// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #ifndef V8_MIPS_ASSEMBLER_MIPS_H_ #define V8_MIPS_ASSEMBLER_MIPS_H_ #include #include #include "src/assembler.h" #include "src/mips64/constants-mips64.h" namespace v8 { namespace internal { // clang-format off #define GENERAL_REGISTERS(V) \ V(zero_reg) V(at) V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \ V(a4) V(a5) V(a6) V(a7) V(t0) V(t1) V(t2) V(t3) \ V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) V(t8) V(t9) \ V(k0) V(k1) V(gp) V(sp) V(fp) V(ra) #define ALLOCATABLE_GENERAL_REGISTERS(V) \ V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \ V(a4) V(a5) V(a6) V(a7) V(t0) V(t1) V(t2) V(s7) #define DOUBLE_REGISTERS(V) \ V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \ V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \ V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \ V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31) #define FLOAT_REGISTERS DOUBLE_REGISTERS #define SIMD128_REGISTERS DOUBLE_REGISTERS #define ALLOCATABLE_DOUBLE_REGISTERS(V) \ V(f0) V(f2) V(f4) V(f6) V(f8) V(f10) V(f12) V(f14) \ V(f16) V(f18) V(f20) V(f22) V(f24) V(f26) // clang-format on // CPU Registers. // // 1) We would prefer to use an enum, but enum values are assignment- // compatible with int, which has caused code-generation bugs. // // 2) We would prefer to use a class instead of a struct but we don't like // the register initialization to depend on the particular initialization // order (which appears to be different on OS X, Linux, and Windows for the // installed versions of C++ we tried). Using a struct permits C-style // "initialization". Also, the Register objects cannot be const as this // forces initialization stubs in MSVC, making us dependent on initialization // order. // // 3) By not using an enum, we are possibly preventing the compiler from // doing certain constant folds, which may significantly reduce the // code generated for some assembly instructions (because they boil down // to a few constants). If this is a problem, we could change the code // such that we use an enum in optimized mode, and the struct in debug // mode. This way we get the compile-time error checking in debug mode // and best performance in optimized code. // ----------------------------------------------------------------------------- // Implementation of Register and FPURegister. struct Register { static const int kCpRegister = 23; // cp (s7) is the 23rd register. #if defined(V8_TARGET_LITTLE_ENDIAN) static const int kMantissaOffset = 0; static const int kExponentOffset = 4; #elif defined(V8_TARGET_BIG_ENDIAN) static const int kMantissaOffset = 4; static const int kExponentOffset = 0; #else #error Unknown endianness #endif enum Code { #define REGISTER_CODE(R) kCode_##R, GENERAL_REGISTERS(REGISTER_CODE) #undef REGISTER_CODE kAfterLast, kCode_no_reg = -1 }; static const int kNumRegisters = Code::kAfterLast; static Register from_code(int code) { DCHECK(code >= 0); DCHECK(code < kNumRegisters); Register r = { code }; return r; } bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; } bool is(Register reg) const { return reg_code == reg.reg_code; } int code() const { DCHECK(is_valid()); return reg_code; } int bit() const { DCHECK(is_valid()); return 1 << reg_code; } // Unfortunately we can't make this private in a struct. int reg_code; }; // s7: context register // s3: lithium scratch // s4: lithium scratch2 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R}; GENERAL_REGISTERS(DECLARE_REGISTER) #undef DECLARE_REGISTER const Register no_reg = {Register::kCode_no_reg}; int ToNumber(Register reg); Register ToRegister(int num); static const bool kSimpleFPAliasing = true; static const bool kSimdMaskRegisters = false; // Coprocessor register. struct FPURegister { enum Code { #define REGISTER_CODE(R) kCode_##R, DOUBLE_REGISTERS(REGISTER_CODE) #undef REGISTER_CODE kAfterLast, kCode_no_reg = -1 }; static const int kMaxNumRegisters = Code::kAfterLast; inline static int NumRegisters(); // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to // number of Double regs (64-bit regs, or FPU-reg-pairs). bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; } bool is(FPURegister reg) const { return reg_code == reg.reg_code; } FPURegister low() const { // TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1. // Find low reg of a Double-reg pair, which is the reg itself. DCHECK(reg_code % 2 == 0); // Specified Double reg must be even. FPURegister reg; reg.reg_code = reg_code; DCHECK(reg.is_valid()); return reg; } FPURegister high() const { // TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1. // Find high reg of a Doubel-reg pair, which is reg + 1. DCHECK(reg_code % 2 == 0); // Specified Double reg must be even. FPURegister reg; reg.reg_code = reg_code + 1; DCHECK(reg.is_valid()); return reg; } int code() const { DCHECK(is_valid()); return reg_code; } int bit() const { DCHECK(is_valid()); return 1 << reg_code; } static FPURegister from_code(int code) { FPURegister r = {code}; return r; } void setcode(int f) { reg_code = f; DCHECK(is_valid()); } // Unfortunately we can't make this private in a struct. int reg_code; }; // A few double registers are reserved: one as a scratch register and one to // hold 0.0. // f28: 0.0 // f30: scratch register. // V8 now supports the O32 ABI, and the FPU Registers are organized as 32 // 32-bit registers, f0 through f31. When used as 'double' they are used // in pairs, starting with the even numbered register. So a double operation // on f0 really uses f0 and f1. // (Modern mips hardware also supports 32 64-bit registers, via setting // (privileged) Status Register FR bit to 1. This is used by the N32 ABI, // but it is not in common use. Someday we will want to support this in v8.) // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers. typedef FPURegister FloatRegister; typedef FPURegister DoubleRegister; // TODO(mips64) Define SIMD registers. typedef FPURegister Simd128Register; const DoubleRegister no_freg = {-1}; const DoubleRegister f0 = {0}; // Return value in hard float mode. const DoubleRegister f1 = {1}; const DoubleRegister f2 = {2}; const DoubleRegister f3 = {3}; const DoubleRegister f4 = {4}; const DoubleRegister f5 = {5}; const DoubleRegister f6 = {6}; const DoubleRegister f7 = {7}; const DoubleRegister f8 = {8}; const DoubleRegister f9 = {9}; const DoubleRegister f10 = {10}; const DoubleRegister f11 = {11}; const DoubleRegister f12 = {12}; // Arg 0 in hard float mode. const DoubleRegister f13 = {13}; const DoubleRegister f14 = {14}; // Arg 1 in hard float mode. const DoubleRegister f15 = {15}; const DoubleRegister f16 = {16}; const DoubleRegister f17 = {17}; const DoubleRegister f18 = {18}; const DoubleRegister f19 = {19}; const DoubleRegister f20 = {20}; const DoubleRegister f21 = {21}; const DoubleRegister f22 = {22}; const DoubleRegister f23 = {23}; const DoubleRegister f24 = {24}; const DoubleRegister f25 = {25}; const DoubleRegister f26 = {26}; const DoubleRegister f27 = {27}; const DoubleRegister f28 = {28}; const DoubleRegister f29 = {29}; const DoubleRegister f30 = {30}; const DoubleRegister f31 = {31}; // Register aliases. // cp is assumed to be a callee saved register. // Defined using #define instead of "static const Register&" because Clang // complains otherwise when a compilation unit that includes this header // doesn't use the variables. #define kRootRegister s6 #define cp s7 #define kLithiumScratchReg s3 #define kLithiumScratchReg2 s4 #define kLithiumScratchDouble f30 #define kDoubleRegZero f28 // Used on mips64r6 for compare operations. // We use the last non-callee saved odd register for N64 ABI #define kDoubleCompareReg f23 // FPU (coprocessor 1) control registers. // Currently only FCSR (#31) is implemented. struct FPUControlRegister { bool is_valid() const { return reg_code == kFCSRRegister; } bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; } int code() const { DCHECK(is_valid()); return reg_code; } int bit() const { DCHECK(is_valid()); return 1 << reg_code; } void setcode(int f) { reg_code = f; DCHECK(is_valid()); } // Unfortunately we can't make this private in a struct. int reg_code; }; const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister }; const FPUControlRegister FCSR = { kFCSRRegister }; // ----------------------------------------------------------------------------- // Machine instruction Operands. const int kSmiShift = kSmiTagSize + kSmiShiftSize; const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1; // Class Operand represents a shifter operand in data processing instructions. class Operand BASE_EMBEDDED { public: // Immediate. INLINE(explicit Operand(int64_t immediate, RelocInfo::Mode rmode = RelocInfo::NONE64)); INLINE(explicit Operand(const ExternalReference& f)); INLINE(explicit Operand(const char* s)); INLINE(explicit Operand(Object** opp)); INLINE(explicit Operand(Context** cpp)); explicit Operand(Handle handle); INLINE(explicit Operand(Smi* value)); // Register. INLINE(explicit Operand(Register rm)); // Return true if this is a register operand. INLINE(bool is_reg() const); inline int64_t immediate() const { DCHECK(!is_reg()); return imm64_; } Register rm() const { return rm_; } private: Register rm_; int64_t imm64_; // Valid if rm_ == no_reg. RelocInfo::Mode rmode_; friend class Assembler; friend class MacroAssembler; }; // On MIPS we have only one adressing mode with base_reg + offset. // Class MemOperand represents a memory operand in load and store instructions. class MemOperand : public Operand { public: // Immediate value attached to offset. enum OffsetAddend { offset_minus_one = -1, offset_zero = 0 }; explicit MemOperand(Register rn, int32_t offset = 0); explicit MemOperand(Register rn, int32_t unit, int32_t multiplier, OffsetAddend offset_addend = offset_zero); int32_t offset() const { return offset_; } bool OffsetIsInt16Encodable() const { return is_int16(offset_); } private: int32_t offset_; friend class Assembler; }; class Assembler : public AssemblerBase { public: // Create an assembler. Instructions and relocation information are emitted // into a buffer, with the instructions starting from the beginning and the // relocation information starting from the end of the buffer. See CodeDesc // for a detailed comment on the layout (globals.h). // // If the provided buffer is NULL, the assembler allocates and grows its own // buffer, and buffer_size determines the initial buffer size. The buffer is // owned by the assembler and deallocated upon destruction of the assembler. // // If the provided buffer is not NULL, the assembler uses the provided buffer // for code generation and assumes its size to be buffer_size. If the buffer // is too small, a fatal error occurs. No deallocation of the buffer is done // upon destruction of the assembler. Assembler(Isolate* isolate, void* buffer, int buffer_size); virtual ~Assembler() { } // GetCode emits any pending (non-emitted) code and fills the descriptor // desc. GetCode() is idempotent; it returns the same result if no other // Assembler functions are invoked in between GetCode() calls. void GetCode(CodeDesc* desc); // Label operations & relative jumps (PPUM Appendix D). // // Takes a branch opcode (cc) and a label (L) and generates // either a backward branch or a forward branch and links it // to the label fixup chain. Usage: // // Label L; // unbound label // j(cc, &L); // forward branch to unbound label // bind(&L); // bind label to the current pc // j(cc, &L); // backward branch to bound label // bind(&L); // illegal: a label may be bound only once // // Note: The same Label can be used for forward and backward branches // but it may be bound only once. void bind(Label* L); // Binds an unbound label L to current code position. enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 }; // Determines if Label is bound and near enough so that branch instruction // can be used to reach it, instead of jump instruction. bool is_near(Label* L); bool is_near(Label* L, OffsetSize bits); bool is_near_branch(Label* L); inline bool is_near_pre_r6(Label* L) { DCHECK(!(kArchVariant == kMips64r6)); return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize; } inline bool is_near_r6(Label* L) { DCHECK(kArchVariant == kMips64r6); return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize; } int BranchOffset(Instr instr); // Returns the branch offset to the given label from the current code // position. Links the label to the current position if it is still unbound. // Manages the jump elimination optimization if the second parameter is true. int32_t branch_offset_helper(Label* L, OffsetSize bits); inline int32_t branch_offset(Label* L) { return branch_offset_helper(L, OffsetSize::kOffset16); } inline int32_t branch_offset21(Label* L) { return branch_offset_helper(L, OffsetSize::kOffset21); } inline int32_t branch_offset26(Label* L) { return branch_offset_helper(L, OffsetSize::kOffset26); } inline int32_t shifted_branch_offset(Label* L) { return branch_offset(L) >> 2; } inline int32_t shifted_branch_offset21(Label* L) { return branch_offset21(L) >> 2; } inline int32_t shifted_branch_offset26(Label* L) { return branch_offset26(L) >> 2; } uint64_t jump_address(Label* L); uint64_t jump_offset(Label* L); // Puts a labels target address at the given position. // The high 8 bits are set to zero. void label_at_put(Label* L, int at_offset); // Read/Modify the code target address in the branch/call instruction at pc. static Address target_address_at(Address pc); static void set_target_address_at( Isolate* isolate, Address pc, Address target, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); // On MIPS there is no Constant Pool so we skip that parameter. INLINE(static Address target_address_at(Address pc, Address constant_pool)) { return target_address_at(pc); } INLINE(static void set_target_address_at( Isolate* isolate, Address pc, Address constant_pool, Address target, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) { set_target_address_at(isolate, pc, target, icache_flush_mode); } INLINE(static Address target_address_at(Address pc, Code* code)); INLINE(static void set_target_address_at( Isolate* isolate, Address pc, Code* code, Address target, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)); // Return the code target address at a call site from the return address // of that call in the instruction stream. inline static Address target_address_from_return_address(Address pc); static void JumpLabelToJumpRegister(Address pc); static void QuietNaN(HeapObject* nan); // This sets the branch destination (which gets loaded at the call address). // This is for calls and branches within generated code. The serializer // has already deserialized the lui/ori instructions etc. inline static void deserialization_set_special_target_at( Isolate* isolate, Address instruction_payload, Code* code, Address target) { set_target_address_at( isolate, instruction_payload - kInstructionsFor64BitConstant * kInstrSize, code, target); } // This sets the internal reference at the pc. inline static void deserialization_set_target_internal_reference_at( Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE); // Size of an instruction. static const int kInstrSize = sizeof(Instr); // Difference between address of current opcode and target address offset. static const int kBranchPCOffset = 4; // Here we are patching the address in the LUI/ORI instruction pair. // These values are used in the serialization process and must be zero for // MIPS platform, as Code, Embedded Object or External-reference pointers // are split across two consecutive instructions and don't exist separately // in the code, so the serializer should not step forwards in memory after // a target is resolved and written. static const int kSpecialTargetSize = 0; // Number of consecutive instructions used to store 32bit/64bit constant. // This constant was used in RelocInfo::target_address_address() function // to tell serializer address of the instruction that follows // LUI/ORI instruction pair. static const int kInstructionsFor32BitConstant = 2; static const int kInstructionsFor64BitConstant = 4; // Distance between the instruction referring to the address of the call // target and the return address. #ifdef _MIPS_ARCH_MIPS64R6 static const int kCallTargetAddressOffset = 5 * kInstrSize; #else static const int kCallTargetAddressOffset = 6 * kInstrSize; #endif // Distance between start of patched debug break slot and the emitted address // to jump to. static const int kPatchDebugBreakSlotAddressOffset = 6 * kInstrSize; // Difference between address of current opcode and value read from pc // register. static const int kPcLoadDelta = 4; #ifdef _MIPS_ARCH_MIPS64R6 static const int kDebugBreakSlotInstructions = 5; #else static const int kDebugBreakSlotInstructions = 6; #endif static const int kDebugBreakSlotLength = kDebugBreakSlotInstructions * kInstrSize; // Max offset for instructions with 16-bit offset field static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; // Max offset for compact branch instructions with 26-bit offset field static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1; static const int kTrampolineSlotsSize = 2 * kInstrSize; // --------------------------------------------------------------------------- // Code generation. // Insert the smallest number of nop instructions // possible to align the pc offset to a multiple // of m. m must be a power of 2 (>= 4). void Align(int m); // Insert the smallest number of zero bytes possible to align the pc offset // to a mulitple of m. m must be a power of 2 (>= 2). void DataAlign(int m); // Aligns code to something that's optimal for a jump target for the platform. void CodeTargetAlign(); // Different nop operations are used by the code generator to detect certain // states of the generated code. enum NopMarkerTypes { NON_MARKING_NOP = 0, DEBUG_BREAK_NOP, // IC markers. PROPERTY_ACCESS_INLINED, PROPERTY_ACCESS_INLINED_CONTEXT, PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, // Helper values. LAST_CODE_MARKER, FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED, // Code aging CODE_AGE_MARKER_NOP = 6, CODE_AGE_SEQUENCE_NOP }; // Type == 0 is the default non-marking nop. For mips this is a // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero // marking, to avoid conflict with ssnop and ehb instructions. void nop(unsigned int type = 0) { DCHECK(type < 32); Register nop_rt_reg = (type == 0) ? zero_reg : at; sll(zero_reg, nop_rt_reg, type, true); } // --------Branch-and-jump-instructions---------- // We don't use likely variant of instructions. void b(int16_t offset); inline void b(Label* L) { b(shifted_branch_offset(L)); } void bal(int16_t offset); inline void bal(Label* L) { bal(shifted_branch_offset(L)); } void bc(int32_t offset); inline void bc(Label* L) { bc(shifted_branch_offset26(L)); } void balc(int32_t offset); inline void balc(Label* L) { balc(shifted_branch_offset26(L)); } void beq(Register rs, Register rt, int16_t offset); inline void beq(Register rs, Register rt, Label* L) { beq(rs, rt, shifted_branch_offset(L)); } void bgez(Register rs, int16_t offset); void bgezc(Register rt, int16_t offset); inline void bgezc(Register rt, Label* L) { bgezc(rt, shifted_branch_offset(L)); } void bgeuc(Register rs, Register rt, int16_t offset); inline void bgeuc(Register rs, Register rt, Label* L) { bgeuc(rs, rt, shifted_branch_offset(L)); } void bgec(Register rs, Register rt, int16_t offset); inline void bgec(Register rs, Register rt, Label* L) { bgec(rs, rt, shifted_branch_offset(L)); } void bgezal(Register rs, int16_t offset); void bgezalc(Register rt, int16_t offset); inline void bgezalc(Register rt, Label* L) { bgezalc(rt, shifted_branch_offset(L)); } void bgezall(Register rs, int16_t offset); inline void bgezall(Register rs, Label* L) { bgezall(rs, branch_offset(L) >> 2); } void bgtz(Register rs, int16_t offset); void bgtzc(Register rt, int16_t offset); inline void bgtzc(Register rt, Label* L) { bgtzc(rt, shifted_branch_offset(L)); } void blez(Register rs, int16_t offset); void blezc(Register rt, int16_t offset); inline void blezc(Register rt, Label* L) { blezc(rt, shifted_branch_offset(L)); } void bltz(Register rs, int16_t offset); void bltzc(Register rt, int16_t offset); inline void bltzc(Register rt, Label* L) { bltzc(rt, shifted_branch_offset(L)); } void bltuc(Register rs, Register rt, int16_t offset); inline void bltuc(Register rs, Register rt, Label* L) { bltuc(rs, rt, shifted_branch_offset(L)); } void bltc(Register rs, Register rt, int16_t offset); inline void bltc(Register rs, Register rt, Label* L) { bltc(rs, rt, shifted_branch_offset(L)); } void bltzal(Register rs, int16_t offset); void blezalc(Register rt, int16_t offset); inline void blezalc(Register rt, Label* L) { blezalc(rt, shifted_branch_offset(L)); } void bltzalc(Register rt, int16_t offset); inline void bltzalc(Register rt, Label* L) { bltzalc(rt, shifted_branch_offset(L)); } void bgtzalc(Register rt, int16_t offset); inline void bgtzalc(Register rt, Label* L) { bgtzalc(rt, shifted_branch_offset(L)); } void beqzalc(Register rt, int16_t offset); inline void beqzalc(Register rt, Label* L) { beqzalc(rt, shifted_branch_offset(L)); } void beqc(Register rs, Register rt, int16_t offset); inline void beqc(Register rs, Register rt, Label* L) { beqc(rs, rt, shifted_branch_offset(L)); } void beqzc(Register rs, int32_t offset); inline void beqzc(Register rs, Label* L) { beqzc(rs, shifted_branch_offset21(L)); } void bnezalc(Register rt, int16_t offset); inline void bnezalc(Register rt, Label* L) { bnezalc(rt, shifted_branch_offset(L)); } void bnec(Register rs, Register rt, int16_t offset); inline void bnec(Register rs, Register rt, Label* L) { bnec(rs, rt, shifted_branch_offset(L)); } void bnezc(Register rt, int32_t offset); inline void bnezc(Register rt, Label* L) { bnezc(rt, shifted_branch_offset21(L)); } void bne(Register rs, Register rt, int16_t offset); inline void bne(Register rs, Register rt, Label* L) { bne(rs, rt, shifted_branch_offset(L)); } void bovc(Register rs, Register rt, int16_t offset); inline void bovc(Register rs, Register rt, Label* L) { bovc(rs, rt, shifted_branch_offset(L)); } void bnvc(Register rs, Register rt, int16_t offset); inline void bnvc(Register rs, Register rt, Label* L) { bnvc(rs, rt, shifted_branch_offset(L)); } // Never use the int16_t b(l)cond version with a branch offset // instead of using the Label* version. // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits. void j(int64_t target); void jal(int64_t target); void j(Label* target); void jal(Label* target); void jalr(Register rs, Register rd = ra); void jr(Register target); void jic(Register rt, int16_t offset); void jialc(Register rt, int16_t offset); // -------Data-processing-instructions--------- // Arithmetic. void addu(Register rd, Register rs, Register rt); void subu(Register rd, Register rs, Register rt); void div(Register rs, Register rt); void divu(Register rs, Register rt); void ddiv(Register rs, Register rt); void ddivu(Register rs, Register rt); void div(Register rd, Register rs, Register rt); void divu(Register rd, Register rs, Register rt); void ddiv(Register rd, Register rs, Register rt); void ddivu(Register rd, Register rs, Register rt); void mod(Register rd, Register rs, Register rt); void modu(Register rd, Register rs, Register rt); void dmod(Register rd, Register rs, Register rt); void dmodu(Register rd, Register rs, Register rt); void mul(Register rd, Register rs, Register rt); void muh(Register rd, Register rs, Register rt); void mulu(Register rd, Register rs, Register rt); void muhu(Register rd, Register rs, Register rt); void mult(Register rs, Register rt); void multu(Register rs, Register rt); void dmul(Register rd, Register rs, Register rt); void dmuh(Register rd, Register rs, Register rt); void dmulu(Register rd, Register rs, Register rt); void dmuhu(Register rd, Register rs, Register rt); void daddu(Register rd, Register rs, Register rt); void dsubu(Register rd, Register rs, Register rt); void dmult(Register rs, Register rt); void dmultu(Register rs, Register rt); void addiu(Register rd, Register rs, int32_t j); void daddiu(Register rd, Register rs, int32_t j); // Logical. void and_(Register rd, Register rs, Register rt); void or_(Register rd, Register rs, Register rt); void xor_(Register rd, Register rs, Register rt); void nor(Register rd, Register rs, Register rt); void andi(Register rd, Register rs, int32_t j); void ori(Register rd, Register rs, int32_t j); void xori(Register rd, Register rs, int32_t j); void lui(Register rd, int32_t j); void aui(Register rt, Register rs, int32_t j); void daui(Register rt, Register rs, int32_t j); void dahi(Register rs, int32_t j); void dati(Register rs, int32_t j); // Shifts. // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop // and may cause problems in normal code. coming_from_nop makes sure this // doesn't happen. void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false); void sllv(Register rd, Register rt, Register rs); void srl(Register rd, Register rt, uint16_t sa); void srlv(Register rd, Register rt, Register rs); void sra(Register rt, Register rd, uint16_t sa); void srav(Register rt, Register rd, Register rs); void rotr(Register rd, Register rt, uint16_t sa); void rotrv(Register rd, Register rt, Register rs); void dsll(Register rd, Register rt, uint16_t sa); void dsllv(Register rd, Register rt, Register rs); void dsrl(Register rd, Register rt, uint16_t sa); void dsrlv(Register rd, Register rt, Register rs); void drotr(Register rd, Register rt, uint16_t sa); void drotr32(Register rd, Register rt, uint16_t sa); void drotrv(Register rd, Register rt, Register rs); void dsra(Register rt, Register rd, uint16_t sa); void dsrav(Register rd, Register rt, Register rs); void dsll32(Register rt, Register rd, uint16_t sa); void dsrl32(Register rt, Register rd, uint16_t sa); void dsra32(Register rt, Register rd, uint16_t sa); // ------------Memory-instructions------------- void lb(Register rd, const MemOperand& rs); void lbu(Register rd, const MemOperand& rs); void lh(Register rd, const MemOperand& rs); void lhu(Register rd, const MemOperand& rs); void lw(Register rd, const MemOperand& rs); void lwu(Register rd, const MemOperand& rs); void lwl(Register rd, const MemOperand& rs); void lwr(Register rd, const MemOperand& rs); void sb(Register rd, const MemOperand& rs); void sh(Register rd, const MemOperand& rs); void sw(Register rd, const MemOperand& rs); void swl(Register rd, const MemOperand& rs); void swr(Register rd, const MemOperand& rs); void ldl(Register rd, const MemOperand& rs); void ldr(Register rd, const MemOperand& rs); void sdl(Register rd, const MemOperand& rs); void sdr(Register rd, const MemOperand& rs); void ld(Register rd, const MemOperand& rs); void sd(Register rd, const MemOperand& rs); // ---------PC-Relative-instructions----------- void addiupc(Register rs, int32_t imm19); void lwpc(Register rs, int32_t offset19); void lwupc(Register rs, int32_t offset19); void ldpc(Register rs, int32_t offset18); void auipc(Register rs, int16_t imm16); void aluipc(Register rs, int16_t imm16); // ----------------Prefetch-------------------- void pref(int32_t hint, const MemOperand& rs); // -------------Misc-instructions-------------- // Break / Trap instructions. void break_(uint32_t code, bool break_as_stop = false); void stop(const char* msg, uint32_t code = kMaxStopCode); void tge(Register rs, Register rt, uint16_t code); void tgeu(Register rs, Register rt, uint16_t code); void tlt(Register rs, Register rt, uint16_t code); void tltu(Register rs, Register rt, uint16_t code); void teq(Register rs, Register rt, uint16_t code); void tne(Register rs, Register rt, uint16_t code); // Memory barrier instruction. void sync(); // Move from HI/LO register. void mfhi(Register rd); void mflo(Register rd); // Set on less than. void slt(Register rd, Register rs, Register rt); void sltu(Register rd, Register rs, Register rt); void slti(Register rd, Register rs, int32_t j); void sltiu(Register rd, Register rs, int32_t j); // Conditional move. void movz(Register rd, Register rs, Register rt); void movn(Register rd, Register rs, Register rt); void movt(Register rd, Register rs, uint16_t cc = 0); void movf(Register rd, Register rs, uint16_t cc = 0); void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); void sel_s(FPURegister fd, FPURegister fs, FPURegister ft); void sel_d(FPURegister fd, FPURegister fs, FPURegister ft); void seleqz(Register rd, Register rs, Register rt); void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); void selnez(Register rs, Register rt, Register rd); void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft); void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft); void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft); void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft); void movz_s(FPURegister fd, FPURegister fs, Register rt); void movz_d(FPURegister fd, FPURegister fs, Register rt); void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0); void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0); void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0); void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0); void movn_s(FPURegister fd, FPURegister fs, Register rt); void movn_d(FPURegister fd, FPURegister fs, Register rt); // Bit twiddling. void clz(Register rd, Register rs); void dclz(Register rd, Register rs); void ins_(Register rt, Register rs, uint16_t pos, uint16_t size); void ext_(Register rt, Register rs, uint16_t pos, uint16_t size); void dext_(Register rt, Register rs, uint16_t pos, uint16_t size); void dextm(Register rt, Register rs, uint16_t pos, uint16_t size); void dextu(Register rt, Register rs, uint16_t pos, uint16_t size); void dins_(Register rt, Register rs, uint16_t pos, uint16_t size); void bitswap(Register rd, Register rt); void dbitswap(Register rd, Register rt); void align(Register rd, Register rs, Register rt, uint8_t bp); void dalign(Register rd, Register rs, Register rt, uint8_t bp); void wsbh(Register rd, Register rt); void dsbh(Register rd, Register rt); void dshd(Register rd, Register rt); void seh(Register rd, Register rt); void seb(Register rd, Register rt); // --------Coprocessor-instructions---------------- // Load, store, and move. void lwc1(FPURegister fd, const MemOperand& src); void ldc1(FPURegister fd, const MemOperand& src); void swc1(FPURegister fs, const MemOperand& dst); void sdc1(FPURegister fs, const MemOperand& dst); void mtc1(Register rt, FPURegister fs); void mthc1(Register rt, FPURegister fs); void dmtc1(Register rt, FPURegister fs); void mfc1(Register rt, FPURegister fs); void mfhc1(Register rt, FPURegister fs); void dmfc1(Register rt, FPURegister fs); void ctc1(Register rt, FPUControlRegister fs); void cfc1(Register rt, FPUControlRegister fs); // Arithmetic. void add_s(FPURegister fd, FPURegister fs, FPURegister ft); void add_d(FPURegister fd, FPURegister fs, FPURegister ft); void sub_s(FPURegister fd, FPURegister fs, FPURegister ft); void sub_d(FPURegister fd, FPURegister fs, FPURegister ft); void mul_s(FPURegister fd, FPURegister fs, FPURegister ft); void mul_d(FPURegister fd, FPURegister fs, FPURegister ft); void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft); void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft); void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft); void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft); void div_s(FPURegister fd, FPURegister fs, FPURegister ft); void div_d(FPURegister fd, FPURegister fs, FPURegister ft); void abs_s(FPURegister fd, FPURegister fs); void abs_d(FPURegister fd, FPURegister fs); void mov_d(FPURegister fd, FPURegister fs); void mov_s(FPURegister fd, FPURegister fs); void neg_s(FPURegister fd, FPURegister fs); void neg_d(FPURegister fd, FPURegister fs); void sqrt_s(FPURegister fd, FPURegister fs); void sqrt_d(FPURegister fd, FPURegister fs); void rsqrt_s(FPURegister fd, FPURegister fs); void rsqrt_d(FPURegister fd, FPURegister fs); void recip_d(FPURegister fd, FPURegister fs); void recip_s(FPURegister fd, FPURegister fs); // Conversion. void cvt_w_s(FPURegister fd, FPURegister fs); void cvt_w_d(FPURegister fd, FPURegister fs); void trunc_w_s(FPURegister fd, FPURegister fs); void trunc_w_d(FPURegister fd, FPURegister fs); void round_w_s(FPURegister fd, FPURegister fs); void round_w_d(FPURegister fd, FPURegister fs); void floor_w_s(FPURegister fd, FPURegister fs); void floor_w_d(FPURegister fd, FPURegister fs); void ceil_w_s(FPURegister fd, FPURegister fs); void ceil_w_d(FPURegister fd, FPURegister fs); void rint_s(FPURegister fd, FPURegister fs); void rint_d(FPURegister fd, FPURegister fs); void rint(SecondaryField fmt, FPURegister fd, FPURegister fs); void cvt_l_s(FPURegister fd, FPURegister fs); void cvt_l_d(FPURegister fd, FPURegister fs); void trunc_l_s(FPURegister fd, FPURegister fs); void trunc_l_d(FPURegister fd, FPURegister fs); void round_l_s(FPURegister fd, FPURegister fs); void round_l_d(FPURegister fd, FPURegister fs); void floor_l_s(FPURegister fd, FPURegister fs); void floor_l_d(FPURegister fd, FPURegister fs); void ceil_l_s(FPURegister fd, FPURegister fs); void ceil_l_d(FPURegister fd, FPURegister fs); void class_s(FPURegister fd, FPURegister fs); void class_d(FPURegister fd, FPURegister fs); void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); void min_s(FPURegister fd, FPURegister fs, FPURegister ft); void min_d(FPURegister fd, FPURegister fs, FPURegister ft); void max_s(FPURegister fd, FPURegister fs, FPURegister ft); void max_d(FPURegister fd, FPURegister fs, FPURegister ft); void mina_s(FPURegister fd, FPURegister fs, FPURegister ft); void mina_d(FPURegister fd, FPURegister fs, FPURegister ft); void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft); void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft); void cvt_s_w(FPURegister fd, FPURegister fs); void cvt_s_l(FPURegister fd, FPURegister fs); void cvt_s_d(FPURegister fd, FPURegister fs); void cvt_d_w(FPURegister fd, FPURegister fs); void cvt_d_l(FPURegister fd, FPURegister fs); void cvt_d_s(FPURegister fd, FPURegister fs); // Conditions and branches for MIPSr6. void cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs); void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft); void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft); void bc1eqz(int16_t offset, FPURegister ft); inline void bc1eqz(Label* L, FPURegister ft) { bc1eqz(shifted_branch_offset(L), ft); } void bc1nez(int16_t offset, FPURegister ft); inline void bc1nez(Label* L, FPURegister ft) { bc1nez(shifted_branch_offset(L), ft); } // Conditions and branches for non MIPSr6. void c(FPUCondition cond, SecondaryField fmt, FPURegister ft, FPURegister fs, uint16_t cc = 0); void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0); void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0); void bc1f(int16_t offset, uint16_t cc = 0); inline void bc1f(Label* L, uint16_t cc = 0) { bc1f(shifted_branch_offset(L), cc); } void bc1t(int16_t offset, uint16_t cc = 0); inline void bc1t(Label* L, uint16_t cc = 0) { bc1t(shifted_branch_offset(L), cc); } void fcmp(FPURegister src1, const double src2, FPUCondition cond); // Check the code size generated from label to here. int SizeOfCodeGeneratedSince(Label* label) { return pc_offset() - label->pos(); } // Check the number of instructions generated from label to here. int InstructionsGeneratedSince(Label* label) { return SizeOfCodeGeneratedSince(label) / kInstrSize; } // Class for scoping postponing the trampoline pool generation. class BlockTrampolinePoolScope { public: explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) { assem_->StartBlockTrampolinePool(); } ~BlockTrampolinePoolScope() { assem_->EndBlockTrampolinePool(); } private: Assembler* assem_; DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope); }; // Class for postponing the assembly buffer growth. Typically used for // sequences of instructions that must be emitted as a unit, before // buffer growth (and relocation) can occur. // This blocking scope is not nestable. class BlockGrowBufferScope { public: explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) { assem_->StartBlockGrowBuffer(); } ~BlockGrowBufferScope() { assem_->EndBlockGrowBuffer(); } private: Assembler* assem_; DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope); }; // Debugging. // Mark address of a debug break slot. void RecordDebugBreakSlot(RelocInfo::Mode mode); // Record the AST id of the CallIC being compiled, so that it can be placed // in the relocation information. void SetRecordedAstId(TypeFeedbackId ast_id) { DCHECK(recorded_ast_id_.IsNone()); recorded_ast_id_ = ast_id; } TypeFeedbackId RecordedAstId() { DCHECK(!recorded_ast_id_.IsNone()); return recorded_ast_id_; } void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); } // Record a comment relocation entry that can be used by a disassembler. // Use --code-comments to enable. void RecordComment(const char* msg); // Record a deoptimization reason that can be used by a log or cpu profiler. // Use --trace-deopt to enable. void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position, int id); static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc, intptr_t pc_delta); // Writes a single byte or word of data in the code stream. Used for // inline tables, e.g., jump-tables. void db(uint8_t data); void dd(uint32_t data); void dq(uint64_t data); void dp(uintptr_t data) { dq(data); } void dd(Label* label); // Postpone the generation of the trampoline pool for the specified number of // instructions. void BlockTrampolinePoolFor(int instructions); // Check if there is less than kGap bytes available in the buffer. // If this is the case, we need to grow the buffer before emitting // an instruction or relocation information. inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } // Get the number of bytes available in the buffer. inline intptr_t available_space() const { return reloc_info_writer.pos() - pc_; } // Read/patch instructions. static Instr instr_at(byte* pc) { return *reinterpret_cast(pc); } static void instr_at_put(byte* pc, Instr instr) { *reinterpret_cast(pc) = instr; } Instr instr_at(int pos) { return *reinterpret_cast(buffer_ + pos); } void instr_at_put(int pos, Instr instr) { *reinterpret_cast(buffer_ + pos) = instr; } // Check if an instruction is a branch of some kind. static bool IsBranch(Instr instr); static bool IsBc(Instr instr); static bool IsBzc(Instr instr); static bool IsBeq(Instr instr); static bool IsBne(Instr instr); static bool IsBeqzc(Instr instr); static bool IsBnezc(Instr instr); static bool IsBeqc(Instr instr); static bool IsBnec(Instr instr); static bool IsJump(Instr instr); static bool IsJ(Instr instr); static bool IsLui(Instr instr); static bool IsOri(Instr instr); static bool IsJal(Instr instr); static bool IsJr(Instr instr); static bool IsJalr(Instr instr); static bool IsNop(Instr instr, unsigned int type); static bool IsPop(Instr instr); static bool IsPush(Instr instr); static bool IsLwRegFpOffset(Instr instr); static bool IsSwRegFpOffset(Instr instr); static bool IsLwRegFpNegOffset(Instr instr); static bool IsSwRegFpNegOffset(Instr instr); static Register GetRtReg(Instr instr); static Register GetRsReg(Instr instr); static Register GetRdReg(Instr instr); static uint32_t GetRt(Instr instr); static uint32_t GetRtField(Instr instr); static uint32_t GetRs(Instr instr); static uint32_t GetRsField(Instr instr); static uint32_t GetRd(Instr instr); static uint32_t GetRdField(Instr instr); static uint32_t GetSa(Instr instr); static uint32_t GetSaField(Instr instr); static uint32_t GetOpcodeField(Instr instr); static uint32_t GetFunction(Instr instr); static uint32_t GetFunctionField(Instr instr); static uint32_t GetImmediate16(Instr instr); static uint32_t GetLabelConst(Instr instr); static int32_t GetBranchOffset(Instr instr); static bool IsLw(Instr instr); static int16_t GetLwOffset(Instr instr); static Instr SetLwOffset(Instr instr, int16_t offset); static bool IsSw(Instr instr); static Instr SetSwOffset(Instr instr, int16_t offset); static bool IsAddImmediate(Instr instr); static Instr SetAddImmediateOffset(Instr instr, int16_t offset); static bool IsAndImmediate(Instr instr); static bool IsEmittedConstant(Instr instr); void CheckTrampolinePool(); void PatchConstantPoolAccessInstruction(int pc_offset, int offset, ConstantPoolEntry::Access access, ConstantPoolEntry::Type type) { // No embedded constant pool support. UNREACHABLE(); } bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; } static bool IsCompactBranchSupported() { return kArchVariant == kMips64r6; } inline int UnboundLabelsCount() { return unbound_labels_count_; } protected: // Load Scaled Address instructions. void lsa(Register rd, Register rt, Register rs, uint8_t sa); void dlsa(Register rd, Register rt, Register rs, uint8_t sa); // Helpers. void LoadRegPlusOffsetToAt(const MemOperand& src); int32_t LoadRegPlusUpperOffsetPartToAt(const MemOperand& src); // Relocation for a type-recording IC has the AST id added to it. This // member variable is a way to pass the information from the call site to // the relocation info. TypeFeedbackId recorded_ast_id_; inline static void set_target_internal_reference_encoded_at(Address pc, Address target); int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; } // Decode branch instruction at pos and return branch target pos. int target_at(int pos, bool is_internal); // Patch branch instruction at pos to branch to given branch target pos. void target_at_put(int pos, int target_pos, bool is_internal); // Say if we need to relocate with this mode. bool MustUseReg(RelocInfo::Mode rmode); // Record reloc info for current pc_. void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); // Block the emission of the trampoline pool before pc_offset. void BlockTrampolinePoolBefore(int pc_offset) { if (no_trampoline_pool_before_ < pc_offset) no_trampoline_pool_before_ = pc_offset; } void StartBlockTrampolinePool() { trampoline_pool_blocked_nesting_++; } void EndBlockTrampolinePool() { trampoline_pool_blocked_nesting_--; } bool is_trampoline_pool_blocked() const { return trampoline_pool_blocked_nesting_ > 0; } bool has_exception() const { return internal_trampoline_exception_; } void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi); bool is_trampoline_emitted() const { return trampoline_emitted_; } // Temporarily block automatic assembly buffer growth. void StartBlockGrowBuffer() { DCHECK(!block_buffer_growth_); block_buffer_growth_ = true; } void EndBlockGrowBuffer() { DCHECK(block_buffer_growth_); block_buffer_growth_ = false; } bool is_buffer_growth_blocked() const { return block_buffer_growth_; } void EmitForbiddenSlotInstruction() { if (IsPrevInstrCompactBranch()) { nop(); } } inline void CheckTrampolinePoolQuick(int extra_instructions = 0); private: // Buffer size and constant pool distance are checked together at regular // intervals of kBufferCheckInterval emitted bytes. static const int kBufferCheckInterval = 1*KB/2; // Code generation. // The relocation writer's position is at least kGap bytes below the end of // the generated instructions. This is so that multi-instruction sequences do // not have to check for overflow. The same is true for writes of large // relocation info entries. static const int kGap = 32; // Repeated checking whether the trampoline pool should be emitted is rather // expensive. By default we only check again once a number of instructions // has been generated. static const int kCheckConstIntervalInst = 32; static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize; int next_buffer_check_; // pc offset of next buffer check. // Emission of the trampoline pool may be blocked in some code sequences. int trampoline_pool_blocked_nesting_; // Block emission if this is not zero. int no_trampoline_pool_before_; // Block emission before this pc offset. // Keep track of the last emitted pool to guarantee a maximal distance. int last_trampoline_pool_end_; // pc offset of the end of the last pool. // Automatic growth of the assembly buffer may be blocked for some sequences. bool block_buffer_growth_; // Block growth when true. // Relocation information generation. // Each relocation is encoded as a variable size value. static const int kMaxRelocSize = RelocInfoWriter::kMaxSize; RelocInfoWriter reloc_info_writer; // The bound position, before this we cannot do instruction elimination. int last_bound_pos_; // Readable constants for compact branch handling in emit() enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true }; // Code emission. inline void CheckBuffer(); void GrowBuffer(); inline void emit(Instr x, CompactBranchType is_compact_branch = CompactBranchType::NO); inline void emit(uint64_t x); inline void CheckForEmitInForbiddenSlot(); template inline void EmitHelper(T x); inline void EmitHelper(Instr x, CompactBranchType is_compact_branch); // Instruction generation. // We have 3 different kind of encoding layout on MIPS. // However due to many different types of objects encoded in the same fields // we have quite a few aliases for each mode. // Using the same structure to refer to Register and FPURegister would spare a // few aliases, but mixing both does not look clean to me. // Anyway we could surely implement this differently. void GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd, uint16_t sa = 0, SecondaryField func = NULLSF); void GenInstrRegister(Opcode opcode, Register rs, Register rt, uint16_t msb, uint16_t lsb, SecondaryField func); void GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft, FPURegister fs, FPURegister fd, SecondaryField func = NULLSF); void GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft, FPURegister fs, FPURegister fd, SecondaryField func = NULLSF); void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, FPURegister fs, FPURegister fd, SecondaryField func = NULLSF); void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, FPUControlRegister fs, SecondaryField func = NULLSF); void GenInstrImmediate( Opcode opcode, Register rs, Register rt, int32_t j, CompactBranchType is_compact_branch = CompactBranchType::NO); void GenInstrImmediate( Opcode opcode, Register rs, SecondaryField SF, int32_t j, CompactBranchType is_compact_branch = CompactBranchType::NO); void GenInstrImmediate( Opcode opcode, Register r1, FPURegister r2, int32_t j, CompactBranchType is_compact_branch = CompactBranchType::NO); void GenInstrImmediate( Opcode opcode, Register rs, int32_t offset21, CompactBranchType is_compact_branch = CompactBranchType::NO); void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21); void GenInstrImmediate( Opcode opcode, int32_t offset26, CompactBranchType is_compact_branch = CompactBranchType::NO); void GenInstrJump(Opcode opcode, uint32_t address); // Labels. void print(Label* L); void bind_to(Label* L, int pos); void next(Label* L, bool is_internal); // One trampoline consists of: // - space for trampoline slots, // - space for labels. // // Space for trampoline slots is equal to slot_count * 2 * kInstrSize. // Space for trampoline slots preceeds space for labels. Each label is of one // instruction size, so total amount for labels is equal to // label_count * kInstrSize. class Trampoline { public: Trampoline() { start_ = 0; next_slot_ = 0; free_slot_count_ = 0; end_ = 0; } Trampoline(int start, int slot_count) { start_ = start; next_slot_ = start; free_slot_count_ = slot_count; end_ = start + slot_count * kTrampolineSlotsSize; } int start() { return start_; } int end() { return end_; } int take_slot() { int trampoline_slot = kInvalidSlotPos; if (free_slot_count_ <= 0) { // We have run out of space on trampolines. // Make sure we fail in debug mode, so we become aware of each case // when this happens. DCHECK(0); // Internal exception will be caught. } else { trampoline_slot = next_slot_; free_slot_count_--; next_slot_ += kTrampolineSlotsSize; } return trampoline_slot; } private: int start_; int end_; int next_slot_; int free_slot_count_; }; int32_t get_trampoline_entry(int32_t pos); int unbound_labels_count_; // After trampoline is emitted, long branches are used in generated code for // the forward branches whose target offsets could be beyond reach of branch // instruction. We use this information to trigger different mode of // branch instruction generation, where we use jump instructions rather // than regular branch instructions. bool trampoline_emitted_; static const int kInvalidSlotPos = -1; // Internal reference positions, required for unbounded internal reference // labels. std::set internal_reference_positions_; bool is_internal_reference(Label* L) { return internal_reference_positions_.find(L->pos()) != internal_reference_positions_.end(); } void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; } void ClearCompactBranchState() { prev_instr_compact_branch_ = false; } bool prev_instr_compact_branch_ = false; Trampoline trampoline_; bool internal_trampoline_exception_; friend class RegExpMacroAssemblerMIPS; friend class RelocInfo; friend class CodePatcher; friend class BlockTrampolinePoolScope; friend class EnsureSpace; }; class EnsureSpace BASE_EMBEDDED { public: explicit EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); } }; } // namespace internal } // namespace v8 #endif // V8_ARM_ASSEMBLER_MIPS_H_