition cond = no_condition; switch (op) { case Token::EQ: case Token::EQ_STRICT: cond = equal; break; case Token::NE: case Token::NE_STRICT: cond = not_equal; break; case Token::LT: cond = is_unsigned ? below : less; break; case Token::GT: cond = is_unsigned ? above : greater; break; case Token::LTE: cond = is_unsigned ? below_equal : less_equal; break; case Token::GTE: cond = is_unsigned ? above_equal : greater_equal; break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } return cond; } void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); bool is_unsigned = instr->is_double() || instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); Condition cc = TokenToCondition(instr->op(), is_unsigned); if (left->IsConstantOperand() && right->IsConstantOperand()) { // We can statically evaluate the comparison. double left_val = ToDouble(LConstantOperand::cast(left)); double right_val = ToDouble(LConstantOperand::cast(right)); int next_block = Token::EvalComparison(instr->op(), left_val, right_val) ? instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); EmitGoto(next_block); } else { if (instr->is_double()) { // Don't base result on EFLAGS when a NaN is involved. Instead // jump to the false block. __ Ucomisd(ToDoubleRegister(left), ToDoubleRegister(right)); __ j(parity_even, instr->FalseLabel(chunk_)); } else { int32_t value; if (right->IsConstantOperand()) { value = ToInteger32(LConstantOperand::cast(right)); if (instr->hydrogen_value()->representation().IsSmi()) { __ Cmp(ToRegister(left), Smi::FromInt(value)); } else { __ cmpl(ToRegister(left), Immediate(value)); } } else if (left->IsConstantOperand()) { value = ToInteger32(LConstantOperand::cast(left)); if (instr->hydrogen_value()->representation().IsSmi()) { if (right->IsRegister()) { __ Cmp(ToRegister(right), Smi::FromInt(value)); } else { __ Cmp(ToOperand(right), Smi::FromInt(value)); } } else if (right->IsRegister()) { __ cmpl(ToRegister(right), Immediate(value)); } else { __ cmpl(ToOperand(right), Immediate(value)); } // We commuted the operands, so commute the condition. cc = CommuteCondition(cc); } else if (instr->hydrogen_value()->representation().IsSmi()) { if (right->IsRegister()) { __ cmpp(ToRegister(left), ToRegister(right)); } else { __ cmpp(ToRegister(left), ToOperand(right)); } } else { if (right->IsRegister()) { __ cmpl(ToRegister(left), ToRegister(right)); } else { __ cmpl(ToRegister(left), ToOperand(right)); } } } EmitBranch(instr, cc); } } void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { Register left = ToRegister(instr->left()); if (instr->right()->IsConstantOperand()) { Handle right = ToHandle(LConstantOperand::cast(instr->right())); __ Cmp(left, right); } else { Register right = ToRegister(instr->right()); __ cmpp(left, right); } EmitBranch(instr, equal); } void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) { if (instr->hydrogen()->representation().IsTagged()) { Register input_reg = ToRegister(instr->object()); __ Cmp(input_reg, factory()->the_hole_value()); EmitBranch(instr, equal); return; } XMMRegister input_reg = ToDoubleRegister(instr->object()); __ Ucomisd(input_reg, input_reg); EmitFalseBranch(instr, parity_odd); __ subp(rsp, Immediate(kDoubleSize)); __ Movsd(MemOperand(rsp, 0), input_reg); __ addp(rsp, Immediate(kDoubleSize)); int offset = sizeof(kHoleNanUpper32); __ cmpl(MemOperand(rsp, -offset), Immediate(kHoleNanUpper32)); EmitBranch(instr, equal); } Condition LCodeGen::EmitIsString(Register input, Register temp1, Label* is_not_string, SmiCheck check_needed = INLINE_SMI_CHECK) { if (check_needed == INLINE_SMI_CHECK) { __ JumpIfSmi(input, is_not_string); } Condition cond = masm_->IsObjectStringType(input, temp1, temp1); return cond; } void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { Register reg = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; Condition true_cond = EmitIsString( reg, temp, instr->FalseLabel(chunk_), check_needed); EmitBranch(instr, true_cond); } void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { Condition is_smi; if (instr->value()->IsRegister()) { Register input = ToRegister(instr->value()); is_smi = masm()->CheckSmi(input); } else { Operand input = ToOperand(instr->value()); is_smi = masm()->CheckSmi(input); } EmitBranch(instr, is_smi); } void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); if (!instr->hydrogen()->value()->type().IsHeapObject()) { __ JumpIfSmi(input, instr->FalseLabel(chunk_)); } __ movp(temp, FieldOperand(input, HeapObject::kMapOffset)); __ testb(FieldOperand(temp, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); EmitBranch(instr, not_zero); } void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { DCHECK(ToRegister(instr->context()).is(rsi)); DCHECK(ToRegister(instr->left()).is(rdx)); DCHECK(ToRegister(instr->right()).is(rax)); Handle code = CodeFactory::StringCompare(isolate(), instr->op()).code(); CallCode(code, RelocInfo::CODE_TARGET, instr); __ CompareRoot(rax, Heap::kTrueValueRootIndex); EmitBranch(instr, equal); } static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == FIRST_TYPE) return to; DCHECK(from == to || to == LAST_TYPE); return from; } static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == to) return equal; if (to == LAST_TYPE) return above_equal; if (from == FIRST_TYPE) return below_equal; UNREACHABLE(); return equal; } void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { Register input = ToRegister(instr->value()); if (!instr->hydrogen()->value()->type().IsHeapObject()) { __ JumpIfSmi(input, instr->FalseLabel(chunk_)); } __ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister); EmitBranch(instr, BranchCondition(instr->hydrogen())); } // Branches to a label or falls through with the answer in the z flag. // Trashes the temp register. void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false, Handle class_name, Register input, Register temp, Register temp2) { DCHECK(!input.is(temp)); DCHECK(!input.is(temp2)); DCHECK(!temp.is(temp2)); __ JumpIfSmi(input, is_false); __ CmpObjectType(input, FIRST_FUNCTION_TYPE, temp); STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); if (String::Equals(isolate()->factory()->Function_string(), class_name)) { __ j(above_equal, is_true); } else { __ j(above_equal, is_false); } // Check if the constructor in the map is a function. __ GetMapConstructor(temp, temp, kScratchRegister); // Objects with a non-function constructor have class 'Object'. __ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE); if (String::Equals(class_name, isolate()->factory()->Object_string())) { __ j(not_equal, is_true); } else { __ j(not_equal, is_false); } // temp now contains the constructor function. Grab the // instance class name from there. __ movp(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset)); __ movp(temp, FieldOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset)); // The class name we are testing against is internalized since it's a literal. // The name in the constructor is internalized because of the way the context // is booted. This routine isn't expected to work for random API-created // classes and it doesn't have to because you can't access it with natives // syntax. Since both sides are internalized it is sufficient to use an // identity comparison. DCHECK(class_name->IsInternalizedString()); __ Cmp(temp, class_name); // End with the answer in the z flag. } void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); Register temp2 = ToRegister(instr->temp2()); Handle class_name = instr->hydrogen()->class_name(); EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), class_name, input, temp, temp2); EmitBranch(instr, equal); } void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { Register reg = ToRegister(instr->value()); __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map()); EmitBranch(instr, equal); } void LCodeGen::DoHasInPrototypeChainAndBranch( LHasInPrototypeChainAndBranch* instr) { Register const object = ToRegister(instr->object()); Register const object_map = kScratchRegister; Register const object_prototype = object_map; Register const prototype = ToRegister(instr->prototype()); // The {object} must be a spec object. It's sufficient to know that {object} // is not a smi, since all other non-spec objects have {null} prototypes and // will be ruled out below. if (instr->hydrogen()->ObjectNeedsSmiCheck()) { Condition is_smi = __ CheckSmi(object); EmitFalseBranch(instr, is_smi); } // Loop through the {object}s prototype chain looking for the {prototype}. __ movp(object_map, FieldOperand(object, HeapObject::kMapOffset)); Label loop; __ bind(&loop); // Deoptimize if the object needs to be access checked. __ testb(FieldOperand(object_map, Map::kBitFieldOffset), Immediate(1 << Map::kIsAccessCheckNeeded)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kAccessCheck); // Deoptimize for proxies. __ CmpInstanceType(object_map, JS_PROXY_TYPE); DeoptimizeIf(equal, instr, DeoptimizeReason::kProxy); __ movp(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset)); __ CompareRoot(object_prototype, Heap::kNullValueRootIndex); EmitFalseBranch(instr, equal); __ cmpp(object_prototype, prototype); EmitTrueBranch(instr, equal); __ movp(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset)); __ jmp(&loop); } void LCodeGen::DoCmpT(LCmpT* instr) { DCHECK(ToRegister(instr->context()).is(rsi)); Token::Value op = instr->op(); Handle ic = CodeFactory::CompareIC(isolate(), op).code(); CallCode(ic, RelocInfo::CODE_TARGET, instr); Condition condition = TokenToCondition(op, false); Label true_value, done; __ testp(rax, rax); __ j(condition, &true_value, Label::kNear); __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); __ jmp(&done, Label::kNear); __ bind(&true_value); __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); __ bind(&done); } void LCodeGen::DoReturn(LReturn* instr) { if (FLAG_trace && info()->IsOptimizing()) { // Preserve the return value on the stack and rely on the runtime call // to return the value in the same register. We're leaving the code // managed by the register allocator and tearing down the frame, it's // safe to write to the context register. __ Push(rax); __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kTraceExit); } if (info()->saves_caller_doubles()) { RestoreCallerDoubles(); } if (NeedsEagerFrame()) { __ movp(rsp, rbp); __ popq(rbp); } if (instr->has_constant_parameter_count()) { __ Ret((ToInteger32(instr->constant_parameter_count()) + 1) * kPointerSize, rcx); } else { DCHECK(info()->IsStub()); // Functions would need to drop one more value. Register reg = ToRegister(instr->parameter_count()); // The argument count parameter is a smi __ SmiToInteger32(reg, reg); Register return_addr_reg = reg.is(rcx) ? rbx : rcx; __ PopReturnAddressTo(return_addr_reg); __ shlp(reg, Immediate(kPointerSizeLog2)); __ addp(rsp, reg); __ jmp(return_addr_reg); } } void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ movp(result, ContextOperand(context, instr->slot_index())); if (instr->hydrogen()->RequiresHoleCheck()) { __ CompareRoot(result, Heap::kTheHoleValueRootIndex); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(equal, instr, DeoptimizeReason::kHole); } else { Label is_not_hole; __ j(not_equal, &is_not_hole, Label::kNear); __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ bind(&is_not_hole); } } } void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { Register context = ToRegister(instr->context()); Register value = ToRegister(instr->value()); Operand target = ContextOperand(context, instr->slot_index()); Label skip_assignment; if (instr->hydrogen()->RequiresHoleCheck()) { __ CompareRoot(target, Heap::kTheHoleValueRootIndex); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(equal, instr, DeoptimizeReason::kHole); } else { __ j(not_equal, &skip_assignment); } } __ movp(target, value); if (instr->hydrogen()->NeedsWriteBarrier()) { SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; int offset = Context::SlotOffset(instr->slot_index()); Register scratch = ToRegister(instr->temp()); __ RecordWriteContextSlot(context, offset, value, scratch, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } __ bind(&skip_assignment); } void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { HObjectAccess access = instr->hydrogen()->access(); int offset = access.offset(); if (access.IsExternalMemory()) { Register result = ToRegister(instr->result()); if (instr->object()->IsConstantOperand()) { DCHECK(result.is(rax)); __ load_rax(ToExternalReference(LConstantOperand::cast(instr->object()))); } else { Register object = ToRegister(instr->object()); __ Load(result, MemOperand(object, offset), access.representation()); } return; } Register object = ToRegister(instr->object()); if (instr->hydrogen()->representation().IsDouble()) { DCHECK(access.IsInobject()); XMMRegister result = ToDoubleRegister(instr->result()); __ Movsd(result, FieldOperand(object, offset)); return; } Register result = ToRegister(instr->result()); if (!access.IsInobject()) { __ movp(result, FieldOperand(object, JSObject::kPropertiesOffset)); object = result; } Representation representation = access.representation(); if (representation.IsSmi() && SmiValuesAre32Bits() && instr->hydrogen()->representation().IsInteger32()) { if (FLAG_debug_code) { Register scratch = kScratchRegister; __ Load(scratch, FieldOperand(object, offset), representation); __ AssertSmi(scratch); } // Read int value directly from upper half of the smi. STATIC_ASSERT(kSmiTag == 0); DCHECK(kSmiTagSize + kSmiShiftSize == 32); offset += kPointerSize / 2; representation = Representation::Integer32(); } __ Load(result, FieldOperand(object, offset), representation); } void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { Register function = ToRegister(instr->function()); Register result = ToRegister(instr->result()); // Get the prototype or initial map from the function. __ movp(result, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // Check that the function has a prototype or an initial map. __ CompareRoot(result, Heap::kTheHoleValueRootIndex); DeoptimizeIf(equal, instr, DeoptimizeReason::kHole); // If the function does not have an initial map, we're done. Label done; __ CmpObjectType(result, MAP_TYPE, kScratchRegister); __ j(not_equal, &done, Label::kNear); // Get the prototype from the initial map. __ movp(result, FieldOperand(result, Map::kPrototypeOffset)); // All done. __ bind(&done); } void LCodeGen::DoLoadRoot(LLoadRoot* instr) { Register result = ToRegister(instr->result()); __ LoadRoot(result, instr->index()); } void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { Register arguments = ToRegister(instr->arguments()); Register result = ToRegister(instr->result()); if (instr->length()->IsConstantOperand() && instr->index()->IsConstantOperand()) { int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index())); int32_t const_length = ToInteger32(LConstantOperand::cast(instr->length())); if (const_index >= 0 && const_index < const_length) { StackArgumentsAccessor args(arguments, const_length, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ movp(result, args.GetArgumentOperand(const_index)); } else if (FLAG_debug_code) { __ int3(); } } else { Register length = ToRegister(instr->length()); // There are two words between the frame pointer and the last argument. // Subtracting from length accounts for one of them add one more. if (instr->index()->IsRegister()) { __ subl(length, ToRegister(instr->index())); } else { __ subl(length, ToOperand(instr->index())); } StackArgumentsAccessor args(arguments, length, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ movp(result, args.GetArgumentOperand(0)); } } void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) { ElementsKind elements_kind = instr->elements_kind(); LOperand* key = instr->key(); if (kPointerSize == kInt32Size && !key->IsConstantOperand()) { Register key_reg = ToRegister(key); Representation key_representation = instr->hydrogen()->key()->representation(); if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) { __ SmiToInteger64(key_reg, key_reg); } else if (instr->hydrogen()->IsDehoisted()) { // Sign extend key because it could be a 32 bit negative value // and the dehoisted address computation happens in 64 bits __ movsxlq(key_reg, key_reg); } } Operand operand(BuildFastArrayOperand( instr->elements(), key, instr->hydrogen()->key()->representation(), elements_kind, instr->base_offset())); if (elements_kind == FLOAT32_ELEMENTS) { XMMRegister result(ToDoubleRegister(instr->result())); __ Cvtss2sd(result, operand); } else if (elements_kind == FLOAT64_ELEMENTS) { __ Movsd(ToDoubleRegister(instr->result()), operand); } else { Register result(ToRegister(instr->result())); switch (elements_kind) { case INT8_ELEMENTS: __ movsxbl(result, operand); break; case UINT8_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: __ movzxbl(result, operand); break; case INT16_ELEMENTS: __ movsxwl(result, operand); break; case UINT16_ELEMENTS: __ movzxwl(result, operand); break; case INT32_ELEMENTS: __ movl(result, operand); break; case UINT32_ELEMENTS: __ movl(result, operand); if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { __ testl(result, result); DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue); } break; case FLOAT32_ELEMENTS: case FLOAT64_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: case NO_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) { XMMRegister result(ToDoubleRegister(instr->result())); LOperand* key = instr->key(); if (kPointerSize == kInt32Size && !key->IsConstantOperand() && instr->hydrogen()->IsDehoisted()) { // Sign extend key because it could be a 32 bit negative value // and the dehoisted address computation happens in 64 bits __ movsxlq(ToRegister(key), ToRegister(key)); } if (instr->hydrogen()->RequiresHoleCheck()) { Operand hole_check_operand = BuildFastArrayOperand( instr->elements(), key, instr->hydrogen()->key()->representation(), FAST_DOUBLE_ELEMENTS, instr->base_offset() + sizeof(kHoleNanLower32)); __ cmpl(hole_check_operand, Immediate(kHoleNanUpper32)); DeoptimizeIf(equal, instr, DeoptimizeReason::kHole); } Operand double_load_operand = BuildFastArrayOperand( instr->elements(), key, instr->hydrogen()->key()->representation(), FAST_DOUBLE_ELEMENTS, instr->base_offset()); __ Movsd(result, double_load_operand); } void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) { HLoadKeyed* hinstr = instr->hydrogen(); Register result = ToRegister(instr->result()); LOperand* key = instr->key(); bool requires_hole_check = hinstr->RequiresHoleCheck(); Representation representation = hinstr->representation(); int offset = instr->base_offset(); if (kPointerSize == kInt32Size && !key->IsConstantOperand() && instr->hydrogen()->IsDehoisted()) { // Sign extend key because it could be a 32 bit negative value // and the dehoisted address computation happens in 64 bits __ movsxlq(ToRegister(key), ToRegister(key)); } if (representation.IsInteger32() && SmiValuesAre32Bits() && hinstr->elements_kind() == FAST_SMI_ELEMENTS) { DCHECK(!requires_hole_check); if (FLAG_debug_code) { Register scratch = kScratchRegister; __ Load(scratch, BuildFastArrayOperand(instr->elements(), key, instr->hydrogen()->key()->representation(), FAST_ELEMENTS, offset), Representation::Smi()); __ AssertSmi(scratch); } // Read int value directly from upper half of the smi. STATIC_ASSERT(kSmiTag == 0); DCHECK(kSmiTagSize + kSmiShiftSize == 32); offset += kPointerSize / 2; } __ Load(result, BuildFastArrayOperand(instr->elements(), key, instr->hydrogen()->key()->representation(), FAST_ELEMENTS, offset), representation); // Check for the hole value. if (requires_hole_check) { if (IsFastSmiElementsKind(hinstr->elements_kind())) { Condition smi = __ CheckSmi(result); DeoptimizeIf(NegateCondition(smi), instr, DeoptimizeReason::kNotASmi); } else { __ CompareRoot(result, Heap::kTheHoleValueRootIndex); DeoptimizeIf(equal, instr, DeoptimizeReason::kHole); } } else if (hinstr->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) { DCHECK(hinstr->elements_kind() == FAST_HOLEY_ELEMENTS); Label done; __ CompareRoot(result, Heap::kTheHoleValueRootIndex); __ j(not_equal, &done); if (info()->IsStub()) { // A stub can safely convert the hole to undefined only if the array // protector cell contains (Smi) Isolate::kProtectorValid. Otherwise // it needs to bail out. __ LoadRoot(result, Heap::kArrayProtectorRootIndex); __ Cmp(FieldOperand(result, PropertyCell::kValueOffset), Smi::FromInt(Isolate::kProtectorValid)); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kHole); } __ Move(result, isolate()->factory()->undefined_value()); __ bind(&done); } } void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) { if (instr->is_fixed_typed_array()) { DoLoadKeyedExternalArray(instr); } else if (instr->hydrogen()->representation().IsDouble()) { DoLoadKeyedFixedDoubleArray(instr); } else { DoLoadKeyedFixedArray(instr); } } Operand LCodeGen::BuildFastArrayOperand( LOperand* elements_pointer, LOperand* key, Representation key_representation, ElementsKind elements_kind, uint32_t offset) { Register elements_pointer_reg = ToRegister(elements_pointer); int shift_size = ElementsKindToShiftSize(elements_kind); if (key->IsConstantOperand()) { int32_t constant_value = ToInteger32(LConstantOperand::cast(key)); if (constant_value & 0xF0000000) { Abort(kArrayIndexConstantValueTooBig); } return Operand(elements_pointer_reg, (constant_value << shift_size) + offset); } else { // Guaranteed by ArrayInstructionInterface::KeyedAccessIndexRequirement(). DCHECK(key_representation.IsInteger32()); ScaleFactor scale_factor = static_cast(shift_size); return Operand(elements_pointer_reg, ToRegister(key), scale_factor, offset); } } void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { Register result = ToRegister(instr->result()); if (instr->hydrogen()->from_inlined()) { __ leap(result, Operand(rsp, -kFPOnStackSize + -kPCOnStackSize)); } else if (instr->hydrogen()->arguments_adaptor()) { // Check for arguments adapter frame. Label done, adapted; __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ cmpp(Operand(result, CommonFrameConstants::kContextOrFrameTypeOffset), Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adapted, Label::kNear); // No arguments adaptor frame. __ movp(result, rbp); __ jmp(&done, Label::kNear); // Arguments adaptor frame present. __ bind(&adapted); __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); // Result is the frame pointer for the frame if not adapted and for the real // frame below the adaptor frame if adapted. __ bind(&done); } else { __ movp(result, rbp); } } void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { Register result = ToRegister(instr->result()); Label done; // If no arguments adaptor frame the number of arguments is fixed. if (instr->elements()->IsRegister()) { __ cmpp(rbp, ToRegister(instr->elements())); } else { __ cmpp(rbp, ToOperand(instr->elements())); } __ movl(result, Immediate(scope()->num_parameters())); __ j(equal, &done, Label::kNear); // Arguments adaptor frame present. Get argument length from there. __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ SmiToInteger32(result, Operand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Argument length is in result register. __ bind(&done); } void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); // If the receiver is null or undefined, we have to pass the global // object as a receiver to normal functions. Values have to be // passed unchanged to builtins and strict-mode functions. Label global_object, receiver_ok; Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear; if (!instr->hydrogen()->known_function()) { // Do not transform the receiver to object for strict mode // functions. __ movp(kScratchRegister, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset)); __ testb(FieldOperand(kScratchRegister, SharedFunctionInfo::kStrictModeByteOffset), Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte)); __ j(not_equal, &receiver_ok, dist); // Do not transform the receiver to object for builtins. __ testb(FieldOperand(kScratchRegister, SharedFunctionInfo::kNativeByteOffset), Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte)); __ j(not_equal, &receiver_ok, dist); } // Normal function. Replace undefined or null with global receiver. __ CompareRoot(receiver, Heap::kNullValueRootIndex); __ j(equal, &global_object, dist); __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex); __ j(equal, &global_object, dist); // The receiver should be a JS object. Condition is_smi = __ CheckSmi(receiver); DeoptimizeIf(is_smi, instr, DeoptimizeReason::kSmi); __ CmpObjectType(receiver, FIRST_JS_RECEIVER_TYPE, kScratchRegister); DeoptimizeIf(below, instr, DeoptimizeReason::kNotAJavaScriptObject); __ jmp(&receiver_ok, dist); __ bind(&global_object); __ movp(receiver, FieldOperand(function, JSFunction::kContextOffset)); __ movp(receiver, ContextOperand(receiver, Context::NATIVE_CONTEXT_INDEX)); __ movp(receiver, ContextOperand(receiver, Context::GLOBAL_PROXY_INDEX)); __ bind(&receiver_ok); } void LCodeGen::DoApplyArguments(LApplyArguments* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register length = ToRegister(instr->length()); Register elements = ToRegister(instr->elements()); DCHECK(receiver.is(rax)); // Used for parameter count. DCHECK(function.is(rdi)); // Required by InvokeFunction. DCHECK(ToRegister(instr->result()).is(rax)); // Copy the arguments to this function possibly from the // adaptor frame below it. const uint32_t kArgumentsLimit = 1 * KB; __ cmpp(length, Immediate(kArgumentsLimit)); DeoptimizeIf(above, instr, DeoptimizeReason::kTooManyArguments); __ Push(receiver); __ movp(receiver, length); // Loop through the arguments pushing them onto the execution // stack. Label invoke, loop; // length is a small non-negative integer, due to the test above. __ testl(length, length); __ j(zero, &invoke, Label::kNear); __ bind(&loop); StackArgumentsAccessor args(elements, length, ARGUMENTS_DONT_CONTAIN_RECEIVER); __ Push(args.GetArgumentOperand(0)); __ decl(length); __ j(not_zero, &loop); // Invoke the function. __ bind(&invoke); InvokeFlag flag = CALL_FUNCTION; if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) { DCHECK(!info()->saves_caller_doubles()); // TODO(ishell): drop current frame before pushing arguments to the stack. flag = JUMP_FUNCTION; ParameterCount actual(rax); // It is safe to use rbx, rcx and r8 as scratch registers here given that // 1) we are not going to return to caller function anyway, // 2) rbx (expected number of arguments) will be initialized below. PrepareForTailCall(actual, rbx, rcx, r8); } DCHECK(instr->HasPointerMap()); LPointerMap* pointers = instr->pointer_map(); SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount actual(rax); __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator); } void LCodeGen::DoPushArgument(LPushArgument* instr) { LOperand* argument = instr->value(); EmitPushTaggedOperand(argument); } void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); } void LCodeGen::DoThisFunction(LThisFunction* instr) { Register result = ToRegister(instr->result()); __ movp(result, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } void LCodeGen::DoContext(LContext* instr) { Register result = ToRegister(instr->result()); if (info()->IsOptimizing()) { __ movp(result, Operand(rbp, StandardFrameConstants::kContextOffset)); } else { // If there is no frame, the context must be in rsi. DCHECK(result.is(rsi)); } } void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { DCHECK(ToRegister(instr->context()).is(rsi)); __ Push(instr->hydrogen()->declarations()); __ Push(Smi::FromInt(instr->hydrogen()->flags())); __ Push(instr->hydrogen()->feedback_vector()); CallRuntime(Runtime::kDeclareGlobals, instr); } void LCodeGen::CallKnownFunction(Handle function, int formal_parameter_count, int arity, bool is_tail_call, LInstruction* instr) { bool dont_adapt_arguments = formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; bool can_invoke_directly = dont_adapt_arguments || formal_parameter_count == arity; Register function_reg = rdi; LPointerMap* pointers = instr->pointer_map(); if (can_invoke_directly) { // Change context. __ movp(rsi, FieldOperand(function_reg, JSFunction::kContextOffset)); // Always initialize new target and number of actual arguments. __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ Set(rax, arity); bool is_self_call = function.is_identical_to(info()->closure()); // Invoke function. if (is_self_call) { Handle self(reinterpret_cast(__ CodeObject().location())); if (is_tail_call) { __ Jump(self, RelocInfo::CODE_TARGET); } else { __ Call(self, RelocInfo::CODE_TARGET); } } else { Operand target = FieldOperand(function_reg, JSFunction::kCodeEntryOffset); if (is_tail_call) { __ Jump(target); } else { __ Call(target); } } if (!is_tail_call) { // Set up deoptimization. RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0); } } else { // We need to adapt arguments. SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount actual(arity); ParameterCount expected(formal_parameter_count); InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION; __ InvokeFunction(function_reg, no_reg, expected, actual, flag, generator); } } void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { DCHECK(ToRegister(instr->result()).is(rax)); if (instr->hydrogen()->IsTailCall()) { if (NeedsEagerFrame()) __ leave(); if (instr->target()->IsConstantOperand()) { LConstantOperand* target = LConstantOperand::cast(instr->target()); Handle code = Handle::cast(ToHandle(target)); __ jmp(code, RelocInfo::CODE_TARGET); } else { DCHECK(instr->target()->IsRegister()); Register target = ToRegister(instr->target()); __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(target); } } else { LPointerMap* pointers = instr->pointer_map(); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); if (instr->target()->IsConstantOperand()) { LConstantOperand* target = LConstantOperand::cast(instr->target()); Handle code = Handle::cast(ToHandle(target)); generator.BeforeCall(__ CallSize(code)); __ call(code, RelocInfo::CODE_TARGET); } else { DCHECK(instr->target()->IsRegister()); Register target = ToRegister(instr->target()); generator.BeforeCall(__ CallSize(target)); __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ call(target); } generator.AfterCall(); } } void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) { Register input_reg = ToRegister(instr->value()); __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber); Label slow, allocated, done; uint32_t available_regs = rax.bit() | rcx.bit() | rdx.bit() | rbx.bit(); available_regs &= ~input_reg.bit(); if (instr->context()->IsRegister()) { // Make sure that the context isn't overwritten in the AllocateHeapNumber // macro below. available_regs &= ~ToRegister(instr->context()).bit(); } Register tmp = Register::from_code(base::bits::CountTrailingZeros32(available_regs)); available_regs &= ~tmp.bit(); Register tmp2 = Register::from_code(base::bits::CountTrailingZeros32(available_regs)); // Preserve the value of all registers. PushSafepointRegistersScope scope(this); __ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, just // return it. We do not need to patch the stack since |input| and // |result| are the same register and |input| will be restored // unchanged by popping safepoint registers. __ testl(tmp, Immediate(HeapNumber::kSignMask)); __ j(zero, &done); __ AllocateHeapNumber(tmp, tmp2, &slow); __ jmp(&allocated, Label::kNear); // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); CallRuntimeFromDeferred( Runtime::kAllocateHeapNumber, 0, instr, instr->context()); // Set the pointer to the new heap number in tmp. if (!tmp.is(rax)) __ movp(tmp, rax); // Restore input_reg after call to runtime. __ LoadFromSafepointRegisterSlot(input_reg, input_reg); __ bind(&allocated); __ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ shlq(tmp2, Immediate(1)); __ shrq(tmp2, Immediate(1)); __ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2); __ StoreToSafepointRegisterSlot(input_reg, tmp); __ bind(&done); } void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) { Register input_reg = ToRegister(instr->value()); __ testl(input_reg, input_reg); Label is_positive; __ j(not_sign, &is_positive, Label::kNear); __ negl(input_reg); // Sets flags. DeoptimizeIf(negative, instr, DeoptimizeReason::kOverflow); __ bind(&is_positive); } void LCodeGen::EmitSmiMathAbs(LMathAbs* instr) { Register input_reg = ToRegister(instr->value()); __ testp(input_reg, input_reg); Label is_positive; __ j(not_sign, &is_positive, Label::kNear); __ negp(input_reg); // Sets flags. DeoptimizeIf(negative, instr, DeoptimizeReason::kOverflow); __ bind(&is_positive); } void LCodeGen::DoMathAbs(LMathAbs* instr) { // Class for deferred case. class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode { public: DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); } LInstruction* instr() override { return instr_; } private: LMathAbs* instr_; }; DCHECK(instr->value()->Equals(instr->result())); Representation r = instr->hydrogen()->value()->representation(); if (r.IsDouble()) { XMMRegister scratch = double_scratch0(); XMMRegister input_reg = ToDoubleRegister(instr->value()); __ Xorpd(scratch, scratch); __ Subsd(scratch, input_reg); __ Andpd(input_reg, scratch); } else if (r.IsInteger32()) { EmitIntegerMathAbs(instr); } else if (r.IsSmi()) { EmitSmiMathAbs(instr); } else { // Tagged case. DeferredMathAbsTaggedHeapNumber* deferred = new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr); Register input_reg = ToRegister(instr->value()); // Smi check. __ JumpIfNotSmi(input_reg, deferred->entry()); EmitSmiMathAbs(instr); __ bind(deferred->exit()); } } void LCodeGen::DoMathFloorD(LMathFloorD* instr) { XMMRegister output_reg = ToDoubleRegister(instr->result()); XMMRegister input_reg = ToDoubleRegister(instr->value()); CpuFeatureScope scope(masm(), SSE4_1); __ Roundsd(output_reg, input_reg, kRoundDown); } void LCodeGen::DoMathFloorI(LMathFloorI* instr) { XMMRegister xmm_scratch = double_scratch0(); Register output_reg = ToRegister(instr->result()); XMMRegister input_reg = ToDoubleRegister(instr->value()); if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope scope(masm(), SSE4_1); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Deoptimize if minus zero. __ Movq(output_reg, input_reg); __ subq(output_reg, Immediate(1)); DeoptimizeIf(overflow, instr, DeoptimizeReason::kMinusZero); } __ Roundsd(xmm_scratch, input_reg, kRoundDown); __ Cvttsd2si(output_reg, xmm_scratch); __ cmpl(output_reg, Immediate(0x1)); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } else { Label negative_sign, done; // Deoptimize on unordered. __ Xorpd(xmm_scratch, xmm_scratch); // Zero the register. __ Ucomisd(input_reg, xmm_scratch); DeoptimizeIf(parity_even, instr, DeoptimizeReason::kNaN); __ j(below, &negative_sign, Label::kNear); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Check for negative zero. Label positive_sign; __ j(above, &positive_sign, Label::kNear); __ Movmskpd(output_reg, input_reg); __ testl(output_reg, Immediate(1)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero); __ Set(output_reg, 0); __ jmp(&done); __ bind(&positive_sign); } // Use truncating instruction (OK because input is positive). __ Cvttsd2si(output_reg, input_reg); // Overflow is signalled with minint. __ cmpl(output_reg, Immediate(0x1)); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); __ jmp(&done, Label::kNear); // Non-zero negative reaches here. __ bind(&negative_sign); // Truncate, then compare and compensate. __ Cvttsd2si(output_reg, input_reg); __ Cvtlsi2sd(xmm_scratch, output_reg); __ Ucomisd(input_reg, xmm_scratch); __ j(equal, &done, Label::kNear); __ subl(output_reg, Immediate(1)); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); __ bind(&done); } } void LCodeGen::DoMathRoundD(LMathRoundD* instr) { XMMRegister xmm_scratch = double_scratch0(); XMMRegister output_reg = ToDoubleRegister(instr->result()); XMMRegister input_reg = ToDoubleRegister(instr->value()); CpuFeatureScope scope(masm(), SSE4_1); Label done; __ Roundsd(output_reg, input_reg, kRoundUp); __ Move(xmm_scratch, -0.5); __ Addsd(xmm_scratch, output_reg); __ Ucomisd(xmm_scratch, input_reg); __ j(below_equal, &done, Label::kNear); __ Move(xmm_scratch, 1.0); __ Subsd(output_reg, xmm_scratch); __ bind(&done); } void LCodeGen::DoMathRoundI(LMathRoundI* instr) { const XMMRegister xmm_scratch = double_scratch0(); Register output_reg = ToRegister(instr->result()); XMMRegister input_reg = ToDoubleRegister(instr->value()); XMMRegister input_temp = ToDoubleRegister(instr->temp()); static int64_t one_half = V8_INT64_C(0x3FE0000000000000); // 0.5 static int64_t minus_one_half = V8_INT64_C(0xBFE0000000000000); // -0.5 Label done, round_to_zero, below_one_half; Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear; __ movq(kScratchRegister, one_half); __ Movq(xmm_scratch, kScratchRegister); __ Ucomisd(xmm_scratch, input_reg); __ j(above, &below_one_half, Label::kNear); // CVTTSD2SI rounds towards zero, since 0.5 <= x, we use floor(0.5 + x). __ Addsd(xmm_scratch, input_reg); __ Cvttsd2si(output_reg, xmm_scratch); // Overflow is signalled with minint. __ cmpl(output_reg, Immediate(0x1)); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); __ jmp(&done, dist); __ bind(&below_one_half); __ movq(kScratchRegister, minus_one_half); __ Movq(xmm_scratch, kScratchRegister); __ Ucomisd(xmm_scratch, input_reg); __ j(below_equal, &round_to_zero, Label::kNear); // CVTTSD2SI rounds towards zero, we use ceil(x - (-0.5)) and then // compare and compensate. __ Movapd(input_temp, input_reg); // Do not alter input_reg. __ Subsd(input_temp, xmm_scratch); __ Cvttsd2si(output_reg, input_temp); // Catch minint due to overflow, and to prevent overflow when compensating. __ cmpl(output_reg, Immediate(0x1)); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); __ Cvtlsi2sd(xmm_scratch, output_reg); __ Ucomisd(xmm_scratch, input_temp); __ j(equal, &done, dist); __ subl(output_reg, Immediate(1)); // No overflow because we already ruled out minint. __ jmp(&done, dist); __ bind(&round_to_zero); // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if // we can ignore the difference between a result of -0 and +0. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ Movq(output_reg, input_reg); __ testq(output_reg, output_reg); DeoptimizeIf(negative, instr, DeoptimizeReason::kMinusZero); } __ Set(output_reg, 0); __ bind(&done); } void LCodeGen::DoMathFround(LMathFround* instr) { XMMRegister input_reg = ToDoubleRegister(instr->value()); XMMRegister output_reg = ToDoubleRegister(instr->result()); __ Cvtsd2ss(output_reg, input_reg); __ Cvtss2sd(output_reg, output_reg); } void LCodeGen::DoMathSqrt(LMathSqrt* instr) { XMMRegister output = ToDoubleRegister(instr->result()); if (instr->value()->IsDoubleRegister()) { XMMRegister input = ToDoubleRegister(instr->value()); __ Sqrtsd(output, input); } else { Operand input = ToOperand(instr->value()); __ Sqrtsd(output, input); } } void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { XMMRegister xmm_scratch = double_scratch0(); XMMRegister input_reg = ToDoubleRegister(instr->value()); DCHECK(ToDoubleRegister(instr->result()).is(input_reg)); // Note that according to ECMA-262 15.8.2.13: // Math.pow(-Infinity, 0.5) == Infinity // Math.sqrt(-Infinity) == NaN Label done, sqrt; // Check base for -Infinity. According to IEEE-754, double-precision // -Infinity has the highest 12 bits set and the lowest 52 bits cleared. __ movq(kScratchRegister, V8_INT64_C(0xFFF0000000000000)); __ Movq(xmm_scratch, kScratchRegister); __ Ucomisd(xmm_scratch, input_reg); // Comparing -Infinity with NaN results in "unordered", which sets the // zero flag as if both were equal. However, it also sets the carry flag. __ j(not_equal, &sqrt, Label::kNear); __ j(carry, &sqrt, Label::kNear); // If input is -Infinity, return Infinity. __ Xorpd(input_reg, input_reg); __ Subsd(input_reg, xmm_scratch); __ jmp(&done, Label::kNear); // Square root. __ bind(&sqrt); __ Xorpd(xmm_scratch, xmm_scratch); __ Addsd(input_reg, xmm_scratch); // Convert -0 to +0. __ Sqrtsd(input_reg, input_reg); __ bind(&done); } void LCodeGen::DoPower(LPower* instr) { Representation exponent_type = instr->hydrogen()->right()->representation(); // Having marked this as a call, we can use any registers. // Just make sure that the input/output registers are the expected ones. Register tagged_exponent = MathPowTaggedDescriptor::exponent(); DCHECK(!instr->right()->IsRegister() || ToRegister(instr->right()).is(tagged_exponent)); DCHECK(!instr->right()->IsDoubleRegister() || ToDoubleRegister(instr->right()).is(xmm1)); DCHECK(ToDoubleRegister(instr->left()).is(xmm2)); DCHECK(ToDoubleRegister(instr->result()).is(xmm3)); if (exponent_type.IsSmi()) { MathPowStub stub(isolate(), MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsTagged()) { Label no_deopt; __ JumpIfSmi(tagged_exponent, &no_deopt, Label::kNear); __ CmpObjectType(tagged_exponent, HEAP_NUMBER_TYPE, rcx); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber); __ bind(&no_deopt); MathPowStub stub(isolate(), MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsInteger32()) { MathPowStub stub(isolate(), MathPowStub::INTEGER); __ CallStub(&stub); } else { DCHECK(exponent_type.IsDouble()); MathPowStub stub(isolate(), MathPowStub::DOUBLE); __ CallStub(&stub); } } void LCodeGen::DoMathCos(LMathCos* instr) { DCHECK(ToDoubleRegister(instr->value()).is(xmm0)); DCHECK(ToDoubleRegister(instr->result()).is(xmm0)); __ PrepareCallCFunction(1); __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 1); } void LCodeGen::DoMathExp(LMathExp* instr) { DCHECK(ToDoubleRegister(instr->value()).is(xmm0)); DCHECK(ToDoubleRegister(instr->result()).is(xmm0)); __ PrepareCallCFunction(1); __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 1); } void LCodeGen::DoMathSin(LMathSin* instr) { DCHECK(ToDoubleRegister(instr->value()).is(xmm0)); DCHECK(ToDoubleRegister(instr->result()).is(xmm0)); __ PrepareCallCFunction(1); __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 1); } void LCodeGen::DoMathLog(LMathLog* instr) { DCHECK(ToDoubleRegister(instr->value()).is(xmm0)); DCHECK(ToDoubleRegister(instr->result()).is(xmm0)); __ PrepareCallCFunction(1); __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 1); } void LCodeGen::DoMathClz32(LMathClz32* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); __ Lzcntl(result, input); } void LCodeGen::PrepareForTailCall(const ParameterCount& actual, Register scratch1, Register scratch2, Register scratch3) { #if DEBUG if (actual.is_reg()) { DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3)); } else { DCHECK(!AreAliased(scratch1, scratch2, scratch3)); } #endif if (FLAG_code_comments) { if (actual.is_reg()) { Comment(";;; PrepareForTailCall, actual: %s {", RegisterConfiguration::Crankshaft()->GetGeneralRegisterName( actual.reg().code())); } else { Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate()); } } // Check if next frame is an arguments adaptor frame. Register caller_args_count_reg = scratch1; Label no_arguments_adaptor, formal_parameter_count_loaded; __ movp(scratch2, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ cmpp(Operand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset), Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); __ j(not_equal, &no_arguments_adaptor, Label::kNear); // Drop current frame and load arguments count from arguments adaptor frame. __ movp(rbp, scratch2); __ SmiToInteger32( caller_args_count_reg, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ jmp(&formal_parameter_count_loaded, Label::kNear); __ bind(&no_arguments_adaptor); // Load caller's formal parameter count. __ movp(caller_args_count_reg, Immediate(info()->literal()->parameter_count())); __ bind(&formal_parameter_count_loaded); __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3, ReturnAddressState::kNotOnStack); Comment(";;; }"); } void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { HInvokeFunction* hinstr = instr->hydrogen(); DCHECK(ToRegister(instr->context()).is(rsi)); DCHECK(ToRegister(instr->function()).is(rdi)); DCHECK(instr->HasPointerMap()); bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow; if (is_tail_call) { DCHECK(!info()->saves_caller_doubles()); ParameterCount actual(instr->arity()); // It is safe to use rbx, rcx and r8 as scratch registers here given that // 1) we are not going to return to caller function anyway, // 2) rbx (expected number of arguments) will be initialized below. PrepareForTailCall(actual, rbx, rcx, r8); } Handle known_function = hinstr->known_function(); if (known_function.is_null()) { LPointerMap* pointers = instr->pointer_map(); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount actual(instr->arity()); InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION; __ InvokeFunction(rdi, no_reg, actual, flag, generator); } else { CallKnownFunction(known_function, hinstr->formal_parameter_count(), instr->arity(), is_tail_call, instr); } } void LCodeGen::DoCallNewArray(LCallNewArray* instr) { DCHECK(ToRegister(instr->context()).is(rsi)); DCHECK(ToRegister(instr->constructor()).is(rdi)); DCHECK(ToRegister(instr->result()).is(rax)); __ Set(rax, instr->arity()); __ Move(rbx, instr->hydrogen()->site()); ElementsKind kind = instr->hydrogen()->elements_kind(); AllocationSiteOverrideMode override_mode = (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) ? DISABLE_ALLOCATION_SITES : DONT_OVERRIDE; if (instr->arity() == 0) { ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else if (instr->arity() == 1) { Label done; if (IsFastPackedElementsKind(kind)) { Label packed_case; // We might need a change here // look at the first argument __ movp(rcx, Operand(rsp, 0)); __ testp(rcx, rcx); __ j(zero, &packed_case, Label::kNear); ElementsKind holey_kind = GetHoleyElementsKind(kind); ArraySingleArgumentConstructorStub stub(isolate(), holey_kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ jmp(&done, Label::kNear); __ bind(&packed_case); } ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ bind(&done); } else { ArrayNArgumentsConstructorStub stub(isolate()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } } void LCodeGen::DoCallRuntime(LCallRuntime* instr) { DCHECK(ToRegister(instr->context()).is(rsi)); CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles()); } void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { Register function = ToRegister(instr->function()); Register code_object = ToRegister(instr->code_object()); __ leap(code_object, FieldOperand(code_object, Code::kHeaderSize)); __ movp(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object); } void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { Register result = ToRegister(instr->result()); Register base = ToRegister(instr->base_object()); if (instr->offset()->IsConstantOperand()) { LConstantOperand* offset = LConstantOperand::cast(instr->offset()); __ leap(result, Operand(base, ToInteger32(offset))); } else { Register offset = ToRegister(instr->offset()); __ leap(result, Operand(base, offset, times_1, 0)); } } void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { HStoreNamedField* hinstr = instr->hydrogen(); Representation representation = instr->representation(); HObjectAccess access = hinstr->access(); int offset = access.offset(); if (access.IsExternalMemory()) { DCHECK(!hinstr->NeedsWriteBarrier()); Register value = ToRegister(instr->value()); if (instr->object()->IsConstantOperand()) { DCHECK(value.is(rax)); LConstantOperand* object = LConstantOperand::cast(instr->object()); __ store_rax(ToExternalReference(object)); } else { Register object = ToRegister(instr->object()); __ Store(MemOperand(object, offset), value, representation); } return; } Register object = ToRegister(instr->object()); __ AssertNotSmi(object); DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() || IsInteger32Constant(LConstantOperand::cast(instr->value()))); if (!FLAG_unbox_double_fields && representation.IsDouble()) { DCHECK(access.IsInobject()); DCHECK(!hinstr->has_transition()); DCHECK(!hinstr->NeedsWriteBarrier()); XMMRegister value = ToDoubleRegister(instr->value()); __ Movsd(FieldOperand(object, offset), value); return; } if (hinstr->has_transition()) { Handle transition = hinstr->transition_map(); AddDeprecationDependency(transition); if (!hinstr->NeedsWriteBarrierForMap()) { __ Move(FieldOperand(object, HeapObject::kMapOffset), transition); } else { Register temp = ToRegister(instr->temp()); __ Move(kScratchRegister, transition); __ movp(FieldOperand(object, HeapObject::kMapOffset), kScratchRegister); // Update the write barrier for the map field. __ RecordWriteForMap(object, kScratchRegister, temp, kSaveFPRegs); } } // Do the store. Register write_register = object; if (!access.IsInobject()) { write_register = ToRegister(instr->temp()); __ movp(write_register, FieldOperand(object, JSObject::kPropertiesOffset)); } if (representation.IsSmi() && SmiValuesAre32Bits() && hinstr->value()->representation().IsInteger32()) { DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY); if (FLAG_debug_code) { Register scratch = kScratchRegister; __ Load(scratch, FieldOperand(write_register, offset), representation); __ AssertSmi(scratch); } // Store int value directly to upper half of the smi. STATIC_ASSERT(kSmiTag == 0); DCHECK(kSmiTagSize + kSmiShiftSize == 32); offset += kPointerSize / 2; representation = Representation::Integer32(); } Operand operand = FieldOperand(write_register, offset); if (FLAG_unbox_double_fields && representation.IsDouble()) { DCHECK(access.IsInobject()); XMMRegister value = ToDoubleRegister(instr->value()); __ Movsd(operand, value); } else if (instr->value()->IsRegister()) { Register value = ToRegister(instr->value()); __ Store(operand, value, representation); } else { LConstantOperand* operand_value = LConstantOperand::cast(instr->value()); if (IsInteger32Constant(operand_value)) { DCHECK(!hinstr->NeedsWriteBarrier()); int32_t value = ToInteger32(operand_value); if (representation.IsSmi()) { __ Move(operand, Smi::FromInt(value)); } else { __ movl(operand, Immediate(value)); } } else if (IsExternalConstant(operand_value)) { DCHECK(!hinstr->NeedsWriteBarrier()); ExternalReference ptr = ToExternalReference(operand_value); __ Move(kScratchRegister, ptr); __ movp(operand, kScratchRegister); } else { Handle handle_value = ToHandle(operand_value); DCHECK(!hinstr->NeedsWriteBarrier()); __ Move(operand, handle_value); } } if (hinstr->NeedsWriteBarrier()) { Register value = ToRegister(instr->value()); Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object; // Update the write barrier for the object for in-object properties. __ RecordWriteField(write_register, offset, value, temp, kSaveFPRegs, EMIT_REMEMBERED_SET, hinstr->SmiCheckForWriteBarrier(), hinstr->PointersToHereCheckForValue()); } } void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { Representation representation = instr->hydrogen()->length()->representation(); DCHECK(representation.Equals(instr->hydrogen()->index()->representation())); DCHECK(representation.IsSmiOrInteger32()); Condition cc = instr->hydrogen()->allow_equality() ? below : below_equal; if (instr->length()->IsConstantOperand()) { int32_t length = ToInteger32(LConstantOperand::cast(instr->length())); Register index = ToRegister(instr->index()); if (representation.IsSmi()) { __ Cmp(index, Smi::FromInt(length)); } else { __ cmpl(index, Immediate(length)); } cc = CommuteCondition(cc); } else if (instr->index()->IsConstantOperand()) { int32_t index = ToInteger32(LConstantOperand::cast(instr->index())); if (instr->length()->IsRegister()) { Register length = ToRegister(instr->length()); if (representation.IsSmi()) { __ Cmp(length, Smi::FromInt(index)); } else { __ cmpl(length, Immediate(index)); } } else { Operand length = ToOperand(instr->length()); if (representation.IsSmi()) { __ Cmp(length, Smi::FromInt(index)); } else { __ cmpl(length, Immediate(index)); } } } else { Register index = ToRegister(instr->index()); if (instr->length()->IsRegister()) { Register length = ToRegister(instr->length()); if (representation.IsSmi()) { __ cmpp(length, index); } else { __ cmpl(length, index); } } else { Operand length = ToOperand(instr->length()); if (representation.IsSmi()) { __ cmpp(length, index); } else { __ cmpl(length, index); } } } if (FLAG_debug_code && instr->hydrogen()->skip_check()) { Label done; __ j(NegateCondition(cc), &done, Label::kNear); __ int3(); __ bind(&done); } else { DeoptimizeIf(cc, instr, DeoptimizeReason::kOutOfBounds); } } void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) { ElementsKind elements_kind = instr->elements_kind(); LOperand* key = instr->key(); if (kPointerSize == kInt32Size && !key->IsConstantOperand()) { Register key_reg = ToRegister(key); Representation key_representation = instr->hydrogen()->key()->representation(); if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) { __ SmiToInteger64(key_reg, key_reg); } else if (instr->hydrogen()->IsDehoisted()) { // Sign extend key because it could be a 32 bit negative value // and the dehoisted address computation happens in 64 bits __ movsxlq(key_reg, key_reg); } } Operand operand(BuildFastArrayOperand( instr->elements(), key, instr->hydrogen()->key()->representation(), elements_kind, instr->base_offset())); if (elements_kind == FLOAT32_ELEMENTS) { XMMRegister value(ToDoubleRegister(instr->value())); __ Cvtsd2ss(value, value); __ Movss(operand, value); } else if (elements_kind == FLOAT64_ELEMENTS) { __ Movsd(operand, ToDoubleRegister(instr->value())); } else { Register value(ToRegister(instr->value())); switch (elements_kind) { case INT8_ELEMENTS: case UINT8_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: __ movb(operand, value); break; case INT16_ELEMENTS: case UINT16_ELEMENTS: __ movw(operand, value); break; case INT32_ELEMENTS: case UINT32_ELEMENTS: __ movl(operand, value); break; case FLOAT32_ELEMENTS: case FLOAT64_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case DICTIONARY_ELEMENTS: case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: case NO_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) { XMMRegister value = ToDoubleRegister(instr->value()); LOperand* key = instr->key(); if (kPointerSize == kInt32Size && !key->IsConstantOperand() && instr->hydrogen()->IsDehoisted()) { // Sign extend key because it could be a 32 bit negative value // and the dehoisted address computation happens in 64 bits __ movsxlq(ToRegister(key), ToRegister(key)); } if (instr->NeedsCanonicalization()) { XMMRegister xmm_scratch = double_scratch0(); // Turn potential sNaN value into qNaN. __ Xorpd(xmm_scratch, xmm_scratch); __ Subsd(value, xmm_scratch); } Operand double_store_operand = BuildFastArrayOperand( instr->elements(), key, instr->hydrogen()->key()->representation(), FAST_DOUBLE_ELEMENTS, instr->base_offset()); __ Movsd(double_store_operand, value); } void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) { HStoreKeyed* hinstr = instr->hydrogen(); LOperand* key = instr->key(); int offset = instr->base_offset(); Representation representation = hinstr->value()->representation(); if (kPointerSize == kInt32Size && !key->IsConstantOperand() && instr->hydrogen()->IsDehoisted()) { // Sign extend key because it could be a 32 bit negative value // and the dehoisted address computation happens in 64 bits __ movsxlq(ToRegister(key), ToRegister(key)); } if (representation.IsInteger32() && SmiValuesAre32Bits()) { DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY); DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS); if (FLAG_debug_code) { Register scratch = kScratchRegister; __ Load(scratch, BuildFastArrayOperand(instr->elements(), key, instr->hydrogen()->key()->representation(), FAST_ELEMENTS, offset), Representation::Smi()); __ AssertSmi(scratch); } // Store int value directly to upper half of the smi. STATIC_ASSERT(kSmiTag == 0); DCHECK(kSmiTagSize + kSmiShiftSize == 32); offset += kPointerSize / 2; } Operand operand = BuildFastArrayOperand(instr->elements(), key, instr->hydrogen()->key()->representation(), FAST_ELEMENTS, offset); if (instr->value()->IsRegister()) { __ Store(operand, ToRegister(instr->value()), representation); } else { LConstantOperand* operand_value = LConstantOperand::cast(instr->value()); if (IsInteger32Constant(operand_value)) { int32_t value = ToInteger32(operand_value); if (representation.IsSmi()) { __ Move(operand, Smi::FromInt(value)); } else { __ movl(operand, Immediate(value)); } } else { Handle handle_value = ToHandle(operand_value); __ Move(operand, handle_value); } } if (hinstr->NeedsWriteBarrier()) { Register elements = ToRegister(instr->elements()); DCHECK(instr->value()->IsRegister()); Register value = ToRegister(instr->value()); DCHECK(!key->IsConstantOperand()); SmiCheck check_needed = hinstr->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; // Compute address of modified element and store it into key register. Register key_reg(ToRegister(key)); __ leap(key_reg, operand); __ RecordWrite(elements, key_reg, value, kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed, hinstr->PointersToHereCheckForValue()); } } void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) { if (instr->is_fixed_typed_array()) { DoStoreKeyedExternalArray(instr); } else if (instr->hydrogen()->value()->representation().IsDouble()) { DoStoreKeyedFixedDoubleArray(instr); } else { DoStoreKeyedFixedArray(instr); } } void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) { class DeferredMaybeGrowElements final : public LDeferredCode { public: DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr) : LDeferredCode(codegen), instr_(instr) {} void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); } LInstruction* instr() override { return instr_; } private: LMaybeGrowElements* instr_; }; Register result = rax; DeferredMaybeGrowElements* deferred = new (zone()) DeferredMaybeGrowElements(this, instr); LOperand* key = instr->key(); LOperand* current_capacity = instr->current_capacity(); DCHECK(instr->hydrogen()->key()->representation().IsInteger32()); DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32()); DCHECK(key->IsConstantOperand() || key->IsRegister()); DCHECK(current_capacity->IsConstantOperand() || current_capacity->IsRegister()); if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) { int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); int32_t constant_capacity = ToInteger32(LConstantOperand::cast(current_capacity)); if (constant_key >= constant_capacity) { // Deferred case. __ jmp(deferred->entry()); } } else if (key->IsConstantOperand()) { int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); __ cmpl(ToRegister(current_capacity), Immediate(constant_key)); __ j(less_equal, deferred->entry()); } else if (current_capacity->IsConstantOperand()) { int32_t constant_capacity = ToInteger32(LConstantOperand::cast(current_capacity)); __ cmpl(ToRegister(key), Immediate(constant_capacity)); __ j(greater_equal, deferred->entry()); } else { __ cmpl(ToRegister(key), ToRegister(current_capacity)); __ j(greater_equal, deferred->entry()); } if (instr->elements()->IsRegister()) { __ movp(result, ToRegister(instr->elements())); } else { __ movp(result, ToOperand(instr->elements())); } __ bind(deferred->exit()); } void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register result = rax; __ Move(result, Smi::kZero); // We have to call a stub. { PushSafepointRegistersScope scope(this); if (instr->object()->IsConstantOperand()) { LConstantOperand* constant_object = LConstantOperand::cast(instr->object()); if (IsSmiConstant(constant_object)) { Smi* immediate = ToSmi(constant_object); __ Move(result, immediate); } else { Handle handle_value = ToHandle(constant_object); __ Move(result, handle_value); } } else if (instr->object()->IsRegister()) { __ Move(result, ToRegister(instr->object())); } else { __ movp(result, ToOperand(instr->object())); } LOperand* key = instr->key(); if (key->IsConstantOperand()) { __ Move(rbx, ToSmi(LConstantOperand::cast(key))); } else { __ Move(rbx, ToRegister(key)); __ Integer32ToSmi(rbx, rbx); } GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind()); __ CallStub(&stub); RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0); __ StoreToSafepointRegisterSlot(result, result); } // Deopt on smi, which means the elements array changed to dictionary mode. Condition is_smi = __ CheckSmi(result); DeoptimizeIf(is_smi, instr, DeoptimizeReason::kSmi); } void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { Register object_reg = ToRegister(instr->object()); Handle from_map = instr->original_map(); Handle to_map = instr->transitioned_map(); ElementsKind from_kind = instr->from_kind(); ElementsKind to_kind = instr->to_kind(); Label not_applicable; __ Cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map); __ j(not_equal, ¬_applicable); if (IsSimpleMapChangeTransition(from_kind, to_kind)) { Register new_map_reg = ToRegister(instr->new_map_temp()); __ Move(new_map_reg, to_map, RelocInfo::EMBEDDED_OBJECT); __ movp(FieldOperand(object_reg, HeapObject::kMapOffset), new_map_reg); // Write barrier. __ RecordWriteForMap(object_reg, new_map_reg, ToRegister(instr->temp()), kDontSaveFPRegs); } else { DCHECK(object_reg.is(rax)); DCHECK(ToRegister(instr->context()).is(rsi)); PushSafepointRegistersScope scope(this); __ Move(rbx, to_map); TransitionElementsKindStub stub(isolate(), from_kind, to_kind); __ CallStub(&stub); RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0); } __ bind(¬_applicable); } void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { Register object = ToRegister(instr->object()); Register temp = ToRegister(instr->temp()); Label no_memento_found; __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found); DeoptimizeIf(equal, instr, DeoptimizeReason::kMementoFound); __ bind(&no_memento_found); } void LCodeGen::DoStringAdd(LStringAdd* instr) { DCHECK(ToRegister(instr->context()).is(rsi)); DCHECK(ToRegister(instr->left()).is(rdx)); DCHECK(ToRegister(instr->right()).is(rax)); StringAddStub stub(isolate(), instr->hydrogen()->flags(), instr->hydrogen()->pretenure_flag()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { class DeferredStringCharCodeAt final : public LDeferredCode { public: DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); } LInstruction* instr() override { return instr_; } private: LStringCharCodeAt* instr_; }; DeferredStringCharCodeAt* deferred = new(zone()) DeferredStringCharCodeAt(this, instr); StringCharLoadGenerator::Generate(masm(), ToRegister(instr->string()), ToRegister(instr->index()), ToRegister(instr->result()), deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Set(result, 0); PushSafepointRegistersScope scope(this); __ Push(string); // Push the index as a smi. This is safe because of the checks in // DoStringCharCodeAt above. STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue); if (instr->index()->IsConstantOperand()) { int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index())); __ Push(Smi::FromInt(const_index)); } else { Register index = ToRegister(instr->index()); __ Integer32ToSmi(index, index); __ Push(index); } CallRuntimeFromDeferred( Runtime::kStringCharCodeAtRT, 2, instr, instr->context()); __ AssertSmi(rax); __ SmiToInteger32(rax, rax); __ StoreToSafepointRegisterSlot(result, rax); } void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { class DeferredStringCharFromCode final : public LDeferredCode { public: DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredStringCharFromCode(instr_); } LInstruction* instr() override { return instr_; } private: LStringCharFromCode* instr_; }; DeferredStringCharFromCode* deferred = new(zone()) DeferredStringCharFromCode(this, instr); DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); DCHECK(!char_code.is(result)); __ cmpl(char_code, Immediate(String::kMaxOneByteCharCode)); __ j(above, deferred->entry()); __ movsxlq(char_code, char_code); __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); __ movp(result, FieldOperand(result, char_code, times_pointer_size, FixedArray::kHeaderSize)); __ CompareRoot(result, Heap::kUndefinedValueRootIndex); __ j(equal, deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Set(result, 0); PushSafepointRegistersScope scope(this); __ Integer32ToSmi(char_code, char_code); __ Push(char_code); CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr, instr->context()); __ StoreToSafepointRegisterSlot(result, rax); } void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { LOperand* input = instr->value(); DCHECK(input->IsRegister() || input->IsStackSlot()); LOperand* output = instr->result(); DCHECK(output->IsDoubleRegister()); if (input->IsRegister()) { __ Cvtlsi2sd(ToDoubleRegister(output), ToRegister(input)); } else { __ Cvtlsi2sd(ToDoubleRegister(output), ToOperand(input)); } } void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { LOperand* input = instr->value(); LOperand* output = instr->result(); __ LoadUint32(ToDoubleRegister(output), ToRegister(input)); } void LCodeGen::DoNumberTagI(LNumberTagI* instr) { class DeferredNumberTagI final : public LDeferredCode { public: DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(), instr_->temp2(), SIGNED_INT32); } LInstruction* instr() override { return instr_; } private: LNumberTagI* instr_; }; LOperand* input = instr->value(); DCHECK(input->IsRegister() && input->Equals(instr->result())); Register reg = ToRegister(input); if (SmiValuesAre32Bits()) { __ Integer32ToSmi(reg, reg); } else { DCHECK(SmiValuesAre31Bits()); DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr); __ Integer32ToSmi(reg, reg); __ j(overflow, deferred->entry()); __ bind(deferred->exit()); } } void LCodeGen::DoNumberTagU(LNumberTagU* instr) { class DeferredNumberTagU final : public LDeferredCode { public: DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(), instr_->temp2(), UNSIGNED_INT32); } LInstruction* instr() override { return instr_; } private: LNumberTagU* instr_; }; LOperand* input = instr->value(); DCHECK(input->IsRegister() && input->Equals(instr->result())); Register reg = ToRegister(input); DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); __ cmpl(reg, Immediate(Smi::kMaxValue)); __ j(above, deferred->entry()); __ Integer32ToSmi(reg, reg); __ bind(deferred->exit()); } void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, LOperand* value, LOperand* temp1, LOperand* temp2, IntegerSignedness signedness) { Label done, slow; Register reg = ToRegister(value); Register tmp = ToRegister(temp1); XMMRegister temp_xmm = ToDoubleRegister(temp2); // Load value into temp_xmm which will be preserved across potential call to // runtime (MacroAssembler::EnterExitFrameEpilogue preserves only allocatable // XMM registers on x64). if (signedness == SIGNED_INT32) { DCHECK(SmiValuesAre31Bits()); // There was overflow, so bits 30 and 31 of the original integer // disagree. Try to allocate a heap number in new space and store // the value in there. If that fails, call the runtime system. __ SmiToInteger32(reg, reg); __ xorl(reg, Immediate(0x80000000)); __ Cvtlsi2sd(temp_xmm, reg); } else { DCHECK(signedness == UNSIGNED_INT32); __ LoadUint32(temp_xmm, reg); } if (FLAG_inline_new) { __ AllocateHeapNumber(reg, tmp, &slow); __ jmp(&done, kPointerSize == kInt64Size ? Label::kNear : Label::kFar); } // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); { // Put a valid pointer value in the stack slot where the result // register is stored, as this register is in the pointer map, but contains // an integer value. __ Set(reg, 0); // Preserve the value of all registers. PushSafepointRegistersScope scope(this); // Reset the context register. if (!reg.is(rsi)) { __ Set(rsi, 0); } __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(reg, rax); } // Done. Put the value in temp_xmm into the value of the allocated heap // number. __ bind(&done); __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), temp_xmm); } void LCodeGen::DoNumberTagD(LNumberTagD* instr) { class DeferredNumberTagD final : public LDeferredCode { public: DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredNumberTagD(instr_); } LInstruction* instr() override { return instr_; } private: LNumberTagD* instr_; }; XMMRegister input_reg = ToDoubleRegister(instr->value()); Register reg = ToRegister(instr->result()); Register tmp = ToRegister(instr->temp()); DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); if (FLAG_inline_new) { __ AllocateHeapNumber(reg, tmp, deferred->entry()); } else { __ jmp(deferred->entry()); } __ bind(deferred->exit()); __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg); } void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register reg = ToRegister(instr->result()); __ Move(reg, Smi::kZero); { PushSafepointRegistersScope scope(this); // Reset the context register. if (!reg.is(rsi)) { __ Move(rsi, 0); } __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); RecordSafepointWithRegisters( instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); __ movp(kScratchRegister, rax); } __ movp(reg, kScratchRegister); } void LCodeGen::DoSmiTag(LSmiTag* instr) { HChange* hchange = instr->hydrogen(); Register input = ToRegister(instr->value()); Register output = ToRegister(instr->result()); if (hchange->CheckFlag(HValue::kCanOverflow) && hchange->value()->CheckFlag(HValue::kUint32)) { Condition is_smi = __ CheckUInteger32ValidSmiValue(input); DeoptimizeIf(NegateCondition(is_smi), instr, DeoptimizeReason::kOverflow); } __ Integer32ToSmi(output, input); if (hchange->CheckFlag(HValue::kCanOverflow) && !hchange->value()->CheckFlag(HValue::kUint32)) { DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } } void LCodeGen::DoSmiUntag(LSmiUntag* instr) { DCHECK(instr->value()->Equals(instr->result())); Register input = ToRegister(instr->value()); if (instr->needs_check()) { Condition is_smi = __ CheckSmi(input); DeoptimizeIf(NegateCondition(is_smi), instr, DeoptimizeReason::kNotASmi); } else { __ AssertSmi(input); } __ SmiToInteger32(input, input); } void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg, XMMRegister result_reg, NumberUntagDMode mode) { bool can_convert_undefined_to_nan = instr->truncating(); bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero(); Label convert, load_smi, done; if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { // Smi check. __ JumpIfSmi(input_reg, &load_smi, Label::kNear); // Heap number map check. __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); // On x64 it is safe to load at heap number offset before evaluating the map // check, since all heap objects are at least two words long. __ Movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset)); if (can_convert_undefined_to_nan) { __ j(not_equal, &convert, Label::kNear); } else { DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber); } if (deoptimize_on_minus_zero) { XMMRegister xmm_scratch = double_scratch0(); __ Xorpd(xmm_scratch, xmm_scratch); __ Ucomisd(xmm_scratch, result_reg); __ j(not_equal, &done, Label::kNear); __ Movmskpd(kScratchRegister, result_reg); __ testl(kScratchRegister, Immediate(1)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero); } __ jmp(&done, Label::kNear); if (can_convert_undefined_to_nan) { __ bind(&convert); // Convert undefined (and hole) to NaN. Compute NaN as 0/0. __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumberUndefined); __ Xorpd(result_reg, result_reg); __ Divsd(result_reg, result_reg); __ jmp(&done, Label::kNear); } } else { DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); } // Smi to XMM conversion __ bind(&load_smi); __ SmiToInteger32(kScratchRegister, input_reg); __ Cvtlsi2sd(result_reg, kScratchRegister); __ bind(&done); } void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) { Register input_reg = ToRegister(instr->value()); if (instr->truncating()) { Register input_map_reg = kScratchRegister; Label truncate; Label::Distance truncate_distance = DeoptEveryNTimes() ? Label::kFar : Label::kNear; __ movp(input_map_reg, FieldOperand(input_reg, HeapObject::kMapOffset)); __ JumpIfRoot(input_map_reg, Heap::kHeapNumberMapRootIndex, &truncate, truncate_distance); __ CmpInstanceType(input_map_reg, ODDBALL_TYPE); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotANumberOrOddball); __ bind(&truncate); __ TruncateHeapNumberToI(input_reg, input_reg); } else { XMMRegister scratch = ToDoubleRegister(instr->temp()); DCHECK(!scratch.is(double_scratch0())); __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber); __ Movsd(double_scratch0(), FieldOperand(input_reg, HeapNumber::kValueOffset)); __ Cvttsd2si(input_reg, double_scratch0()); __ Cvtlsi2sd(scratch, input_reg); __ Ucomisd(double_scratch0(), scratch); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kLostPrecision); DeoptimizeIf(parity_even, instr, DeoptimizeReason::kNaN); if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) { __ testl(input_reg, input_reg); __ j(not_zero, done); __ Movmskpd(input_reg, double_scratch0()); __ andl(input_reg, Immediate(1)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero); } } } void LCodeGen::DoTaggedToI(LTaggedToI* instr) { class DeferredTaggedToI final : public LDeferredCode { public: DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); } LInstruction* instr() override { return instr_; } private: LTaggedToI* instr_; }; LOperand* input = instr->value(); DCHECK(input->IsRegister()); DCHECK(input->Equals(instr->result())); Register input_reg = ToRegister(input); if (instr->hydrogen()->value()->representation().IsSmi()) { __ SmiToInteger32(input_reg, input_reg); } else { DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); __ JumpIfNotSmi(input_reg, deferred->entry()); __ SmiToInteger32(input_reg, input_reg); __ bind(deferred->exit()); } } void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { LOperand* input = instr->value(); DCHECK(input->IsRegister()); LOperand* result = instr->result(); DCHECK(result->IsDoubleRegister()); Register input_reg = ToRegister(input); XMMRegister result_reg = ToDoubleRegister(result); HValue* value = instr->hydrogen()->value(); NumberUntagDMode mode = value->representation().IsSmi() ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; EmitNumberUntagD(instr, input_reg, result_reg, mode); } void LCodeGen::DoDoubleToI(LDoubleToI* instr) { LOperand* input = instr->value(); DCHECK(input->IsDoubleRegister()); LOperand* result = instr->result(); DCHECK(result->IsRegister()); XMMRegister input_reg = ToDoubleRegister(input); Register result_reg = ToRegister(result); if (instr->truncating()) { __ TruncateDoubleToI(result_reg, input_reg); } else { Label lost_precision, is_nan, minus_zero, done; XMMRegister xmm_scratch = double_scratch0(); Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear; __ DoubleToI(result_reg, input_reg, xmm_scratch, instr->hydrogen()->GetMinusZeroMode(), &lost_precision, &is_nan, &minus_zero, dist); __ jmp(&done, dist); __ bind(&lost_precision); DeoptimizeIf(no_condition, instr, DeoptimizeReason::kLostPrecision); __ bind(&is_nan); DeoptimizeIf(no_condition, instr, DeoptimizeReason::kNaN); __ bind(&minus_zero); DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero); __ bind(&done); } } void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) { LOperand* input = instr->value(); DCHECK(input->IsDoubleRegister()); LOperand* result = instr->result(); DCHECK(result->IsRegister()); XMMRegister input_reg = ToDoubleRegister(input); Register result_reg = ToRegister(result); Label lost_precision, is_nan, minus_zero, done; XMMRegister xmm_scratch = double_scratch0(); Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear; __ DoubleToI(result_reg, input_reg, xmm_scratch, instr->hydrogen()->GetMinusZeroMode(), &lost_precision, &is_nan, &minus_zero, dist); __ jmp(&done, dist); __ bind(&lost_precision); DeoptimizeIf(no_condition, instr, DeoptimizeReason::kLostPrecision); __ bind(&is_nan); DeoptimizeIf(no_condition, instr, DeoptimizeReason::kNaN); __ bind(&minus_zero); DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero); __ bind(&done); __ Integer32ToSmi(result_reg, result_reg); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } void LCodeGen::DoCheckSmi(LCheckSmi* instr) { LOperand* input = instr->value(); Condition cc = masm()->CheckSmi(ToRegister(input)); DeoptimizeIf(NegateCondition(cc), instr, DeoptimizeReason::kNotASmi); } void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { if (!instr->hydrogen()->value()->type().IsHeapObject()) { LOperand* input = instr->value(); Condition cc = masm()->CheckSmi(ToRegister(input)); DeoptimizeIf(cc, instr, DeoptimizeReason::kSmi); } } void LCodeGen::DoCheckArrayBufferNotNeutered( LCheckArrayBufferNotNeutered* instr) { Register view = ToRegister(instr->view()); __ movp(kScratchRegister, FieldOperand(view, JSArrayBufferView::kBufferOffset)); __ testb(FieldOperand(kScratchRegister, JSArrayBuffer::kBitFieldOffset), Immediate(1 << JSArrayBuffer::WasNeutered::kShift)); DeoptimizeIf(not_zero, instr, DeoptimizeReason::kOutOfBounds); } void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { Register input = ToRegister(instr->value()); __ movp(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset)); if (instr->hydrogen()->is_interval_check()) { InstanceType first; InstanceType last; instr->hydrogen()->GetCheckInterval(&first, &last); __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset), Immediate(static_cast(first))); // If there is only one type in the interval check for equality. if (first == last) { DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongInstanceType); } else { DeoptimizeIf(below, instr, DeoptimizeReason::kWrongInstanceType); // Omit check for the last type. if (last != LAST_TYPE) { __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset), Immediate(static_cast(last))); DeoptimizeIf(above, instr, DeoptimizeReason::kWrongInstanceType); } } } else { uint8_t mask; uint8_t tag; instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); if (base::bits::IsPowerOfTwo32(mask)) { DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag)); __ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset), Immediate(mask)); DeoptimizeIf(tag == 0 ? not_zero : zero, instr, DeoptimizeReason::kWrongInstanceType); } else { __ movzxbl(kScratchRegister, FieldOperand(kScratchRegister, Map::kInstanceTypeOffset)); __ andb(kScratchRegister, Immediate(mask)); __ cmpb(kScratchRegister, Immediate(tag)); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongInstanceType); } } } void LCodeGen::DoCheckValue(LCheckValue* instr) { Register reg = ToRegister(instr->value()); __ Cmp(reg, instr->hydrogen()->object().handle()); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kValueMismatch); } void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { Label deopt, done; // If the map is not deprecated the migration attempt does not make sense. __ Push(object); __ movp(object, FieldOperand(object, HeapObject::kMapOffset)); __ testl(FieldOperand(object, Map::kBitField3Offset), Immediate(Map::Deprecated::kMask)); __ Pop(object); __ j(zero, &deopt); { PushSafepointRegistersScope scope(this); __ Push(object); __ Set(rsi, 0); __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); RecordSafepointWithRegisters( instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); __ testp(rax, Immediate(kSmiTagMask)); } __ j(not_zero, &done); __ bind(&deopt); DeoptimizeIf(always, instr, DeoptimizeReason::kInstanceMigrationFailed); __ bind(&done); } void LCodeGen::DoCheckMaps(LCheckMaps* instr) { class DeferredCheckMaps final : public LDeferredCode { public: DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) : LDeferredCode(codegen), instr_(instr), object_(object) { SetExit(check_maps()); } void Generate() override { codegen()->DoDeferredInstanceMigration(instr_, object_); } Label* check_maps() { return &check_maps_; } LInstruction* instr() override { return instr_; } private: LCheckMaps* instr_; Label check_maps_; Register object_; }; if (instr->hydrogen()->IsStabilityCheck()) { const UniqueSet* maps = instr->hydrogen()->maps(); for (int i = 0; i < maps->size(); ++i) { AddStabilityDependency(maps->at(i).handle()); } return; } LOperand* input = instr->value(); DCHECK(input->IsRegister()); Register reg = ToRegister(input); DeferredCheckMaps* deferred = NULL; if (instr->hydrogen()->HasMigrationTarget()) { deferred = new(zone()) DeferredCheckMaps(this, instr, reg); __ bind(deferred->check_maps()); } const UniqueSet* maps = instr->hydrogen()->maps(); Label success; for (int i = 0; i < maps->size() - 1; i++) { Handle map = maps->at(i).handle(); __ CompareMap(reg, map); __ j(equal, &success, Label::kNear); } Handle map = maps->at(maps->size() - 1).handle(); __ CompareMap(reg, map); if (instr->hydrogen()->HasMigrationTarget()) { __ j(not_equal, deferred->entry()); } else { DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongMap); } __ bind(&success); } void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { XMMRegister value_reg = ToDoubleRegister(instr->unclamped()); XMMRegister xmm_scratch = double_scratch0(); Register result_reg = ToRegister(instr->result()); __ ClampDoubleToUint8(value_reg, xmm_scratch, result_reg); } void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { DCHECK(instr->unclamped()->Equals(instr->result())); Register value_reg = ToRegister(instr->result()); __ ClampUint8(value_reg); } void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { DCHECK(instr->unclamped()->Equals(instr->result())); Register input_reg = ToRegister(instr->unclamped()); XMMRegister temp_xmm_reg = ToDoubleRegister(instr->temp_xmm()); XMMRegister xmm_scratch = double_scratch0(); Label is_smi, done, heap_number; Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear; __ JumpIfSmi(input_reg, &is_smi, dist); // Check for heap number __ Cmp(FieldOperand(input_reg, HeapObject::kMapOffset), factory()->heap_number_map()); __ j(equal, &heap_number, Label::kNear); // Check for undefined. Undefined is converted to zero for clamping // conversions. __ Cmp(input_reg, factory()->undefined_value()); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumberUndefined); __ xorl(input_reg, input_reg); __ jmp(&done, Label::kNear); // Heap number __ bind(&heap_number); __ Movsd(xmm_scratch, FieldOperand(input_reg, HeapNumber::kValueOffset)); __ ClampDoubleToUint8(xmm_scratch, temp_xmm_reg, input_reg); __ jmp(&done, Label::kNear); // smi __ bind(&is_smi); __ SmiToInteger32(input_reg, input_reg); __ ClampUint8(input_reg); __ bind(&done); } void LCodeGen::DoAllocate(LAllocate* instr) { class DeferredAllocate final : public LDeferredCode { public: DeferredAllocate(LCodeGen* codegen, LAllocate* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredAllocate(instr_); } LInstruction* instr() override { return instr_; } private: LAllocate* instr_; }; DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr); Register result = ToRegister(instr->result()); Register temp = ToRegister(instr->temp()); // Allocate memory for the object. AllocationFlags flags = NO_ALLOCATION_FLAGS; if (instr->hydrogen()->MustAllocateDoubleAligned()) { flags = static_cast(flags | DOUBLE_ALIGNMENT); } if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = static_cast(flags | PRETENURE); } if (instr->hydrogen()->IsAllocationFoldingDominator()) { flags = static_cast(flags | ALLOCATION_FOLDING_DOMINATOR); } DCHECK(!instr->hydrogen()->IsAllocationFolded()); if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); CHECK(size <= kMaxRegularHeapObjectSize); __ Allocate(size, result, temp, no_reg, deferred->entry(), flags); } else { Register size = ToRegister(instr->size()); __ Allocate(size, result, temp, no_reg, deferred->entry(), flags); } __ bind(deferred->exit()); if (instr->hydrogen()->MustPrefillWithFiller()) { if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); __ movl(temp, Immediate((size / kPointerSize) - 1)); } else { temp = ToRegister(instr->size()); __ sarp(temp, Immediate(kPointerSizeLog2)); __ decl(temp); } Label loop; __ bind(&loop); __ Move(FieldOperand(result, temp, times_pointer_size, 0), isolate()->factory()->one_pointer_filler_map()); __ decl(temp); __ j(not_zero, &loop); } } void LCodeGen::DoFastAllocate(LFastAllocate* instr) { DCHECK(instr->hydrogen()->IsAllocationFolded()); DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator()); Register result = ToRegister(instr->result()); Register temp = ToRegister(instr->temp()); AllocationFlags flags = ALLOCATION_FOLDED; if (instr->hydrogen()->MustAllocateDoubleAligned()) { flags = static_cast(flags | DOUBLE_ALIGNMENT); } if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = static_cast(flags | PRETENURE); } if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); CHECK(size <= kMaxRegularHeapObjectSize); __ FastAllocate(size, result, temp, flags); } else { Register size = ToRegister(instr->size()); __ FastAllocate(size, result, temp, flags); } } void LCodeGen::DoDeferredAllocate(LAllocate* instr) { Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ Move(result, Smi::kZero); PushSafepointRegistersScope scope(this); if (instr->size()->IsRegister()) { Register size = ToRegister(instr->size()); DCHECK(!size.is(result)); __ Integer32ToSmi(size, size); __ Push(size); } else { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); __ Push(Smi::FromInt(size)); } int flags = 0; if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = AllocateTargetSpace::update(flags, OLD_SPACE); } else { flags = AllocateTargetSpace::update(flags, NEW_SPACE); } __ Push(Smi::FromInt(flags)); CallRuntimeFromDeferred( Runtime::kAllocateInTargetSpace, 2, instr, instr->context()); __ StoreToSafepointRegisterSlot(result, rax); if (instr->hydrogen()->IsAllocationFoldingDominator()) { AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS; if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); allocation_flags = static_cast(flags | PRETENURE); } // If the allocation folding dominator allocate triggered a GC, allocation // happend in the runtime. We have to reset the top pointer to virtually // undo the allocation. ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags); __ subp(rax, Immediate(kHeapObjectTag)); __ Store(allocation_top, rax); __ addp(rax, Immediate(kHeapObjectTag)); } } void LCodeGen::DoTypeof(LTypeof* instr) { DCHECK(ToRegister(instr->context()).is(rsi)); DCHECK(ToRegister(instr->value()).is(rbx)); Label end, do_call; Register value_register = ToRegister(instr->value()); __ JumpIfNotSmi(value_register, &do_call); __ Move(rax, isolate()->factory()->number_string()); __ jmp(&end); __ bind(&do_call); Callable callable = CodeFactory::Typeof(isolate()); CallCode(callable.code(), RelocInfo::CODE_TARGET, instr); __ bind(&end); } void LCodeGen::EmitPushTaggedOperand(LOperand* operand) { DCHECK(!operand->IsDoubleRegister()); if (operand->IsConstantOperand()) { __ Push(ToHandle(LConstantOperand::cast(operand))); } else if (operand->IsRegister()) { __ Push(ToRegister(operand)); } else { __ Push(ToOperand(operand)); } } void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { Register input = ToRegister(instr->value()); Condition final_branch_condition = EmitTypeofIs(instr, input); if (final_branch_condition != no_condition) { EmitBranch(instr, final_branch_condition); } } Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) { Label* true_label = instr->TrueLabel(chunk_); Label* false_label = instr->FalseLabel(chunk_); Handle type_name = instr->type_literal(); int left_block = instr->TrueDestination(chunk_); int right_block = instr->FalseDestination(chunk_); int next_block = GetNextEmittedBlock(); Label::Distance true_distance = left_block == next_block ? Label::kNear : Label::kFar; Label::Distance false_distance = right_block == next_block ? Label::kNear : Label::kFar; Condition final_branch_condition = no_condition; Factory* factory = isolate()->factory(); if (String::Equals(type_name, factory->number_string())) { __ JumpIfSmi(input, true_label, true_distance); __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); final_branch_condition = equal; } else if (String::Equals(type_name, factory->string_string())) { __ JumpIfSmi(input, false_label, false_distance); __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input); final_branch_condition = below; } else if (String::Equals(type_name, factory->symbol_string())) { __ JumpIfSmi(input, false_label, false_distance); __ CmpObjectType(input, SYMBOL_TYPE, input); final_branch_condition = equal; } else if (String::Equals(type_name, factory->boolean_string())) { __ CompareRoot(input, Heap::kTrueValueRootIndex); __ j(equal, true_label, true_distance); __ CompareRoot(input, Heap::kFalseValueRootIndex); final_branch_condition = equal; } else if (String::Equals(type_name, factory->undefined_string())) { __ CompareRoot(input, Heap::kNullValueRootIndex); __ j(equal, false_label, false_distance); __ JumpIfSmi(input, false_label, false_distance); // Check for undetectable objects => true. __ movp(input, FieldOperand(input, HeapObject::kMapOffset)); __ testb(FieldOperand(input, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); final_branch_condition = not_zero; } else if (String::Equals(type_name, factory->function_string())) { __ JumpIfSmi(input, false_label, false_distance); // Check for callable and not undetectable objects => true. __ movp(input, FieldOperand(input, HeapObject::kMapOffset)); __ movzxbl(input, FieldOperand(input, Map::kBitFieldOffset)); __ andb(input, Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); __ cmpb(input, Immediate(1 << Map::kIsCallable)); final_branch_condition = equal; } else if (String::Equals(type_name, factory->object_string())) { __ JumpIfSmi(input, false_label, false_distance); __ CompareRoot(input, Heap::kNullValueRootIndex); __ j(equal, true_label, true_distance); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(input, FIRST_JS_RECEIVER_TYPE, input); __ j(below, false_label, false_distance); // Check for callable or undetectable objects => false. __ testb(FieldOperand(input, Map::kBitFieldOffset), Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); final_branch_condition = zero; } else { __ jmp(false_label, false_distance); } return final_branch_condition; } void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { if (info()->ShouldEnsureSpaceForLazyDeopt()) { // Ensure that we have enough space after the previous lazy-bailout // instruction for patching the code here. int current_pc = masm()->pc_offset(); if (current_pc < last_lazy_deopt_pc_ + space_needed) { int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; __ Nop(padding_size); } } last_lazy_deopt_pc_ = masm()->pc_offset(); } void LCodeGen::DoLazyBailout(LLazyBailout* instr) { last_lazy_deopt_pc_ = masm()->pc_offset(); DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoDeoptimize(LDeoptimize* instr) { Deoptimizer::BailoutType type = instr->hydrogen()->type(); // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the // needed return address), even though the implementation of LAZY and EAGER is // now identical. When LAZY is eventually completely folded into EAGER, remove // the special case below. if (info()->IsStub() && type == Deoptimizer::EAGER) { type = Deoptimizer::LAZY; } DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type); } void LCodeGen::DoDummy(LDummy* instr) { // Nothing to see here, move on! } void LCodeGen::DoDummyUse(LDummyUse* instr) { // Nothing to see here, move on! } void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { PushSafepointRegistersScope scope(this); __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ CallRuntimeSaveDoubles(Runtime::kStackGuard); RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0); DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoStackCheck(LStackCheck* instr) { class DeferredStackCheck final : public LDeferredCode { public: DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) : LDeferredCode(codegen), instr_(instr) { } void Generate() override { codegen()->DoDeferredStackCheck(instr_); } LInstruction* instr() override { return instr_; } private: LStackCheck* instr_; }; DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); // There is no LLazyBailout instruction for stack-checks. We have to // prepare for lazy deoptimization explicitly here. if (instr->hydrogen()->is_function_entry()) { // Perform stack overflow check. Label done; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &done, Label::kNear); DCHECK(instr->context()->IsRegister()); DCHECK(ToRegister(instr->context()).is(rsi)); CallCode(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET, instr); __ bind(&done); } else { DCHECK(instr->hydrogen()->is_backwards_branch()); // Perform stack overflow check if this goto needs it before jumping. DeferredStackCheck* deferred_stack_check = new(zone()) DeferredStackCheck(this, instr); __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(below, deferred_stack_check->entry()); EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); __ bind(instr->done_label()); deferred_stack_check->SetExit(instr->done_label()); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); // Don't record a deoptimization index for the safepoint here. // This will be done explicitly when emitting call and the safepoint in // the deferred code. } } void LCodeGen::DoOsrEntry(LOsrEntry* instr) { // This is a pseudo-instruction that ensures that the environment here is // properly registered for deoptimization and records the assembler's PC // offset. LEnvironment* environment = instr->environment(); // If the environment were already registered, we would have no way of // backpatching it with the spill slot operands. DCHECK(!environment->HasBeenRegistered()); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); GenerateOsrPrologue(); } void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { DCHECK(ToRegister(instr->context()).is(rsi)); Label use_cache, call_runtime; __ CheckEnumCache(&call_runtime); __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset)); __ jmp(&use_cache, Label::kNear); // Get the set of properties to enumerate. __ bind(&call_runtime); __ Push(rax); CallRuntime(Runtime::kForInEnumerate, instr); __ bind(&use_cache); } void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { Register map = ToRegister(instr->map()); Register result = ToRegister(instr->result()); Label load_cache, done; __ EnumLength(result, map); __ Cmp(result, Smi::kZero); __ j(not_equal, &load_cache, Label::kNear); __ LoadRoot(result, Heap::kEmptyFixedArrayRootIndex); __ jmp(&done, Label::kNear); __ bind(&load_cache); __ LoadInstanceDescriptors(map, result); __ movp(result, FieldOperand(result, DescriptorArray::kEnumCacheOffset)); __ movp(result, FieldOperand(result, FixedArray::SizeFor(instr->idx()))); __ bind(&done); Condition cc = masm()->CheckSmi(result); DeoptimizeIf(cc, instr, DeoptimizeReason::kNoCache); } void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { Register object = ToRegister(instr->value()); __ cmpp(ToRegister(instr->map()), FieldOperand(object, HeapObject::kMapOffset)); DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongMap); } void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, Register object, Register index) { PushSafepointRegistersScope scope(this); __ Push(object); __ Push(index); __ xorp(rsi, rsi); __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); RecordSafepointWithRegisters( instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(object, rax); } void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { class DeferredLoadMutableDouble final : public LDeferredCode { public: DeferredLoadMutableDouble(LCodeGen* codegen, LLoadFieldByIndex* instr, Register object, Register index) : LDeferredCode(codegen), instr_(instr), object_(object), index_(index) { } void Generate() override { codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_); } LInstruction* instr() override { return instr_; } private: LLoadFieldByIndex* instr_; Register object_; Register index_; }; Register object = ToRegister(instr->object()); Register index = ToRegister(instr->index()); DeferredLoadMutableDouble* deferred; deferred = new(zone()) DeferredLoadMutableDouble(this, instr, object, index); Label out_of_object, done; __ Move(kScratchRegister, Smi::FromInt(1)); __ testp(index, kScratchRegister); __ j(not_zero, deferred->entry()); __ sarp(index, Immediate(1)); __ SmiToInteger32(index, index); __ cmpl(index, Immediate(0)); __ j(less, &out_of_object, Label::kNear); __ movp(object, FieldOperand(object, index, times_pointer_size, JSObject::kHeaderSize)); __ jmp(&done, Label::kNear); __ bind(&out_of_object); __ movp(object, FieldOperand(object, JSObject::kPropertiesOffset)); __ negl(index); // Index is now equal to out of object property index plus 1. __ movp(object, FieldOperand(object, index, times_pointer_size, FixedArray::kHeaderSize - kPointerSize)); __ bind(deferred->exit()); __ bind(&done); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X64