// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_PPC #include "src/code-stubs.h" #include "src/api-arguments.h" #include "src/base/bits.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/ic/handler-compiler.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" #include "src/isolate.h" #include "src/ppc/code-stubs-ppc.h" #include "src/regexp/jsregexp.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) { __ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2)); __ StorePX(r4, MemOperand(sp, r0)); __ push(r4); __ push(r5); __ addi(r3, r3, Operand(3)); __ TailCallRuntime(Runtime::kNewArray); } static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cond); static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* lhs_not_nan, Label* slow, bool strict); static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs); void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm, ExternalReference miss) { // Update the static counter each time a new code stub is generated. isolate()->counters()->code_stubs()->Increment(); CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor(); int param_count = descriptor.GetRegisterParameterCount(); { // Call the runtime system in a fresh internal frame. FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); DCHECK(param_count == 0 || r3.is(descriptor.GetRegisterParameter(param_count - 1))); // Push arguments for (int i = 0; i < param_count; ++i) { __ push(descriptor.GetRegisterParameter(i)); } __ CallExternalReference(miss, param_count); } __ Ret(); } void DoubleToIStub::Generate(MacroAssembler* masm) { Label out_of_range, only_low, negate, done, fastpath_done; Register input_reg = source(); Register result_reg = destination(); DCHECK(is_truncating()); int double_offset = offset(); // Immediate values for this stub fit in instructions, so it's safe to use ip. Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg); Register scratch_low = GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch); Register scratch_high = GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low); DoubleRegister double_scratch = kScratchDoubleReg; __ push(scratch); // Account for saved regs if input is sp. if (input_reg.is(sp)) double_offset += kPointerSize; if (!skip_fastpath()) { // Load double input. __ lfd(double_scratch, MemOperand(input_reg, double_offset)); // Do fast-path convert from double to int. __ ConvertDoubleToInt64(double_scratch, #if !V8_TARGET_ARCH_PPC64 scratch, #endif result_reg, d0); // Test for overflow #if V8_TARGET_ARCH_PPC64 __ TestIfInt32(result_reg, r0); #else __ TestIfInt32(scratch, result_reg, r0); #endif __ beq(&fastpath_done); } __ Push(scratch_high, scratch_low); // Account for saved regs if input is sp. if (input_reg.is(sp)) double_offset += 2 * kPointerSize; __ lwz(scratch_high, MemOperand(input_reg, double_offset + Register::kExponentOffset)); __ lwz(scratch_low, MemOperand(input_reg, double_offset + Register::kMantissaOffset)); __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask); // Load scratch with exponent - 1. This is faster than loading // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value. STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); // If exponent is greater than or equal to 84, the 32 less significant // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), // the result is 0. // Compare exponent with 84 (compare exponent - 1 with 83). __ cmpi(scratch, Operand(83)); __ bge(&out_of_range); // If we reach this code, 31 <= exponent <= 83. // So, we don't have to handle cases where 0 <= exponent <= 20 for // which we would need to shift right the high part of the mantissa. // Scratch contains exponent - 1. // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). __ subfic(scratch, scratch, Operand(51)); __ cmpi(scratch, Operand::Zero()); __ ble(&only_low); // 21 <= exponent <= 51, shift scratch_low and scratch_high // to generate the result. __ srw(scratch_low, scratch_low, scratch); // Scratch contains: 52 - exponent. // We needs: exponent - 20. // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. __ subfic(scratch, scratch, Operand(32)); __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask); // Set the implicit 1 before the mantissa part in scratch_high. STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16); __ oris(result_reg, result_reg, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord) - 16))); __ slw(r0, result_reg, scratch); __ orx(result_reg, scratch_low, r0); __ b(&negate); __ bind(&out_of_range); __ mov(result_reg, Operand::Zero()); __ b(&done); __ bind(&only_low); // 52 <= exponent <= 83, shift only scratch_low. // On entry, scratch contains: 52 - exponent. __ neg(scratch, scratch); __ slw(result_reg, scratch_low, scratch); __ bind(&negate); // If input was positive, scratch_high ASR 31 equals 0 and // scratch_high LSR 31 equals zero. // New result = (result eor 0) + 0 = result. // If the input was negative, we have to negate the result. // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1. // New result = (result eor 0xffffffff) + 1 = 0 - result. __ srawi(r0, scratch_high, 31); #if V8_TARGET_ARCH_PPC64 __ srdi(r0, r0, Operand(32)); #endif __ xor_(result_reg, result_reg, r0); __ srwi(r0, scratch_high, Operand(31)); __ add(result_reg, result_reg, r0); __ bind(&done); __ Pop(scratch_high, scratch_low); __ bind(&fastpath_done); __ pop(scratch); __ Ret(); } // Handle the case where the lhs and rhs are the same object. // Equality is almost reflexive (everything but NaN), so this is a test // for "identity and not NaN". static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cond) { Label not_identical; Label heap_number, return_equal; __ cmp(r3, r4); __ bne(¬_identical); // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), // so we do the second best thing - test it ourselves. // They are both equal and they are not both Smis so both of them are not // Smis. If it's not a heap number, then return equal. if (cond == lt || cond == gt) { // Call runtime on identical JSObjects. __ CompareObjectType(r3, r7, r7, FIRST_JS_RECEIVER_TYPE); __ bge(slow); // Call runtime on identical symbols since we need to throw a TypeError. __ cmpi(r7, Operand(SYMBOL_TYPE)); __ beq(slow); } else { __ CompareObjectType(r3, r7, r7, HEAP_NUMBER_TYPE); __ beq(&heap_number); // Comparing JS objects with <=, >= is complicated. if (cond != eq) { __ cmpi(r7, Operand(FIRST_JS_RECEIVER_TYPE)); __ bge(slow); // Call runtime on identical symbols since we need to throw a TypeError. __ cmpi(r7, Operand(SYMBOL_TYPE)); __ beq(slow); // Normally here we fall through to return_equal, but undefined is // special: (undefined == undefined) == true, but // (undefined <= undefined) == false! See ECMAScript 11.8.5. if (cond == le || cond == ge) { __ cmpi(r7, Operand(ODDBALL_TYPE)); __ bne(&return_equal); __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); __ cmp(r3, r5); __ bne(&return_equal); if (cond == le) { // undefined <= undefined should fail. __ li(r3, Operand(GREATER)); } else { // undefined >= undefined should fail. __ li(r3, Operand(LESS)); } __ Ret(); } } } __ bind(&return_equal); if (cond == lt) { __ li(r3, Operand(GREATER)); // Things aren't less than themselves. } else if (cond == gt) { __ li(r3, Operand(LESS)); // Things aren't greater than themselves. } else { __ li(r3, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. } __ Ret(); // For less and greater we don't have to check for NaN since the result of // x < x is false regardless. For the others here is some code to check // for NaN. if (cond != lt && cond != gt) { __ bind(&heap_number); // It is a heap number, so return non-equal if it's NaN and equal if it's // not NaN. // The representation of NaN values has all exponent bits (52..62) set, // and not all mantissa bits (0..51) clear. // Read top bits of double representation (second word of value). __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset)); // Test that exponent bits are all set. STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u); __ ExtractBitMask(r6, r5, HeapNumber::kExponentMask); __ cmpli(r6, Operand(0x7ff)); __ bne(&return_equal); // Shift out flag and all exponent bits, retaining only mantissa. __ slwi(r5, r5, Operand(HeapNumber::kNonMantissaBitsInTopWord)); // Or with all low-bits of mantissa. __ lwz(r6, FieldMemOperand(r3, HeapNumber::kMantissaOffset)); __ orx(r3, r6, r5); __ cmpi(r3, Operand::Zero()); // For equal we already have the right value in r3: Return zero (equal) // if all bits in mantissa are zero (it's an Infinity) and non-zero if // not (it's a NaN). For <= and >= we need to load r0 with the failing // value if it's a NaN. if (cond != eq) { if (CpuFeatures::IsSupported(ISELECT)) { __ li(r4, Operand((cond == le) ? GREATER : LESS)); __ isel(eq, r3, r3, r4); } else { // All-zero means Infinity means equal. __ Ret(eq); if (cond == le) { __ li(r3, Operand(GREATER)); // NaN <= NaN should fail. } else { __ li(r3, Operand(LESS)); // NaN >= NaN should fail. } } } __ Ret(); } // No fall through here. __ bind(¬_identical); } // See comment at call site. static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* lhs_not_nan, Label* slow, bool strict) { DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3))); Label rhs_is_smi; __ JumpIfSmi(rhs, &rhs_is_smi); // Lhs is a Smi. Check whether the rhs is a heap number. __ CompareObjectType(rhs, r6, r7, HEAP_NUMBER_TYPE); if (strict) { // If rhs is not a number and lhs is a Smi then strict equality cannot // succeed. Return non-equal // If rhs is r3 then there is already a non zero value in it. if (!rhs.is(r3)) { Label skip; __ beq(&skip); __ mov(r3, Operand(NOT_EQUAL)); __ Ret(); __ bind(&skip); } else { __ Ret(ne); } } else { // Smi compared non-strictly with a non-Smi non-heap-number. Call // the runtime. __ bne(slow); } // Lhs is a smi, rhs is a number. // Convert lhs to a double in d7. __ SmiToDouble(d7, lhs); // Load the double from rhs, tagged HeapNumber r3, to d6. __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset)); // We now have both loaded as doubles but we can skip the lhs nan check // since it's a smi. __ b(lhs_not_nan); __ bind(&rhs_is_smi); // Rhs is a smi. Check whether the non-smi lhs is a heap number. __ CompareObjectType(lhs, r7, r7, HEAP_NUMBER_TYPE); if (strict) { // If lhs is not a number and rhs is a smi then strict equality cannot // succeed. Return non-equal. // If lhs is r3 then there is already a non zero value in it. if (!lhs.is(r3)) { Label skip; __ beq(&skip); __ mov(r3, Operand(NOT_EQUAL)); __ Ret(); __ bind(&skip); } else { __ Ret(ne); } } else { // Smi compared non-strictly with a non-smi non-heap-number. Call // the runtime. __ bne(slow); } // Rhs is a smi, lhs is a heap number. // Load the double from lhs, tagged HeapNumber r4, to d7. __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset)); // Convert rhs to a double in d6. __ SmiToDouble(d6, rhs); // Fall through to both_loaded_as_doubles. } // See comment at call site. static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs) { DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3))); // If either operand is a JS object or an oddball value, then they are // not equal since their pointers are different. // There is no test for undetectability in strict equality. STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); Label first_non_object; // Get the type of the first operand into r5 and compare it with // FIRST_JS_RECEIVER_TYPE. __ CompareObjectType(rhs, r5, r5, FIRST_JS_RECEIVER_TYPE); __ blt(&first_non_object); // Return non-zero (r3 is not zero) Label return_not_equal; __ bind(&return_not_equal); __ Ret(); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ cmpi(r5, Operand(ODDBALL_TYPE)); __ beq(&return_not_equal); __ CompareObjectType(lhs, r6, r6, FIRST_JS_RECEIVER_TYPE); __ bge(&return_not_equal); // Check for oddballs: true, false, null, undefined. __ cmpi(r6, Operand(ODDBALL_TYPE)); __ beq(&return_not_equal); // Now that we have the types we might as well check for // internalized-internalized. STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ orx(r5, r5, r6); __ andi(r0, r5, Operand(kIsNotStringMask | kIsNotInternalizedMask)); __ beq(&return_not_equal, cr0); } // See comment at call site. static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs, Register rhs, Label* both_loaded_as_doubles, Label* not_heap_numbers, Label* slow) { DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3))); __ CompareObjectType(rhs, r6, r5, HEAP_NUMBER_TYPE); __ bne(not_heap_numbers); __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ cmp(r5, r6); __ bne(slow); // First was a heap number, second wasn't. Go slow case. // Both are heap numbers. Load them up then jump to the code we have // for that. __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset)); __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset)); __ b(both_loaded_as_doubles); } // Fast negative check for internalized-to-internalized equality or receiver // equality. Also handles the undetectable receiver to null/undefined // comparison. static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, Register lhs, Register rhs, Label* possible_strings, Label* runtime_call) { DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3))); // r5 is object type of rhs. Label object_test, return_equal, return_unequal, undetectable; STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ andi(r0, r5, Operand(kIsNotStringMask)); __ bne(&object_test, cr0); __ andi(r0, r5, Operand(kIsNotInternalizedMask)); __ bne(possible_strings, cr0); __ CompareObjectType(lhs, r6, r6, FIRST_NONSTRING_TYPE); __ bge(runtime_call); __ andi(r0, r6, Operand(kIsNotInternalizedMask)); __ bne(possible_strings, cr0); // Both are internalized. We already checked they weren't the same pointer so // they are not equal. Return non-equal by returning the non-zero object // pointer in r3. __ Ret(); __ bind(&object_test); __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ LoadP(r6, FieldMemOperand(rhs, HeapObject::kMapOffset)); __ lbz(r7, FieldMemOperand(r5, Map::kBitFieldOffset)); __ lbz(r8, FieldMemOperand(r6, Map::kBitFieldOffset)); __ andi(r0, r7, Operand(1 << Map::kIsUndetectable)); __ bne(&undetectable, cr0); __ andi(r0, r8, Operand(1 << Map::kIsUndetectable)); __ bne(&return_unequal, cr0); __ CompareInstanceType(r5, r5, FIRST_JS_RECEIVER_TYPE); __ blt(runtime_call); __ CompareInstanceType(r6, r6, FIRST_JS_RECEIVER_TYPE); __ blt(runtime_call); __ bind(&return_unequal); // Return non-equal by returning the non-zero object pointer in r3. __ Ret(); __ bind(&undetectable); __ andi(r0, r8, Operand(1 << Map::kIsUndetectable)); __ beq(&return_unequal, cr0); // If both sides are JSReceivers, then the result is false according to // the HTML specification, which says that only comparisons with null or // undefined are affected by special casing for document.all. __ CompareInstanceType(r5, r5, ODDBALL_TYPE); __ beq(&return_equal); __ CompareInstanceType(r6, r6, ODDBALL_TYPE); __ bne(&return_unequal); __ bind(&return_equal); __ li(r3, Operand(EQUAL)); __ Ret(); } static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input, Register scratch, CompareICState::State expected, Label* fail) { Label ok; if (expected == CompareICState::SMI) { __ JumpIfNotSmi(input, fail); } else if (expected == CompareICState::NUMBER) { __ JumpIfSmi(input, &ok); __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, DONT_DO_SMI_CHECK); } // We could be strict about internalized/non-internalized here, but as long as // hydrogen doesn't care, the stub doesn't have to care either. __ bind(&ok); } // On entry r4 and r5 are the values to be compared. // On exit r3 is 0, positive or negative to indicate the result of // the comparison. void CompareICStub::GenerateGeneric(MacroAssembler* masm) { Register lhs = r4; Register rhs = r3; Condition cc = GetCondition(); Label miss; CompareICStub_CheckInputType(masm, lhs, r5, left(), &miss); CompareICStub_CheckInputType(masm, rhs, r6, right(), &miss); Label slow; // Call builtin. Label not_smis, both_loaded_as_doubles, lhs_not_nan; Label not_two_smis, smi_done; __ orx(r5, r4, r3); __ JumpIfNotSmi(r5, ¬_two_smis); __ SmiUntag(r4); __ SmiUntag(r3); __ sub(r3, r4, r3); __ Ret(); __ bind(¬_two_smis); // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. // Handle the case where the objects are identical. Either returns the answer // or goes to slow. Only falls through if the objects were not identical. EmitIdenticalObjectComparison(masm, &slow, cc); // If either is a Smi (we know that not both are), then they can only // be strictly equal if the other is a HeapNumber. STATIC_ASSERT(kSmiTag == 0); DCHECK_EQ(static_cast(0), Smi::kZero); __ and_(r5, lhs, rhs); __ JumpIfNotSmi(r5, ¬_smis); // One operand is a smi. EmitSmiNonsmiComparison generates code that can: // 1) Return the answer. // 2) Go to slow. // 3) Fall through to both_loaded_as_doubles. // 4) Jump to lhs_not_nan. // In cases 3 and 4 we have found out we were dealing with a number-number // comparison. The double values of the numbers have been loaded // into d7 and d6. EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict()); __ bind(&both_loaded_as_doubles); // The arguments have been converted to doubles and stored in d6 and d7 __ bind(&lhs_not_nan); Label no_nan; __ fcmpu(d7, d6); Label nan, equal, less_than; __ bunordered(&nan); if (CpuFeatures::IsSupported(ISELECT)) { DCHECK(EQUAL == 0); __ li(r4, Operand(GREATER)); __ li(r5, Operand(LESS)); __ isel(eq, r3, r0, r4); __ isel(lt, r3, r5, r3); __ Ret(); } else { __ beq(&equal); __ blt(&less_than); __ li(r3, Operand(GREATER)); __ Ret(); __ bind(&equal); __ li(r3, Operand(EQUAL)); __ Ret(); __ bind(&less_than); __ li(r3, Operand(LESS)); __ Ret(); } __ bind(&nan); // If one of the sides was a NaN then the v flag is set. Load r3 with // whatever it takes to make the comparison fail, since comparisons with NaN // always fail. if (cc == lt || cc == le) { __ li(r3, Operand(GREATER)); } else { __ li(r3, Operand(LESS)); } __ Ret(); __ bind(¬_smis); // At this point we know we are dealing with two different objects, // and neither of them is a Smi. The objects are in rhs_ and lhs_. if (strict()) { // This returns non-equal for some object types, or falls through if it // was not lucky. EmitStrictTwoHeapObjectCompare(masm, lhs, rhs); } Label check_for_internalized_strings; Label flat_string_check; // Check for heap-number-heap-number comparison. Can jump to slow case, // or load both doubles into r3, r4, r5, r6 and jump to the code that handles // that case. If the inputs are not doubles then jumps to // check_for_internalized_strings. // In this case r5 will contain the type of rhs_. Never falls through. EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles, &check_for_internalized_strings, &flat_string_check); __ bind(&check_for_internalized_strings); // In the strict case the EmitStrictTwoHeapObjectCompare already took care of // internalized strings. if (cc == eq && !strict()) { // Returns an answer for two internalized strings or two detectable objects. // Otherwise jumps to string case or not both strings case. // Assumes that r5 is the type of rhs_ on entry. EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, &flat_string_check, &slow); } // Check for both being sequential one-byte strings, // and inline if that is the case. __ bind(&flat_string_check); __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r5, r6, &slow); __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r5, r6); if (cc == eq) { StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r5, r6); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r5, r6, r7); } // Never falls through to here. __ bind(&slow); if (cc == eq) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(cp); __ Call(strict() ? isolate()->builtins()->StrictEqual() : isolate()->builtins()->Equal(), RelocInfo::CODE_TARGET); __ Pop(cp); } // Turn true into 0 and false into some non-zero value. STATIC_ASSERT(EQUAL == 0); __ LoadRoot(r4, Heap::kTrueValueRootIndex); __ sub(r3, r3, r4); __ Ret(); } else { __ Push(lhs, rhs); int ncr; // NaN compare result if (cc == lt || cc == le) { ncr = GREATER; } else { DCHECK(cc == gt || cc == ge); // remaining cases ncr = LESS; } __ LoadSmiLiteral(r3, Smi::FromInt(ncr)); __ push(r3); // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ TailCallRuntime(Runtime::kCompare); } __ bind(&miss); GenerateMiss(masm); } void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. __ mflr(r0); __ MultiPush(kJSCallerSaved | r0.bit()); if (save_doubles()) { __ MultiPushDoubles(kCallerSavedDoubles); } const int argument_count = 1; const int fp_argument_count = 0; const Register scratch = r4; AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(argument_count, fp_argument_count, scratch); __ mov(r3, Operand(ExternalReference::isolate_address(isolate()))); __ CallCFunction(ExternalReference::store_buffer_overflow_function(isolate()), argument_count); if (save_doubles()) { __ MultiPopDoubles(kCallerSavedDoubles); } __ MultiPop(kJSCallerSaved | r0.bit()); __ mtlr(r0); __ Ret(); } void StoreRegistersStateStub::Generate(MacroAssembler* masm) { __ PushSafepointRegisters(); __ blr(); } void RestoreRegistersStateStub::Generate(MacroAssembler* masm) { __ PopSafepointRegisters(); __ blr(); } void MathPowStub::Generate(MacroAssembler* masm) { const Register exponent = MathPowTaggedDescriptor::exponent(); DCHECK(exponent.is(r5)); const DoubleRegister double_base = d1; const DoubleRegister double_exponent = d2; const DoubleRegister double_result = d3; const DoubleRegister double_scratch = d0; const Register scratch = r11; const Register scratch2 = r10; Label call_runtime, done, int_exponent; if (exponent_type() == TAGGED) { // Base is already in double_base. __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); __ lfd(double_exponent, FieldMemOperand(exponent, HeapNumber::kValueOffset)); } if (exponent_type() != INTEGER) { // Detect integer exponents stored as double. __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2, double_scratch); __ beq(&int_exponent); __ mflr(r0); __ push(r0); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 0, 2); } __ pop(r0); __ mtlr(r0); __ MovFromFloatResult(double_result); __ b(&done); } // Calculate power with integer exponent. __ bind(&int_exponent); // Get two copies of exponent in the registers scratch and exponent. if (exponent_type() == INTEGER) { __ mr(scratch, exponent); } else { // Exponent has previously been stored into scratch as untagged integer. __ mr(exponent, scratch); } __ fmr(double_scratch, double_base); // Back up base. __ li(scratch2, Operand(1)); __ ConvertIntToDouble(scratch2, double_result); // Get absolute value of exponent. __ cmpi(scratch, Operand::Zero()); if (CpuFeatures::IsSupported(ISELECT)) { __ neg(scratch2, scratch); __ isel(lt, scratch, scratch2, scratch); } else { Label positive_exponent; __ bge(&positive_exponent); __ neg(scratch, scratch); __ bind(&positive_exponent); } Label while_true, no_carry, loop_end; __ bind(&while_true); __ andi(scratch2, scratch, Operand(1)); __ beq(&no_carry, cr0); __ fmul(double_result, double_result, double_scratch); __ bind(&no_carry); __ ShiftRightImm(scratch, scratch, Operand(1), SetRC); __ beq(&loop_end, cr0); __ fmul(double_scratch, double_scratch, double_scratch); __ b(&while_true); __ bind(&loop_end); __ cmpi(exponent, Operand::Zero()); __ bge(&done); __ li(scratch2, Operand(1)); __ ConvertIntToDouble(scratch2, double_scratch); __ fdiv(double_result, double_scratch, double_result); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ fcmpu(double_result, kDoubleRegZero); __ bne(&done); // double_exponent may not containe the exponent value if the input was a // smi. We set it with exponent value before bailing out. __ ConvertIntToDouble(exponent, double_exponent); // Returning or bailing out. __ mflr(r0); __ push(r0); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 0, 2); } __ pop(r0); __ mtlr(r0); __ MovFromFloatResult(double_result); __ bind(&done); __ Ret(); } bool CEntryStub::NeedsImmovableCode() { return true; } void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { CEntryStub::GenerateAheadOfTime(isolate); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); StubFailureTrampolineStub::GenerateAheadOfTime(isolate); CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate); CreateAllocationSiteStub::GenerateAheadOfTime(isolate); CreateWeakCellStub::GenerateAheadOfTime(isolate); BinaryOpICStub::GenerateAheadOfTime(isolate); StoreRegistersStateStub::GenerateAheadOfTime(isolate); RestoreRegistersStateStub::GenerateAheadOfTime(isolate); BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); StoreFastElementStub::GenerateAheadOfTime(isolate); } void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) { StoreRegistersStateStub stub(isolate); stub.GetCode(); } void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) { RestoreRegistersStateStub stub(isolate); stub.GetCode(); } void CodeStub::GenerateFPStubs(Isolate* isolate) { // Generate if not already in cache. SaveFPRegsMode mode = kSaveFPRegs; CEntryStub(isolate, 1, mode).GetCode(); StoreBufferOverflowStub(isolate, mode).GetCode(); } void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { CEntryStub stub(isolate, 1, kDontSaveFPRegs); stub.GetCode(); } void CEntryStub::Generate(MacroAssembler* masm) { // Called from JavaScript; parameters are on stack as if calling JS function. // r3: number of arguments including receiver // r4: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) // // If argv_in_register(): // r5: pointer to the first argument ProfileEntryHookStub::MaybeCallEntryHook(masm); __ mr(r15, r4); if (argv_in_register()) { // Move argv into the correct register. __ mr(r4, r5); } else { // Compute the argv pointer. __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2)); __ add(r4, r4, sp); __ subi(r4, r4, Operand(kPointerSize)); } // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); // Need at least one extra slot for return address location. int arg_stack_space = 1; // Pass buffer for return value on stack if necessary bool needs_return_buffer = result_size() > 2 || (result_size() == 2 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS); if (needs_return_buffer) { arg_stack_space += result_size(); } __ EnterExitFrame(save_doubles(), arg_stack_space, is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); // Store a copy of argc in callee-saved registers for later. __ mr(r14, r3); // r3, r14: number of arguments including receiver (C callee-saved) // r4: pointer to the first argument // r15: pointer to builtin function (C callee-saved) // Result returned in registers or stack, depending on result size and ABI. Register isolate_reg = r5; if (needs_return_buffer) { // The return value is a non-scalar value. // Use frame storage reserved by calling function to pass return // buffer as implicit first argument. __ mr(r5, r4); __ mr(r4, r3); __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize)); isolate_reg = r6; } // Call C built-in. __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate()))); Register target = r15; if (ABI_USES_FUNCTION_DESCRIPTORS) { // AIX/PPC64BE Linux use a function descriptor. __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(r15, kPointerSize)); __ LoadP(ip, MemOperand(r15, 0)); // Instruction address target = ip; } else if (ABI_CALL_VIA_IP) { __ Move(ip, r15); target = ip; } // To let the GC traverse the return address of the exit frames, we need to // know where the return address is. The CEntryStub is unmovable, so // we can store the address on the stack to be able to find it again and // we never have to restore it, because it will not change. Label after_call; __ mov_label_addr(r0, &after_call); __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize)); __ Call(target); __ bind(&after_call); // If return value is on the stack, pop it to registers. if (needs_return_buffer) { if (result_size() > 2) __ LoadP(r5, MemOperand(r3, 2 * kPointerSize)); __ LoadP(r4, MemOperand(r3, kPointerSize)); __ LoadP(r3, MemOperand(r3)); } // Check result for exception sentinel. Label exception_returned; __ CompareRoot(r3, Heap::kExceptionRootIndex); __ beq(&exception_returned); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { Label okay; ExternalReference pending_exception_address( Isolate::kPendingExceptionAddress, isolate()); __ mov(r6, Operand(pending_exception_address)); __ LoadP(r6, MemOperand(r6)); __ CompareRoot(r6, Heap::kTheHoleValueRootIndex); // Cannot use check here as it attempts to generate call into runtime. __ beq(&okay); __ stop("Unexpected pending exception"); __ bind(&okay); } // Exit C frame and return. // r3:r4: result // sp: stack pointer // fp: frame pointer Register argc; if (argv_in_register()) { // We don't want to pop arguments so set argc to no_reg. argc = no_reg; } else { // r14: still holds argc (callee-saved). argc = r14; } __ LeaveExitFrame(save_doubles(), argc, true); __ blr(); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address( Isolate::kPendingHandlerContextAddress, isolate()); ExternalReference pending_handler_code_address( Isolate::kPendingHandlerCodeAddress, isolate()); ExternalReference pending_handler_offset_address( Isolate::kPendingHandlerOffsetAddress, isolate()); ExternalReference pending_handler_fp_address( Isolate::kPendingHandlerFPAddress, isolate()); ExternalReference pending_handler_sp_address( Isolate::kPendingHandlerSPAddress, isolate()); // Ask the runtime for help to determine the handler. This will set r3 to // contain the current pending exception, don't clobber it. ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler, isolate()); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, 0, r3); __ li(r3, Operand::Zero()); __ li(r4, Operand::Zero()); __ mov(r5, Operand(ExternalReference::isolate_address(isolate()))); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ mov(cp, Operand(pending_handler_context_address)); __ LoadP(cp, MemOperand(cp)); __ mov(sp, Operand(pending_handler_sp_address)); __ LoadP(sp, MemOperand(sp)); __ mov(fp, Operand(pending_handler_fp_address)); __ LoadP(fp, MemOperand(fp)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (cp == 0) for non-JS frames. Label skip; __ cmpi(cp, Operand::Zero()); __ beq(&skip); __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ bind(&skip); // Compute the handler entry address and jump to it. ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ mov(r4, Operand(pending_handler_code_address)); __ LoadP(r4, MemOperand(r4)); __ mov(r5, Operand(pending_handler_offset_address)); __ LoadP(r5, MemOperand(r5)); __ addi(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start if (FLAG_enable_embedded_constant_pool) { __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r4); } __ add(ip, r4, r5); __ Jump(ip); } void JSEntryStub::Generate(MacroAssembler* masm) { // r3: code entry // r4: function // r5: receiver // r6: argc // [sp+0]: argv Label invoke, handler_entry, exit; // Called from C __ function_descriptor(); ProfileEntryHookStub::MaybeCallEntryHook(masm); // PPC LINUX ABI: // preserve LR in pre-reserved slot in caller's frame __ mflr(r0); __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize)); // Save callee saved registers on the stack. __ MultiPush(kCalleeSaved); // Save callee-saved double registers. __ MultiPushDoubles(kCalleeSavedDoubles); // Set up the reserved register for 0.0. __ LoadDoubleLiteral(kDoubleRegZero, 0.0, r0); // Push a frame with special values setup to mark it as an entry frame. // r3: code entry // r4: function // r5: receiver // r6: argc // r7: argv __ li(r0, Operand(-1)); // Push a bad frame pointer to fail if it is used. __ push(r0); if (FLAG_enable_embedded_constant_pool) { __ li(kConstantPoolRegister, Operand::Zero()); __ push(kConstantPoolRegister); } StackFrame::Type marker = type(); __ mov(r0, Operand(StackFrame::TypeToMarker(marker))); __ push(r0); __ push(r0); // Save copies of the top frame descriptor on the stack. __ mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); __ LoadP(r0, MemOperand(r8)); __ push(r0); // Set up frame pointer for the frame to be pushed. __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); // If this is the outermost JS call, set js_entry_sp value. Label non_outermost_js; ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); __ mov(r8, Operand(ExternalReference(js_entry_sp))); __ LoadP(r9, MemOperand(r8)); __ cmpi(r9, Operand::Zero()); __ bne(&non_outermost_js); __ StoreP(fp, MemOperand(r8)); __ mov(ip, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); Label cont; __ b(&cont); __ bind(&non_outermost_js); __ mov(ip, Operand(StackFrame::INNER_JSENTRY_FRAME)); __ bind(&cont); __ push(ip); // frame-type // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ b(&invoke); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushStackHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate()))); __ StoreP(r3, MemOperand(ip)); __ LoadRoot(r3, Heap::kExceptionRootIndex); __ b(&exit); // Invoke: Link this frame into the handler chain. __ bind(&invoke); // Must preserve r3-r7. __ PushStackHandler(); // If an exception not caught by another handler occurs, this handler // returns control to the code after the b(&invoke) above, which // restores all kCalleeSaved registers (including cp and fp) to their // saved values before returning a failure to C. // Invoke the function by calling through JS entry trampoline builtin. // Notice that we cannot store a reference to the trampoline code directly in // this stub, because runtime stubs are not traversed when doing GC. // Expected registers by Builtins::JSEntryTrampoline // r3: code entry // r4: function // r5: receiver // r6: argc // r7: argv if (type() == StackFrame::ENTRY_CONSTRUCT) { ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, isolate()); __ mov(ip, Operand(construct_entry)); } else { ExternalReference entry(Builtins::kJSEntryTrampoline, isolate()); __ mov(ip, Operand(entry)); } __ LoadP(ip, MemOperand(ip)); // deref address // Branch and link to JSEntryTrampoline. // the address points to the start of the code object, skip the header __ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); __ mtctr(ip); __ bctrl(); // make the call // Unlink this frame from the handler chain. __ PopStackHandler(); __ bind(&exit); // r3 holds result // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; __ pop(r8); __ cmpi(r8, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); __ bne(&non_outermost_js_2); __ mov(r9, Operand::Zero()); __ mov(r8, Operand(ExternalReference(js_entry_sp))); __ StoreP(r9, MemOperand(r8)); __ bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ pop(r6); __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); __ StoreP(r6, MemOperand(ip)); // Reset the stack to the callee saved registers. __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); // Restore callee-saved double registers. __ MultiPopDoubles(kCalleeSavedDoubles); // Restore callee-saved registers. __ MultiPop(kCalleeSaved); // Return __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize)); __ mtlr(r0); __ blr(); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExec); #else // V8_INTERPRETED_REGEXP // Stack frame on entry. // sp[0]: last_match_info (expected JSArray) // sp[4]: previous index // sp[8]: subject string // sp[12]: JSRegExp object const int kLastMatchInfoOffset = 0 * kPointerSize; const int kPreviousIndexOffset = 1 * kPointerSize; const int kSubjectOffset = 2 * kPointerSize; const int kJSRegExpOffset = 3 * kPointerSize; Label runtime, br_over, encoding_type_UC16; // Allocation of registers for this function. These are in callee save // registers and will be preserved by the call to the native RegExp code, as // this code is called using the normal C calling convention. When calling // directly from generated code the native RegExp code will not do a GC and // therefore the content of these registers are safe to use after the call. Register subject = r14; Register regexp_data = r15; Register last_match_info_elements = r16; Register code = r17; // Ensure register assigments are consistent with callee save masks DCHECK(subject.bit() & kCalleeSaved); DCHECK(regexp_data.bit() & kCalleeSaved); DCHECK(last_match_info_elements.bit() & kCalleeSaved); DCHECK(code.bit() & kCalleeSaved); // Ensure that a RegExp stack is allocated. ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address(isolate()); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(isolate()); __ mov(r3, Operand(address_of_regexp_stack_memory_size)); __ LoadP(r3, MemOperand(r3, 0)); __ cmpi(r3, Operand::Zero()); __ beq(&runtime); // Check that the first argument is a JSRegExp object. __ LoadP(r3, MemOperand(sp, kJSRegExpOffset)); __ JumpIfSmi(r3, &runtime); __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE); __ bne(&runtime); // Check that the RegExp has been compiled (data contains a fixed array). __ LoadP(regexp_data, FieldMemOperand(r3, JSRegExp::kDataOffset)); if (FLAG_debug_code) { __ TestIfSmi(regexp_data, r0); __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0); __ CompareObjectType(regexp_data, r3, r3, FIXED_ARRAY_TYPE); __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); } // regexp_data: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ LoadP(r3, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); // DCHECK(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu); __ CmpSmiLiteral(r3, Smi::FromInt(JSRegExp::IRREGEXP), r0); __ bne(&runtime); // regexp_data: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ LoadP(r5, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Check (number_of_captures + 1) * 2 <= offsets vector size // Or number_of_captures * 2 <= offsets vector size - 2 // SmiToShortArrayOffset accomplishes the multiplication by 2 and // SmiUntag (which is a nop for 32-bit). __ SmiToShortArrayOffset(r5, r5); STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); __ cmpli(r5, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2)); __ bgt(&runtime); // Reset offset for possibly sliced string. __ li(r11, Operand::Zero()); __ LoadP(subject, MemOperand(sp, kSubjectOffset)); __ JumpIfSmi(subject, &runtime); __ mr(r6, subject); // Make a copy of the original subject string. // subject: subject string // r6: subject string // regexp_data: RegExp data (FixedArray) // Handle subject string according to its encoding and representation: // (1) Sequential string? If yes, go to (4). // (2) Sequential or cons? If not, go to (5). // (3) Cons string. If the string is flat, replace subject with first string // and go to (1). Otherwise bail out to runtime. // (4) Sequential string. Load regexp code according to encoding. // (E) Carry on. /// [...] // Deferred code at the end of the stub: // (5) Long external string? If not, go to (7). // (6) External string. Make it, offset-wise, look like a sequential string. // Go to (4). // (7) Short external string or not a string? If yes, bail out to runtime. // (8) Sliced or thin string. Replace subject with parent. Go to (1). Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */, not_seq_nor_cons /* 5 */, not_long_external /* 7 */; __ bind(&check_underlying); __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset)); __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset)); // (1) Sequential string? If yes, go to (4). STATIC_ASSERT((kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask) == 0xa7); __ andi(r4, r3, Operand(kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask)); STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); __ beq(&seq_string, cr0); // Go to (4). // (2) Sequential or cons? If not, go to (5). STATIC_ASSERT(kConsStringTag < kExternalStringTag); STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); STATIC_ASSERT(kThinStringTag > kExternalStringTag); STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); STATIC_ASSERT(kExternalStringTag < 0xffffu); __ cmpi(r4, Operand(kExternalStringTag)); __ bge(¬_seq_nor_cons); // Go to (5). // (3) Cons string. Check that it's flat. // Replace subject with first string and reload instance type. __ LoadP(r3, FieldMemOperand(subject, ConsString::kSecondOffset)); __ CompareRoot(r3, Heap::kempty_stringRootIndex); __ bne(&runtime); __ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); __ b(&check_underlying); // (4) Sequential string. Load regexp code according to encoding. __ bind(&seq_string); // subject: sequential subject string (or look-alike, external string) // r6: original subject string // Load previous index and check range before r6 is overwritten. We have to // use r6 instead of subject here because subject might have been only made // to look like a sequential string when it actually is an external string. __ LoadP(r4, MemOperand(sp, kPreviousIndexOffset)); __ JumpIfNotSmi(r4, &runtime); __ LoadP(r6, FieldMemOperand(r6, String::kLengthOffset)); __ cmpl(r6, r4); __ ble(&runtime); __ SmiUntag(r4); STATIC_ASSERT(8 == kOneByteStringTag); STATIC_ASSERT(kTwoByteStringTag == 0); STATIC_ASSERT(kStringEncodingMask == 8); __ ExtractBitMask(r6, r3, kStringEncodingMask, SetRC); __ beq(&encoding_type_UC16, cr0); __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset)); __ b(&br_over); __ bind(&encoding_type_UC16); __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset)); __ bind(&br_over); // (E) Carry on. String handling is done. // code: irregexp code // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // a smi (code flushing support). __ JumpIfSmi(code, &runtime); // r4: previous index // r6: encoding of subject string (1 if one_byte, 0 if two_byte); // code: Address of generated regexp code // subject: Subject string // regexp_data: RegExp data (FixedArray) // All checks done. Now push arguments for native regexp code. __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r3, r5); // Isolates: note we add an additional parameter here (isolate pointer). const int kRegExpExecuteArguments = 10; const int kParameterRegisters = 8; __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); // Stack pointer now points to cell where return address is to be written. // Arguments are before that on the stack or in registers. // Argument 10 (in stack parameter area): Pass current isolate address. __ mov(r3, Operand(ExternalReference::isolate_address(isolate()))); __ StoreP(r3, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize)); // Argument 9 is a dummy that reserves the space used for // the return address added by the ExitFrame in native calls. // Argument 8 (r10): Indicate that this is a direct call from JavaScript. __ li(r10, Operand(1)); // Argument 7 (r9): Start (high end) of backtracking stack memory area. __ mov(r3, Operand(address_of_regexp_stack_memory_address)); __ LoadP(r3, MemOperand(r3, 0)); __ mov(r5, Operand(address_of_regexp_stack_memory_size)); __ LoadP(r5, MemOperand(r5, 0)); __ add(r9, r3, r5); // Argument 6 (r8): Set the number of capture registers to zero to force // global egexps to behave as non-global. This does not affect non-global // regexps. __ li(r8, Operand::Zero()); // Argument 5 (r7): static offsets vector buffer. __ mov( r7, Operand(ExternalReference::address_of_static_offsets_vector(isolate()))); // For arguments 4 (r6) and 3 (r5) get string length, calculate start of data // and calculate the shift of the index (0 for one-byte and 1 for two-byte). __ addi(r18, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag)); __ xori(r6, r6, Operand(1)); // Load the length from the original subject string from the previous stack // frame. Therefore we have to use fp, which points exactly to two pointer // sizes below the previous sp. (Because creating a new stack frame pushes // the previous fp onto the stack and moves up sp by 2 * kPointerSize.) __ LoadP(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); // If slice offset is not 0, load the length from the original sliced string. // Argument 4, r6: End of string data // Argument 3, r5: Start of string data // Prepare start and end index of the input. __ ShiftLeft_(r11, r11, r6); __ add(r11, r18, r11); __ ShiftLeft_(r5, r4, r6); __ add(r5, r11, r5); __ LoadP(r18, FieldMemOperand(subject, String::kLengthOffset)); __ SmiUntag(r18); __ ShiftLeft_(r6, r18, r6); __ add(r6, r11, r6); // Argument 2 (r4): Previous index. // Already there // Argument 1 (r3): Subject string. __ mr(r3, subject); // Locate the code entry and call it. __ addi(code, code, Operand(Code::kHeaderSize - kHeapObjectTag)); DirectCEntryStub stub(isolate()); stub.GenerateCall(masm, code); __ LeaveExitFrame(false, no_reg, true); // r3: result (int32) // subject: subject string (callee saved) // regexp_data: RegExp data (callee saved) // last_match_info_elements: Last match info elements (callee saved) // Check the result. Label success; __ cmpwi(r3, Operand(1)); // We expect exactly one result since we force the called regexp to behave // as non-global. __ beq(&success); Label failure; __ cmpwi(r3, Operand(NativeRegExpMacroAssembler::FAILURE)); __ beq(&failure); __ cmpwi(r3, Operand(NativeRegExpMacroAssembler::EXCEPTION)); // If not exception it can only be retry. Handle that in the runtime system. __ bne(&runtime); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592): Rerunning the RegExp to get the stack overflow exception. __ mov(r4, Operand(isolate()->factory()->the_hole_value())); __ mov(r5, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate()))); __ LoadP(r3, MemOperand(r5, 0)); __ cmp(r3, r4); __ beq(&runtime); // For exception, throw the exception again. __ TailCallRuntime(Runtime::kRegExpExecReThrow); __ bind(&failure); // For failure and exception return null. __ mov(r3, Operand(isolate()->factory()->null_value())); __ addi(sp, sp, Operand(4 * kPointerSize)); __ Ret(); // Process the result from the native regexp code. __ bind(&success); __ LoadP(r4, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. // SmiToShortArrayOffset accomplishes the multiplication by 2 and // SmiUntag (which is a nop for 32-bit). __ SmiToShortArrayOffset(r4, r4); __ addi(r4, r4, Operand(2)); // Check that the last match info is a FixedArray. __ LoadP(last_match_info_elements, MemOperand(sp, kLastMatchInfoOffset)); __ JumpIfSmi(last_match_info_elements, &runtime); // Check that the object has fast elements. __ LoadP(r3, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); __ CompareRoot(r3, Heap::kFixedArrayMapRootIndex); __ bne(&runtime); // Check that the last match info has space for the capture registers and the // additional information. __ LoadP( r3, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); __ addi(r5, r4, Operand(RegExpMatchInfo::kLastMatchOverhead)); __ SmiUntag(r0, r3); __ cmp(r5, r0); __ bgt(&runtime); // r4: number of capture registers // subject: subject string // Store the capture count. __ SmiTag(r5, r4); __ StoreP(r5, FieldMemOperand(last_match_info_elements, RegExpMatchInfo::kNumberOfCapturesOffset), r0); // Store last subject and last input. __ StoreP(subject, FieldMemOperand(last_match_info_elements, RegExpMatchInfo::kLastSubjectOffset), r0); __ mr(r5, subject); __ RecordWriteField(last_match_info_elements, RegExpMatchInfo::kLastSubjectOffset, subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs); __ mr(subject, r5); __ StoreP(subject, FieldMemOperand(last_match_info_elements, RegExpMatchInfo::kLastInputOffset), r0); __ RecordWriteField(last_match_info_elements, RegExpMatchInfo::kLastInputOffset, subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs); // Get the static offsets vector filled by the native regexp code. ExternalReference address_of_static_offsets_vector = ExternalReference::address_of_static_offsets_vector(isolate()); __ mov(r5, Operand(address_of_static_offsets_vector)); // r4: number of capture registers // r5: offsets vector Label next_capture; // Capture register counter starts from number of capture registers and // counts down until wrapping after zero. __ addi(r3, last_match_info_elements, Operand(RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag - kPointerSize)); __ addi(r5, r5, Operand(-kIntSize)); // bias down for lwzu __ mtctr(r4); __ bind(&next_capture); // Read the value from the static offsets vector buffer. __ lwzu(r6, MemOperand(r5, kIntSize)); // Store the smi value in the last match info. __ SmiTag(r6); __ StorePU(r6, MemOperand(r3, kPointerSize)); __ bdnz(&next_capture); // Return last match info. __ mr(r3, last_match_info_elements); __ addi(sp, sp, Operand(4 * kPointerSize)); __ Ret(); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExec); // Deferred code for string handling. // (5) Long external string? If not, go to (7). __ bind(¬_seq_nor_cons); // Compare flags are still set. __ bgt(¬_long_external); // Go to (7). // (6) External string. Make it, offset-wise, look like a sequential string. __ bind(&external_string); __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset)); __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset)); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. STATIC_ASSERT(kIsIndirectStringMask == 1); __ andi(r0, r3, Operand(kIsIndirectStringMask)); __ Assert(eq, kExternalStringExpectedButNotFound, cr0); } __ LoadP(subject, FieldMemOperand(subject, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ subi(subject, subject, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); __ b(&seq_string); // Go to (4). // (7) Short external string or not a string? If yes, bail out to runtime. __ bind(¬_long_external); STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag != 0); __ andi(r0, r4, Operand(kIsNotStringMask | kShortExternalStringMask)); __ bne(&runtime, cr0); // (8) Sliced or thin string. Replace subject with parent. Go to (4). Label thin_string; __ cmpi(r4, Operand(kThinStringTag)); __ beq(&thin_string); // Load offset into r11 and replace subject string with parent. __ LoadP(r11, FieldMemOperand(subject, SlicedString::kOffsetOffset)); __ SmiUntag(r11); __ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); __ b(&check_underlying); // Go to (4). __ bind(&thin_string); __ LoadP(subject, FieldMemOperand(subject, ThinString::kActualOffset)); __ b(&check_underlying); // Go to (4). #endif // V8_INTERPRETED_REGEXP } static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) { // r3 : number of arguments to the construct function // r4 : the function to call // r5 : feedback vector // r6 : slot in feedback vector (Smi) FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Number-of-arguments register must be smi-tagged to call out. __ SmiTag(r3); __ Push(r6, r5, r4, r3); __ Push(cp); __ CallStub(stub); __ Pop(cp); __ Pop(r6, r5, r4, r3); __ SmiUntag(r3); } static void GenerateRecordCallTarget(MacroAssembler* masm) { // Cache the called function in a feedback vector slot. Cache states // are uninitialized, monomorphic (indicated by a JSFunction), and // megamorphic. // r3 : number of arguments to the construct function // r4 : the function to call // r5 : feedback vector // r6 : slot in feedback vector (Smi) Label initialize, done, miss, megamorphic, not_array_function; DCHECK_EQ(*FeedbackVector::MegamorphicSentinel(masm->isolate()), masm->isolate()->heap()->megamorphic_symbol()); DCHECK_EQ(*FeedbackVector::UninitializedSentinel(masm->isolate()), masm->isolate()->heap()->uninitialized_symbol()); const int count_offset = FixedArray::kHeaderSize + kPointerSize; // Load the cache state into r8. __ SmiToPtrArrayOffset(r8, r6); __ add(r8, r5, r8); __ LoadP(r8, FieldMemOperand(r8, FixedArray::kHeaderSize)); // A monomorphic cache hit or an already megamorphic state: invoke the // function without changing the state. // We don't know if r8 is a WeakCell or a Symbol, but it's harmless to read at // this position in a symbol (see static asserts in feedback-vector.h). Label check_allocation_site; Register feedback_map = r9; Register weak_value = r10; __ LoadP(weak_value, FieldMemOperand(r8, WeakCell::kValueOffset)); __ cmp(r4, weak_value); __ beq(&done); __ CompareRoot(r8, Heap::kmegamorphic_symbolRootIndex); __ beq(&done); __ LoadP(feedback_map, FieldMemOperand(r8, HeapObject::kMapOffset)); __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex); __ bne(&check_allocation_site); // If the weak cell is cleared, we have a new chance to become monomorphic. __ JumpIfSmi(weak_value, &initialize); __ b(&megamorphic); __ bind(&check_allocation_site); // If we came here, we need to see if we are the array function. // If we didn't have a matching function, and we didn't find the megamorph // sentinel, then we have in the slot either some other function or an // AllocationSite. __ CompareRoot(feedback_map, Heap::kAllocationSiteMapRootIndex); __ bne(&miss); // Make sure the function is the Array() function __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8); __ cmp(r4, r8); __ bne(&megamorphic); __ b(&done); __ bind(&miss); // A monomorphic miss (i.e, here the cache is not uninitialized) goes // megamorphic. __ CompareRoot(r8, Heap::kuninitialized_symbolRootIndex); __ beq(&initialize); // MegamorphicSentinel is an immortal immovable object (undefined) so no // write-barrier is needed. __ bind(&megamorphic); __ SmiToPtrArrayOffset(r8, r6); __ add(r8, r5, r8); __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex); __ StoreP(ip, FieldMemOperand(r8, FixedArray::kHeaderSize), r0); __ jmp(&done); // An uninitialized cache is patched with the function __ bind(&initialize); // Make sure the function is the Array() function. __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8); __ cmp(r4, r8); __ bne(¬_array_function); // The target function is the Array constructor, // Create an AllocationSite if we don't already have it, store it in the // slot. CreateAllocationSiteStub create_stub(masm->isolate()); CallStubInRecordCallTarget(masm, &create_stub); __ b(&done); __ bind(¬_array_function); CreateWeakCellStub weak_cell_stub(masm->isolate()); CallStubInRecordCallTarget(masm, &weak_cell_stub); __ bind(&done); // Increment the call count for all function calls. __ SmiToPtrArrayOffset(r8, r6); __ add(r8, r5, r8); __ LoadP(r7, FieldMemOperand(r8, count_offset)); __ AddSmiLiteral(r7, r7, Smi::FromInt(1), r0); __ StoreP(r7, FieldMemOperand(r8, count_offset), r0); } void CallConstructStub::Generate(MacroAssembler* masm) { // r3 : number of arguments // r4 : the function to call // r5 : feedback vector // r6 : slot in feedback vector (Smi, for RecordCallTarget) Label non_function; // Check that the function is not a smi. __ JumpIfSmi(r4, &non_function); // Check that the function is a JSFunction. __ CompareObjectType(r4, r8, r8, JS_FUNCTION_TYPE); __ bne(&non_function); GenerateRecordCallTarget(masm); __ SmiToPtrArrayOffset(r8, r6); __ add(r8, r5, r8); // Put the AllocationSite from the feedback vector into r5, or undefined. __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize)); __ LoadP(r8, FieldMemOperand(r5, AllocationSite::kMapOffset)); __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex); if (CpuFeatures::IsSupported(ISELECT)) { __ LoadRoot(r8, Heap::kUndefinedValueRootIndex); __ isel(eq, r5, r5, r8); } else { Label feedback_register_initialized; __ beq(&feedback_register_initialized); __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); __ bind(&feedback_register_initialized); } __ AssertUndefinedOrAllocationSite(r5, r8); // Pass function as new target. __ mr(r6, r4); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(r7, FieldMemOperand(r7, SharedFunctionInfo::kConstructStubOffset)); __ addi(ip, r7, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(ip); __ bind(&non_function); __ mr(r6, r4); __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } // StringCharCodeAtGenerator void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { // If the receiver is a smi trigger the non-string case. if (check_mode_ == RECEIVER_IS_UNKNOWN) { __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ andi(r0, result_, Operand(kIsNotStringMask)); __ bne(receiver_not_string_, cr0); } // If the index is non-smi trigger the non-smi case. __ JumpIfNotSmi(index_, &index_not_smi_); __ bind(&got_smi_index_); // Check for index out of range. __ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset)); __ cmpl(ip, index_); __ ble(index_out_of_range_); __ SmiUntag(index_); StringCharLoadGenerator::Generate(masm, object_, index_, result_, &call_runtime_); __ SmiTag(result_); __ bind(&exit_); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, EmbedMode embed_mode, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); // Index is not a smi. __ bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_, DONT_DO_SMI_CHECK); call_helper.BeforeCall(masm); if (embed_mode == PART_OF_IC_HANDLER) { __ Push(LoadWithVectorDescriptor::VectorRegister(), LoadWithVectorDescriptor::SlotRegister(), object_, index_); } else { // index_ is consumed by runtime conversion function. __ Push(object_, index_); } __ CallRuntime(Runtime::kNumberToSmi); // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ Move(index_, r3); if (embed_mode == PART_OF_IC_HANDLER) { __ Pop(LoadWithVectorDescriptor::VectorRegister(), LoadWithVectorDescriptor::SlotRegister(), object_); } else { __ pop(object_); } // Reload the instance type. __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. __ JumpIfNotSmi(index_, index_out_of_range_); // Otherwise, return to the fast path. __ b(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ bind(&call_runtime_); call_helper.BeforeCall(masm); __ SmiTag(index_); __ Push(object_, index_); __ CallRuntime(Runtime::kStringCharCodeAtRT); __ Move(result_, r3); call_helper.AfterCall(masm); __ b(&exit_); __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); } void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2) { Register length = scratch1; // Compare lengths. Label strings_not_equal, check_zero_length; __ LoadP(length, FieldMemOperand(left, String::kLengthOffset)); __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ cmp(length, scratch2); __ beq(&check_zero_length); __ bind(&strings_not_equal); __ LoadSmiLiteral(r3, Smi::FromInt(NOT_EQUAL)); __ Ret(); // Check if the length is zero. Label compare_chars; __ bind(&check_zero_length); STATIC_ASSERT(kSmiTag == 0); __ cmpi(length, Operand::Zero()); __ bne(&compare_chars); __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); __ Ret(); // Compare characters. __ bind(&compare_chars); GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, &strings_not_equal); // Characters are equal. __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); __ Ret(); } void StringHelper::GenerateCompareFlatOneByteStrings( MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3) { Label result_not_equal, compare_lengths; // Find minimum length and length difference. __ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset)); __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ sub(scratch3, scratch1, scratch2, LeaveOE, SetRC); Register length_delta = scratch3; if (CpuFeatures::IsSupported(ISELECT)) { __ isel(gt, scratch1, scratch2, scratch1, cr0); } else { Label skip; __ ble(&skip, cr0); __ mr(scratch1, scratch2); __ bind(&skip); } Register min_length = scratch1; STATIC_ASSERT(kSmiTag == 0); __ cmpi(min_length, Operand::Zero()); __ beq(&compare_lengths); // Compare loop. GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2, &result_not_equal); // Compare lengths - strings up to min-length are equal. __ bind(&compare_lengths); DCHECK(Smi::FromInt(EQUAL) == static_cast(0)); // Use length_delta as result if it's zero. __ mr(r3, length_delta); __ cmpi(r3, Operand::Zero()); __ bind(&result_not_equal); // Conditionally update the result based either on length_delta or // the last comparion performed in the loop above. if (CpuFeatures::IsSupported(ISELECT)) { __ LoadSmiLiteral(r4, Smi::FromInt(GREATER)); __ LoadSmiLiteral(r5, Smi::FromInt(LESS)); __ isel(eq, r3, r0, r4); __ isel(lt, r3, r5, r3); __ Ret(); } else { Label less_equal, equal; __ ble(&less_equal); __ LoadSmiLiteral(r3, Smi::FromInt(GREATER)); __ Ret(); __ bind(&less_equal); __ beq(&equal); __ LoadSmiLiteral(r3, Smi::FromInt(LESS)); __ bind(&equal); __ Ret(); } } void StringHelper::GenerateOneByteCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch1, Label* chars_not_equal) { // Change index to run from -length to -1 by adding length to string // start. This means that loop ends when index reaches zero, which // doesn't need an additional compare. __ SmiUntag(length); __ addi(scratch1, length, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); __ add(left, left, scratch1); __ add(right, right, scratch1); __ subfic(length, length, Operand::Zero()); Register index = length; // index = -length; // Compare loop. Label loop; __ bind(&loop); __ lbzx(scratch1, MemOperand(left, index)); __ lbzx(r0, MemOperand(right, index)); __ cmp(scratch1, r0); __ bne(chars_not_equal); __ addi(index, index, Operand(1)); __ cmpi(index, Operand::Zero()); __ bne(&loop); } void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r4 : left // -- r3 : right // -- lr : return address // ----------------------------------- // Load r5 with the allocation site. We stick an undefined dummy value here // and replace it with the real allocation site later when we instantiate this // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). __ Move(r5, isolate()->factory()->undefined_value()); // Make sure that we actually patched the allocation site. if (FLAG_debug_code) { __ TestIfSmi(r5, r0); __ Assert(ne, kExpectedAllocationSite, cr0); __ push(r5); __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex); __ cmp(r5, ip); __ pop(r5); __ Assert(eq, kExpectedAllocationSite); } // Tail call into the stub that handles binary operations with allocation // sites. BinaryOpWithAllocationSiteStub stub(isolate(), state()); __ TailCallStub(&stub); } void CompareICStub::GenerateBooleans(MacroAssembler* masm) { DCHECK_EQ(CompareICState::BOOLEAN, state()); Label miss; __ CheckMap(r4, r5, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK); __ CheckMap(r3, r6, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK); if (!Token::IsEqualityOp(op())) { __ LoadP(r4, FieldMemOperand(r4, Oddball::kToNumberOffset)); __ AssertSmi(r4); __ LoadP(r3, FieldMemOperand(r3, Oddball::kToNumberOffset)); __ AssertSmi(r3); } __ sub(r3, r4, r3); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateSmis(MacroAssembler* masm) { DCHECK(state() == CompareICState::SMI); Label miss; __ orx(r5, r4, r3); __ JumpIfNotSmi(r5, &miss); if (GetCondition() == eq) { // For equality we do not care about the sign of the result. // __ sub(r3, r3, r4, SetCC); __ sub(r3, r3, r4); } else { // Untag before subtracting to avoid handling overflow. __ SmiUntag(r4); __ SmiUntag(r3); __ sub(r3, r4, r3); } __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateNumbers(MacroAssembler* masm) { DCHECK(state() == CompareICState::NUMBER); Label generic_stub; Label unordered, maybe_undefined1, maybe_undefined2; Label miss; Label equal, less_than; if (left() == CompareICState::SMI) { __ JumpIfNotSmi(r4, &miss); } if (right() == CompareICState::SMI) { __ JumpIfNotSmi(r3, &miss); } // Inlining the double comparison and falling back to the general compare // stub if NaN is involved. // Load left and right operand. Label done, left, left_smi, right_smi; __ JumpIfSmi(r3, &right_smi); __ CheckMap(r3, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, DONT_DO_SMI_CHECK); __ lfd(d1, FieldMemOperand(r3, HeapNumber::kValueOffset)); __ b(&left); __ bind(&right_smi); __ SmiToDouble(d1, r3); __ bind(&left); __ JumpIfSmi(r4, &left_smi); __ CheckMap(r4, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, DONT_DO_SMI_CHECK); __ lfd(d0, FieldMemOperand(r4, HeapNumber::kValueOffset)); __ b(&done); __ bind(&left_smi); __ SmiToDouble(d0, r4); __ bind(&done); // Compare operands __ fcmpu(d0, d1); // Don't base result on status bits when a NaN is involved. __ bunordered(&unordered); // Return a result of -1, 0, or 1, based on status bits. if (CpuFeatures::IsSupported(ISELECT)) { DCHECK(EQUAL == 0); __ li(r4, Operand(GREATER)); __ li(r5, Operand(LESS)); __ isel(eq, r3, r0, r4); __ isel(lt, r3, r5, r3); __ Ret(); } else { __ beq(&equal); __ blt(&less_than); // assume greater than __ li(r3, Operand(GREATER)); __ Ret(); __ bind(&equal); __ li(r3, Operand(EQUAL)); __ Ret(); __ bind(&less_than); __ li(r3, Operand(LESS)); __ Ret(); } __ bind(&unordered); __ bind(&generic_stub); CompareICStub stub(isolate(), op(), CompareICState::GENERIC, CompareICState::GENERIC, CompareICState::GENERIC); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); __ bind(&maybe_undefined1); if (Token::IsOrderedRelationalCompareOp(op())) { __ CompareRoot(r3, Heap::kUndefinedValueRootIndex); __ bne(&miss); __ JumpIfSmi(r4, &unordered); __ CompareObjectType(r4, r5, r5, HEAP_NUMBER_TYPE); __ bne(&maybe_undefined2); __ b(&unordered); } __ bind(&maybe_undefined2); if (Token::IsOrderedRelationalCompareOp(op())) { __ CompareRoot(r4, Heap::kUndefinedValueRootIndex); __ beq(&unordered); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::INTERNALIZED_STRING); Label miss, not_equal; // Registers containing left and right operands respectively. Register left = r4; Register right = r3; Register tmp1 = r5; Register tmp2 = r6; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are symbols. __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ orx(tmp1, tmp1, tmp2); __ andi(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask)); __ bne(&miss, cr0); // Internalized strings are compared by identity. __ cmp(left, right); __ bne(¬_equal); // Make sure r3 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(r3)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); __ bind(¬_equal); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) { DCHECK(state() == CompareICState::UNIQUE_NAME); DCHECK(GetCondition() == eq); Label miss; // Registers containing left and right operands respectively. Register left = r4; Register right = r3; Register tmp1 = r5; Register tmp2 = r6; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are unique names. This leaves the instance // types loaded in tmp1 and tmp2. __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(tmp1, &miss); __ JumpIfNotUniqueNameInstanceType(tmp2, &miss); // Unique names are compared by identity. __ cmp(left, right); __ bne(&miss); // Make sure r3 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(r3)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::STRING); Label miss, not_identical, is_symbol; bool equality = Token::IsEqualityOp(op()); // Registers containing left and right operands respectively. Register left = r4; Register right = r3; Register tmp1 = r5; Register tmp2 = r6; Register tmp3 = r7; Register tmp4 = r8; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are strings. This leaves the instance // types loaded in tmp1 and tmp2. __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ orx(tmp3, tmp1, tmp2); __ andi(r0, tmp3, Operand(kIsNotStringMask)); __ bne(&miss, cr0); // Fast check for identical strings. __ cmp(left, right); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ bne(¬_identical); __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); __ Ret(); __ bind(¬_identical); // Handle not identical strings. // Check that both strings are internalized strings. If they are, we're done // because we already know they are not identical. We know they are both // strings. if (equality) { DCHECK(GetCondition() == eq); STATIC_ASSERT(kInternalizedTag == 0); __ orx(tmp3, tmp1, tmp2); __ andi(r0, tmp3, Operand(kIsNotInternalizedMask)); // Make sure r3 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(r3)); __ Ret(eq, cr0); } // Check that both strings are sequential one-byte. Label runtime; __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4, &runtime); // Compare flat one-byte strings. Returns when done. if (equality) { StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1, tmp2, tmp3); } // Handle more complex cases in runtime. __ bind(&runtime); if (equality) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(left, right); __ CallRuntime(Runtime::kStringEqual); } __ LoadRoot(r4, Heap::kTrueValueRootIndex); __ sub(r3, r3, r4); __ Ret(); } else { __ Push(left, right); __ TailCallRuntime(Runtime::kStringCompare); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateReceivers(MacroAssembler* masm) { DCHECK_EQ(CompareICState::RECEIVER, state()); Label miss; __ and_(r5, r4, r3); __ JumpIfSmi(r5, &miss); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); __ CompareObjectType(r3, r5, r5, FIRST_JS_RECEIVER_TYPE); __ blt(&miss); __ CompareObjectType(r4, r5, r5, FIRST_JS_RECEIVER_TYPE); __ blt(&miss); DCHECK(GetCondition() == eq); __ sub(r3, r3, r4); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) { Label miss; Handle cell = Map::WeakCellForMap(known_map_); __ and_(r5, r4, r3); __ JumpIfSmi(r5, &miss); __ GetWeakValue(r7, cell); __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset)); __ LoadP(r6, FieldMemOperand(r4, HeapObject::kMapOffset)); __ cmp(r5, r7); __ bne(&miss); __ cmp(r6, r7); __ bne(&miss); if (Token::IsEqualityOp(op())) { __ sub(r3, r3, r4); __ Ret(); } else { if (op() == Token::LT || op() == Token::LTE) { __ LoadSmiLiteral(r5, Smi::FromInt(GREATER)); } else { __ LoadSmiLiteral(r5, Smi::FromInt(LESS)); } __ Push(r4, r3, r5); __ TailCallRuntime(Runtime::kCompare); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateMiss(MacroAssembler* masm) { { // Call the runtime system in a fresh internal frame. FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r4, r3); __ Push(r4, r3); __ LoadSmiLiteral(r0, Smi::FromInt(op())); __ push(r0); __ CallRuntime(Runtime::kCompareIC_Miss); // Compute the entry point of the rewritten stub. __ addi(r5, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); // Restore registers. __ Pop(r4, r3); } __ JumpToJSEntry(r5); } // This stub is paired with DirectCEntryStub::GenerateCall void DirectCEntryStub::Generate(MacroAssembler* masm) { // Place the return address on the stack, making the call // GC safe. The RegExp backend also relies on this. __ mflr(r0); __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize)); __ Call(ip); // Call the C++ function. __ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize)); __ mtlr(r0); __ blr(); } void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) { if (ABI_USES_FUNCTION_DESCRIPTORS) { // AIX/PPC64BE Linux use a function descriptor. __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize)); __ LoadP(ip, MemOperand(target, 0)); // Instruction address } else { // ip needs to be set for DirectCEentryStub::Generate, and also // for ABI_CALL_VIA_IP. __ Move(ip, target); } intptr_t code = reinterpret_cast(GetCode().location()); __ mov(r0, Operand(code, RelocInfo::CODE_TARGET)); __ Call(r0); // Call the stub. } void NameDictionaryLookupStub::GenerateNegativeLookup( MacroAssembler* masm, Label* miss, Label* done, Register receiver, Register properties, Handle name, Register scratch0) { DCHECK(name->IsUniqueName()); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the hole value). for (int i = 0; i < kInlinedProbes; i++) { // scratch0 points to properties hash. // Compute the masked index: (hash + i + i * i) & mask. Register index = scratch0; // Capacity is smi 2^n. __ LoadP(index, FieldMemOperand(properties, kCapacityOffset)); __ subi(index, index, Operand(1)); __ LoadSmiLiteral( ip, Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))); __ and_(index, index, ip); // Scale the index by multiplying by the entry size. STATIC_ASSERT(NameDictionary::kEntrySize == 3); __ ShiftLeftImm(ip, index, Operand(1)); __ add(index, index, ip); // index *= 3. Register entity_name = scratch0; // Having undefined at this place means the name is not contained. Register tmp = properties; __ SmiToPtrArrayOffset(ip, index); __ add(tmp, properties, ip); __ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); DCHECK(!tmp.is(entity_name)); __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); __ cmp(entity_name, tmp); __ beq(done); // Load the hole ready for use below: __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex); // Stop if found the property. __ Cmpi(entity_name, Operand(Handle(name)), r0); __ beq(miss); Label good; __ cmp(entity_name, tmp); __ beq(&good); // Check if the entry name is not a unique name. __ LoadP(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); __ lbz(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(entity_name, miss); __ bind(&good); // Restore the properties. __ LoadP(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); } const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit()); __ mflr(r0); __ MultiPush(spill_mask); __ LoadP(r3, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ mov(r4, Operand(Handle(name))); NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP); __ CallStub(&stub); __ cmpi(r3, Operand::Zero()); __ MultiPop(spill_mask); // MultiPop does not touch condition flags __ mtlr(r0); __ beq(done); __ bne(miss); } void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. // Registers: // result: NameDictionary to probe // r4: key // dictionary: NameDictionary to probe. // index: will hold an index of entry if lookup is successful. // might alias with result_. // Returns: // result_ is zero if lookup failed, non zero otherwise. Register result = r3; Register dictionary = r3; Register key = r4; Register index = r5; Register mask = r6; Register hash = r7; Register undefined = r8; Register entry_key = r9; Register scratch = r9; Label in_dictionary, maybe_in_dictionary, not_in_dictionary; __ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset)); __ SmiUntag(mask); __ subi(mask, mask, Operand(1)); __ lwz(hash, FieldMemOperand(key, Name::kHashFieldOffset)); __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); for (int i = kInlinedProbes; i < kTotalProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. // Capacity is smi 2^n. if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. DCHECK(NameDictionary::GetProbeOffset(i) < 1 << (32 - Name::kHashFieldOffset)); __ addi(index, hash, Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift)); } else { __ mr(index, hash); } __ srwi(r0, index, Operand(Name::kHashShift)); __ and_(index, mask, r0); // Scale the index by multiplying by the entry size. STATIC_ASSERT(NameDictionary::kEntrySize == 3); __ ShiftLeftImm(scratch, index, Operand(1)); __ add(index, index, scratch); // index *= 3. __ ShiftLeftImm(scratch, index, Operand(kPointerSizeLog2)); __ add(index, dictionary, scratch); __ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset)); // Having undefined at this place means the name is not contained. __ cmp(entry_key, undefined); __ beq(¬_in_dictionary); // Stop if found the property. __ cmp(entry_key, key); __ beq(&in_dictionary); if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) { // Check if the entry name is not a unique name. __ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); __ lbz(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary); } } __ bind(&maybe_in_dictionary); // If we are doing negative lookup then probing failure should be // treated as a lookup success. For positive lookup probing failure // should be treated as lookup failure. if (mode() == POSITIVE_LOOKUP) { __ li(result, Operand::Zero()); __ Ret(); } __ bind(&in_dictionary); __ li(result, Operand(1)); __ Ret(); __ bind(¬_in_dictionary); __ li(result, Operand::Zero()); __ Ret(); } void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( Isolate* isolate) { StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); stub1.GetCode(); // Hydrogen code stubs need stub2 at snapshot time. StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); stub2.GetCode(); } // Takes the input in 3 registers: address_ value_ and object_. A pointer to // the value has just been written into the object, now this stub makes sure // we keep the GC informed. The word in the object where the value has been // written is in the address register. void RecordWriteStub::Generate(MacroAssembler* masm) { Label skip_to_incremental_noncompacting; Label skip_to_incremental_compacting; // The first two branch instructions are generated with labels so as to // get the offset fixed up correctly by the bind(Label*) call. We patch // it back and forth between branch condition True and False // when we start and stop incremental heap marking. // See RecordWriteStub::Patch for details. // Clear the bit, branch on True for NOP action initially __ crclr(Assembler::encode_crbit(cr2, CR_LT)); __ blt(&skip_to_incremental_noncompacting, cr2); __ blt(&skip_to_incremental_compacting, cr2); if (remembered_set_action() == EMIT_REMEMBERED_SET) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } __ Ret(); __ bind(&skip_to_incremental_noncompacting); GenerateIncremental(masm, INCREMENTAL); __ bind(&skip_to_incremental_compacting); GenerateIncremental(masm, INCREMENTAL_COMPACTION); // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. // Will be checked in IncrementalMarking::ActivateGeneratedStub. // patching not required on PPC as the initial path is effectively NOP } void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { regs_.Save(masm); if (remembered_set_action() == EMIT_REMEMBERED_SET) { Label dont_need_remembered_set; __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0)); __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. regs_.scratch0(), &dont_need_remembered_set); __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(), &dont_need_remembered_set); // First notify the incremental marker if necessary, then update the // remembered set. CheckNeedsToInformIncrementalMarker( masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); __ bind(&dont_need_remembered_set); } CheckNeedsToInformIncrementalMarker( masm, kReturnOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ Ret(); } void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode()); int argument_count = 3; __ PrepareCallCFunction(argument_count, regs_.scratch0()); Register address = r3.is(regs_.address()) ? regs_.scratch0() : regs_.address(); DCHECK(!address.is(regs_.object())); DCHECK(!address.is(r3)); __ mr(address, regs_.address()); __ mr(r3, regs_.object()); __ mr(r4, address); __ mov(r5, Operand(ExternalReference::isolate_address(isolate()))); AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction( ExternalReference::incremental_marking_record_write_function(isolate()), argument_count); regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode()); } void RecordWriteStub::CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode) { Label on_black; Label need_incremental; Label need_incremental_pop_scratch; // Let's look at the color of the object: If it is not black we don't have // to inform the incremental marker. __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&on_black); // Get the value from the slot. __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0)); if (mode == INCREMENTAL_COMPACTION) { Label ensure_not_white; __ CheckPageFlag(regs_.scratch0(), // Contains value. regs_.scratch1(), // Scratch. MemoryChunk::kEvacuationCandidateMask, eq, &ensure_not_white); __ CheckPageFlag(regs_.object(), regs_.scratch1(), // Scratch. MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq, &need_incremental); __ bind(&ensure_not_white); } // We need extra registers for this, so we push the object and the address // register temporarily. __ Push(regs_.object(), regs_.address()); __ JumpIfWhite(regs_.scratch0(), // The value. regs_.scratch1(), // Scratch. regs_.object(), // Scratch. regs_.address(), // Scratch. &need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); __ bind(&need_incremental); // Fall through when we need to inform the incremental marker. } void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { CEntryStub ces(isolate(), 1, kSaveFPRegs); __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); int parameter_count_offset = StubFailureTrampolineFrameConstants::kArgumentsLengthOffset; __ LoadP(r4, MemOperand(fp, parameter_count_offset)); if (function_mode() == JS_FUNCTION_STUB_MODE) { __ addi(r4, r4, Operand(1)); } masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); __ slwi(r4, r4, Operand(kPointerSizeLog2)); __ add(sp, sp, r4); __ Ret(); } void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { if (masm->isolate()->function_entry_hook() != NULL) { PredictableCodeSizeScope predictable(masm, #if V8_TARGET_ARCH_PPC64 14 * Assembler::kInstrSize); #else 11 * Assembler::kInstrSize); #endif ProfileEntryHookStub stub(masm->isolate()); __ mflr(r0); __ Push(r0, ip); __ CallStub(&stub); __ Pop(r0, ip); __ mtlr(r0); } } void ProfileEntryHookStub::Generate(MacroAssembler* masm) { // The entry hook is a "push lr, ip" instruction, followed by a call. const int32_t kReturnAddressDistanceFromFunctionStart = Assembler::kCallTargetAddressOffset + 3 * Assembler::kInstrSize; // This should contain all kJSCallerSaved registers. const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers. r15.bit(); // Saved stack pointer. // We also save lr, so the count here is one higher than the mask indicates. const int32_t kNumSavedRegs = kNumJSCallerSaved + 2; // Save all caller-save registers as this may be called from anywhere. __ mflr(ip); __ MultiPush(kSavedRegs | ip.bit()); // Compute the function's address for the first argument. __ subi(r3, ip, Operand(kReturnAddressDistanceFromFunctionStart)); // The caller's return address is two slots above the saved temporaries. // Grab that for the second argument to the hook. __ addi(r4, sp, Operand((kNumSavedRegs + 1) * kPointerSize)); // Align the stack if necessary. int frame_alignment = masm->ActivationFrameAlignment(); if (frame_alignment > kPointerSize) { __ mr(r15, sp); DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); } #if !defined(USE_SIMULATOR) uintptr_t entry_hook = reinterpret_cast(isolate()->function_entry_hook()); #else // Under the simulator we need to indirect the entry hook through a // trampoline function at a known address. ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); ExternalReference entry_hook = ExternalReference( &dispatcher, ExternalReference::BUILTIN_CALL, isolate()); // It additionally takes an isolate as a third parameter __ mov(r5, Operand(ExternalReference::isolate_address(isolate()))); #endif __ mov(ip, Operand(entry_hook)); if (ABI_USES_FUNCTION_DESCRIPTORS) { __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize)); __ LoadP(ip, MemOperand(ip, 0)); } // ip set above, so nothing more to do for ABI_CALL_VIA_IP. // PPC LINUX ABI: __ li(r0, Operand::Zero()); __ StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize)); __ Call(ip); __ addi(sp, sp, Operand(kNumRequiredStackFrameSlots * kPointerSize)); // Restore the stack pointer if needed. if (frame_alignment > kPointerSize) { __ mr(sp, r15); } // Also pop lr to get Ret(0). __ MultiPop(kSavedRegs | ip.bit()); __ mtlr(ip); __ Ret(); } template static void CreateArrayDispatch(MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (mode == DISABLE_ALLOCATION_SITES) { T stub(masm->isolate(), GetInitialFastElementsKind(), mode); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { int last_index = GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ Cmpi(r6, Operand(kind), r0); T stub(masm->isolate(), kind); __ TailCallStub(&stub, eq); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } static void CreateArrayDispatchOneArgument(MacroAssembler* masm, AllocationSiteOverrideMode mode) { // r5 - allocation site (if mode != DISABLE_ALLOCATION_SITES) // r6 - kind (if mode != DISABLE_ALLOCATION_SITES) // r3 - number of arguments // r4 - constructor? // sp[0] - last argument Label normal_sequence; if (mode == DONT_OVERRIDE) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4); STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); // is the low bit set? If so, we are holey and that is good. __ andi(r0, r6, Operand(1)); __ bne(&normal_sequence, cr0); } // look at the first argument __ LoadP(r8, MemOperand(sp, 0)); __ cmpi(r8, Operand::Zero()); __ beq(&normal_sequence); if (mode == DISABLE_ALLOCATION_SITES) { ElementsKind initial = GetInitialFastElementsKind(); ElementsKind holey_initial = GetHoleyElementsKind(initial); ArraySingleArgumentConstructorStub stub_holey( masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub_holey); __ bind(&normal_sequence); ArraySingleArgumentConstructorStub stub(masm->isolate(), initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { // We are going to create a holey array, but our kind is non-holey. // Fix kind and retry (only if we have an allocation site in the slot). __ addi(r6, r6, Operand(1)); if (FLAG_debug_code) { __ LoadP(r8, FieldMemOperand(r5, 0)); __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex); __ Assert(eq, kExpectedAllocationSite); } // Save the resulting elements kind in type info. We can't just store r6 // in the AllocationSite::transition_info field because elements kind is // restricted to a portion of the field...upper bits need to be left alone. STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ LoadP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset)); __ AddSmiLiteral(r7, r7, Smi::FromInt(kFastElementsKindPackedToHoley), r0); __ StoreP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset), r0); __ bind(&normal_sequence); int last_index = GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ mov(r0, Operand(kind)); __ cmp(r6, r0); ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); __ TailCallStub(&stub, eq); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } template static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { int to_index = GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= to_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); T stub(isolate, kind); stub.GetCode(); if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); stub1.GetCode(); } } } void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) { ArrayConstructorStubAheadOfTimeHelper( isolate); ArrayNArgumentsConstructorStub stub(isolate); stub.GetCode(); ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS}; for (int i = 0; i < 2; i++) { // For internal arrays we only need a few things InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); stubh1.GetCode(); InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); stubh2.GetCode(); } } void ArrayConstructorStub::GenerateDispatchToArrayStub( MacroAssembler* masm, AllocationSiteOverrideMode mode) { Label not_zero_case, not_one_case; __ cmpi(r3, Operand::Zero()); __ bne(¬_zero_case); CreateArrayDispatch(masm, mode); __ bind(¬_zero_case); __ cmpi(r3, Operand(1)); __ bgt(¬_one_case); CreateArrayDispatchOneArgument(masm, mode); __ bind(¬_one_case); ArrayNArgumentsConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void ArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argc (only if argument_count() == ANY) // -- r4 : constructor // -- r5 : AllocationSite or undefined // -- r6 : new target // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ LoadP(r7, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ TestIfSmi(r7, r0); __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0); __ CompareObjectType(r7, r7, r8, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); // We should either have undefined in r5 or a valid AllocationSite __ AssertUndefinedOrAllocationSite(r5, r7); } // Enter the context of the Array function. __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); Label subclassing; __ cmp(r6, r4); __ bne(&subclassing); Label no_info; // Get the elements kind and case on that. __ CompareRoot(r5, Heap::kUndefinedValueRootIndex); __ beq(&no_info); __ LoadP(r6, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset)); __ SmiUntag(r6); STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ And(r6, r6, Operand(AllocationSite::ElementsKindBits::kMask)); GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); __ bind(&no_info); GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); __ bind(&subclassing); __ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2)); __ StorePX(r4, MemOperand(sp, r0)); __ addi(r3, r3, Operand(3)); __ Push(r6, r5); __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate())); } void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm, ElementsKind kind) { __ cmpli(r3, Operand(1)); InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); __ TailCallStub(&stub0, lt); ArrayNArgumentsConstructorStub stubN(isolate()); __ TailCallStub(&stubN, gt); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument __ LoadP(r6, MemOperand(sp, 0)); __ cmpi(r6, Operand::Zero()); InternalArraySingleArgumentConstructorStub stub1_holey( isolate(), GetHoleyElementsKind(kind)); __ TailCallStub(&stub1_holey, ne); } InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); __ TailCallStub(&stub1); } void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argc // -- r4 : constructor // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ TestIfSmi(r6, r0); __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0); __ CompareObjectType(r6, r6, r7, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); } // Figure out the right elements kind __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into |result|. __ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField(r6); if (FLAG_debug_code) { Label done; __ cmpi(r6, Operand(FAST_ELEMENTS)); __ beq(&done); __ cmpi(r6, Operand(FAST_HOLEY_ELEMENTS)); __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray); __ bind(&done); } Label fast_elements_case; __ cmpi(r6, Operand(FAST_ELEMENTS)); __ beq(&fast_elements_case); GenerateCase(masm, FAST_HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateCase(masm, FAST_ELEMENTS); } static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { return ref0.address() - ref1.address(); } // Calls an API function. Allocates HandleScope, extracts returned value // from handle and propagates exceptions. Restores context. stack_space // - space to be unwound on exit (includes the call JS arguments space and // the additional space allocated for the fast call). static void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address, ExternalReference thunk_ref, int stack_space, MemOperand* stack_space_operand, MemOperand return_value_operand, MemOperand* context_restore_operand) { Isolate* isolate = masm->isolate(); ExternalReference next_address = ExternalReference::handle_scope_next_address(isolate); const int kNextOffset = 0; const int kLimitOffset = AddressOffset( ExternalReference::handle_scope_limit_address(isolate), next_address); const int kLevelOffset = AddressOffset( ExternalReference::handle_scope_level_address(isolate), next_address); // Additional parameter is the address of the actual callback. DCHECK(function_address.is(r4) || function_address.is(r5)); Register scratch = r6; __ mov(scratch, Operand(ExternalReference::is_profiling_address(isolate))); __ lbz(scratch, MemOperand(scratch, 0)); __ cmpi(scratch, Operand::Zero()); if (CpuFeatures::IsSupported(ISELECT)) { __ mov(scratch, Operand(thunk_ref)); __ isel(eq, scratch, function_address, scratch); } else { Label profiler_disabled; Label end_profiler_check; __ beq(&profiler_disabled); __ mov(scratch, Operand(thunk_ref)); __ b(&end_profiler_check); __ bind(&profiler_disabled); __ mr(scratch, function_address); __ bind(&end_profiler_check); } // Allocate HandleScope in callee-save registers. // r17 - next_address // r14 - next_address->kNextOffset // r15 - next_address->kLimitOffset // r16 - next_address->kLevelOffset __ mov(r17, Operand(next_address)); __ LoadP(r14, MemOperand(r17, kNextOffset)); __ LoadP(r15, MemOperand(r17, kLimitOffset)); __ lwz(r16, MemOperand(r17, kLevelOffset)); __ addi(r16, r16, Operand(1)); __ stw(r16, MemOperand(r17, kLevelOffset)); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ PrepareCallCFunction(1, r3); __ mov(r3, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::log_enter_external_function(isolate), 1); __ PopSafepointRegisters(); } // Native call returns to the DirectCEntry stub which redirects to the // return address pushed on stack (could have moved after GC). // DirectCEntry stub itself is generated early and never moves. DirectCEntryStub stub(isolate); stub.GenerateCall(masm, scratch); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ PrepareCallCFunction(1, r3); __ mov(r3, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::log_leave_external_function(isolate), 1); __ PopSafepointRegisters(); } Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; Label return_value_loaded; // load value from ReturnValue __ LoadP(r3, return_value_operand); __ bind(&return_value_loaded); // No more valid handles (the result handle was the last one). Restore // previous handle scope. __ StoreP(r14, MemOperand(r17, kNextOffset)); if (__ emit_debug_code()) { __ lwz(r4, MemOperand(r17, kLevelOffset)); __ cmp(r4, r16); __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall); } __ subi(r16, r16, Operand(1)); __ stw(r16, MemOperand(r17, kLevelOffset)); __ LoadP(r0, MemOperand(r17, kLimitOffset)); __ cmp(r15, r0); __ bne(&delete_allocated_handles); // Leave the API exit frame. __ bind(&leave_exit_frame); bool restore_context = context_restore_operand != NULL; if (restore_context) { __ LoadP(cp, *context_restore_operand); } // LeaveExitFrame expects unwind space to be in a register. if (stack_space_operand != NULL) { __ lwz(r14, *stack_space_operand); } else { __ mov(r14, Operand(stack_space)); } __ LeaveExitFrame(false, r14, !restore_context, stack_space_operand != NULL); // Check if the function scheduled an exception. __ LoadRoot(r14, Heap::kTheHoleValueRootIndex); __ mov(r15, Operand(ExternalReference::scheduled_exception_address(isolate))); __ LoadP(r15, MemOperand(r15)); __ cmp(r14, r15); __ bne(&promote_scheduled_exception); __ blr(); // Re-throw by promoting a scheduled exception. __ bind(&promote_scheduled_exception); __ TailCallRuntime(Runtime::kPromoteScheduledException); // HandleScope limit has changed. Delete allocated extensions. __ bind(&delete_allocated_handles); __ StoreP(r15, MemOperand(r17, kLimitOffset)); __ mr(r14, r3); __ PrepareCallCFunction(1, r15); __ mov(r3, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate), 1); __ mr(r3, r14); __ b(&leave_exit_frame); } void CallApiCallbackStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : callee // -- r7 : call_data // -- r5 : holder // -- r4 : api_function_address // -- cp : context // -- // -- sp[0] : last argument // -- ... // -- sp[(argc - 1)* 4] : first argument // -- sp[argc * 4] : receiver // ----------------------------------- Register callee = r3; Register call_data = r7; Register holder = r5; Register api_function_address = r4; Register context = cp; typedef FunctionCallbackArguments FCA; STATIC_ASSERT(FCA::kContextSaveIndex == 6); STATIC_ASSERT(FCA::kCalleeIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); STATIC_ASSERT(FCA::kNewTargetIndex == 7); STATIC_ASSERT(FCA::kArgsLength == 8); // new target __ PushRoot(Heap::kUndefinedValueRootIndex); // context save __ push(context); if (!is_lazy()) { // load context from callee __ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset)); } // callee __ push(callee); // call data __ push(call_data); Register scratch = call_data; if (!call_data_undefined()) { __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); } // return value __ push(scratch); // return value default __ push(scratch); // isolate __ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate()))); __ push(scratch); // holder __ push(holder); // Prepare arguments. __ mr(scratch, sp); // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. // PPC LINUX ABI: // // Create 4 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1-3] FunctionCallbackInfo const int kApiStackSpace = 4; const int kFunctionCallbackInfoOffset = (kStackFrameExtraParamSlot + 1) * kPointerSize; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); DCHECK(!api_function_address.is(r3) && !scratch.is(r3)); // r3 = FunctionCallbackInfo& // Arguments is after the return address. __ addi(r3, sp, Operand(kFunctionCallbackInfoOffset)); // FunctionCallbackInfo::implicit_args_ __ StoreP(scratch, MemOperand(r3, 0 * kPointerSize)); // FunctionCallbackInfo::values_ __ addi(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize)); __ StoreP(ip, MemOperand(r3, 1 * kPointerSize)); // FunctionCallbackInfo::length_ = argc __ li(ip, Operand(argc())); __ stw(ip, MemOperand(r3, 2 * kPointerSize)); ExternalReference thunk_ref = ExternalReference::invoke_function_callback(masm->isolate()); AllowExternalCallThatCantCauseGC scope(masm); MemOperand context_restore_operand( fp, (2 + FCA::kContextSaveIndex) * kPointerSize); // Stores return the first js argument int return_value_offset = 0; if (is_store()) { return_value_offset = 2 + FCA::kArgsLength; } else { return_value_offset = 2 + FCA::kReturnValueOffset; } MemOperand return_value_operand(fp, return_value_offset * kPointerSize); int stack_space = 0; MemOperand length_operand = MemOperand(sp, kFunctionCallbackInfoOffset + 2 * kPointerSize); MemOperand* stack_space_operand = &length_operand; stack_space = argc() + FCA::kArgsLength + 1; stack_space_operand = NULL; CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space, stack_space_operand, return_value_operand, &context_restore_operand); } void CallApiGetterStub::Generate(MacroAssembler* masm) { int arg0Slot = 0; int accessorInfoSlot = 0; int apiStackSpace = 0; // Build v8::PropertyCallbackInfo::args_ array on the stack and push property // name below the exit frame to make GC aware of them. STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); Register receiver = ApiGetterDescriptor::ReceiverRegister(); Register holder = ApiGetterDescriptor::HolderRegister(); Register callback = ApiGetterDescriptor::CallbackRegister(); Register scratch = r7; DCHECK(!AreAliased(receiver, holder, callback, scratch)); Register api_function_address = r5; __ push(receiver); // Push data from AccessorInfo. __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset)); __ push(scratch); __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); __ Push(scratch, scratch); __ mov(scratch, Operand(ExternalReference::isolate_address(isolate()))); __ Push(scratch, holder); __ Push(Smi::kZero); // should_throw_on_error -> false __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset)); __ push(scratch); // v8::PropertyCallbackInfo::args_ array and name handle. const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; // Load address of v8::PropertyAccessorInfo::args_ array and name handle. __ mr(r3, sp); // r3 = Handle __ addi(r4, r3, Operand(1 * kPointerSize)); // r4 = v8::PCI::args_ // If ABI passes Handles (pointer-sized struct) in a register: // // Create 2 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1] AccessorInfo& // // Otherwise: // // Create 3 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1] copy of Handle (first arg) // [2] AccessorInfo& if (ABI_PASSES_HANDLES_IN_REGS) { accessorInfoSlot = kStackFrameExtraParamSlot + 1; apiStackSpace = 2; } else { arg0Slot = kStackFrameExtraParamSlot + 1; accessorInfoSlot = arg0Slot + 1; apiStackSpace = 3; } FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, apiStackSpace); if (!ABI_PASSES_HANDLES_IN_REGS) { // pass 1st arg by reference __ StoreP(r3, MemOperand(sp, arg0Slot * kPointerSize)); __ addi(r3, sp, Operand(arg0Slot * kPointerSize)); } // Create v8::PropertyCallbackInfo object on the stack and initialize // it's args_ field. __ StoreP(r4, MemOperand(sp, accessorInfoSlot * kPointerSize)); __ addi(r4, sp, Operand(accessorInfoSlot * kPointerSize)); // r4 = v8::PropertyCallbackInfo& ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(isolate()); __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); __ LoadP(api_function_address, FieldMemOperand(scratch, Foreign::kForeignAddressOffset)); // +3 is to skip prolog, return address and name handle. MemOperand return_value_operand( fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, kStackUnwindSpace, NULL, return_value_operand, NULL); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_PPC