// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/store-buffer.h" #include #include "src/counters.h" #include "src/heap/incremental-marking.h" #include "src/isolate.h" #include "src/objects-inl.h" #include "src/v8.h" namespace v8 { namespace internal { StoreBuffer::StoreBuffer(Heap* heap) : heap_(heap), top_(nullptr), current_(0), mode_(NOT_IN_GC), virtual_memory_(nullptr) { for (int i = 0; i < kStoreBuffers; i++) { start_[i] = nullptr; limit_[i] = nullptr; lazy_top_[i] = nullptr; } task_running_ = false; insertion_callback = &InsertDuringRuntime; deletion_callback = &DeleteDuringRuntime; } void StoreBuffer::SetUp() { // Allocate 3x the buffer size, so that we can start the new store buffer // aligned to 2x the size. This lets us use a bit test to detect the end of // the area. virtual_memory_ = new base::VirtualMemory(kStoreBufferSize * 3); uintptr_t start_as_int = reinterpret_cast(virtual_memory_->address()); start_[0] = reinterpret_cast(RoundUp(start_as_int, kStoreBufferSize)); limit_[0] = start_[0] + (kStoreBufferSize / kPointerSize); start_[1] = limit_[0]; limit_[1] = start_[1] + (kStoreBufferSize / kPointerSize); Address* vm_limit = reinterpret_cast( reinterpret_cast(virtual_memory_->address()) + virtual_memory_->size()); USE(vm_limit); for (int i = 0; i < kStoreBuffers; i++) { DCHECK(reinterpret_cast
(start_[i]) >= virtual_memory_->address()); DCHECK(reinterpret_cast
(limit_[i]) >= virtual_memory_->address()); DCHECK(start_[i] <= vm_limit); DCHECK(limit_[i] <= vm_limit); DCHECK((reinterpret_cast(limit_[i]) & kStoreBufferMask) == 0); } if (!virtual_memory_->Commit(reinterpret_cast
(start_[0]), kStoreBufferSize * kStoreBuffers, false)) { // Not executable. V8::FatalProcessOutOfMemory("StoreBuffer::SetUp"); } current_ = 0; top_ = start_[current_]; } void StoreBuffer::TearDown() { delete virtual_memory_; top_ = nullptr; for (int i = 0; i < kStoreBuffers; i++) { start_[i] = nullptr; limit_[i] = nullptr; lazy_top_[i] = nullptr; } } void StoreBuffer::StoreBufferOverflow(Isolate* isolate) { isolate->heap()->store_buffer()->FlipStoreBuffers(); isolate->counters()->store_buffer_overflows()->Increment(); } void StoreBuffer::FlipStoreBuffers() { base::LockGuard guard(&mutex_); int other = (current_ + 1) % kStoreBuffers; MoveEntriesToRememberedSet(other); lazy_top_[current_] = top_; current_ = other; top_ = start_[current_]; if (!task_running_ && FLAG_concurrent_sweeping) { task_running_ = true; Task* task = new Task(heap_->isolate(), this); V8::GetCurrentPlatform()->CallOnBackgroundThread( task, v8::Platform::kShortRunningTask); } } void StoreBuffer::MoveEntriesToRememberedSet(int index) { if (!lazy_top_[index]) return; DCHECK_GE(index, 0); DCHECK_LT(index, kStoreBuffers); for (Address* current = start_[index]; current < lazy_top_[index]; current++) { Address addr = *current; Page* page = Page::FromAnyPointerAddress(heap_, addr); if (IsDeletionAddress(addr)) { current++; Address end = *current; DCHECK(!IsDeletionAddress(end)); addr = UnmarkDeletionAddress(addr); if (end) { RememberedSet::RemoveRange(page, addr, end, SlotSet::PREFREE_EMPTY_BUCKETS); } else { RememberedSet::Remove(page, addr); } } else { DCHECK(!IsDeletionAddress(addr)); RememberedSet::Insert(page, addr); } } lazy_top_[index] = nullptr; } void StoreBuffer::MoveAllEntriesToRememberedSet() { base::LockGuard guard(&mutex_); int other = (current_ + 1) % kStoreBuffers; MoveEntriesToRememberedSet(other); lazy_top_[current_] = top_; MoveEntriesToRememberedSet(current_); top_ = start_[current_]; } void StoreBuffer::ConcurrentlyProcessStoreBuffer() { base::LockGuard guard(&mutex_); int other = (current_ + 1) % kStoreBuffers; MoveEntriesToRememberedSet(other); task_running_ = false; } } // namespace internal } // namespace v8