// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_X87_MACRO_ASSEMBLER_X87_H_ #define V8_X87_MACRO_ASSEMBLER_X87_H_ #include "src/assembler.h" #include "src/bailout-reason.h" #include "src/frames.h" #include "src/globals.h" namespace v8 { namespace internal { // Give alias names to registers for calling conventions. const Register kReturnRegister0 = {Register::kCode_eax}; const Register kReturnRegister1 = {Register::kCode_edx}; const Register kReturnRegister2 = {Register::kCode_edi}; const Register kJSFunctionRegister = {Register::kCode_edi}; const Register kContextRegister = {Register::kCode_esi}; const Register kAllocateSizeRegister = {Register::kCode_edx}; const Register kInterpreterAccumulatorRegister = {Register::kCode_eax}; const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_ecx}; const Register kInterpreterBytecodeArrayRegister = {Register::kCode_edi}; const Register kInterpreterDispatchTableRegister = {Register::kCode_esi}; const Register kJavaScriptCallArgCountRegister = {Register::kCode_eax}; const Register kJavaScriptCallNewTargetRegister = {Register::kCode_edx}; const Register kRuntimeCallFunctionRegister = {Register::kCode_ebx}; const Register kRuntimeCallArgCountRegister = {Register::kCode_eax}; // Spill slots used by interpreter dispatch calling convention. const int kInterpreterDispatchTableSpillSlot = -1; // Convenience for platform-independent signatures. We do not normally // distinguish memory operands from other operands on ia32. typedef Operand MemOperand; enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; enum PointersToHereCheck { kPointersToHereMaybeInteresting, kPointersToHereAreAlwaysInteresting }; enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 }; enum class ReturnAddressState { kOnStack, kNotOnStack }; #ifdef DEBUG bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg, Register reg4 = no_reg, Register reg5 = no_reg, Register reg6 = no_reg, Register reg7 = no_reg, Register reg8 = no_reg); #endif // MacroAssembler implements a collection of frequently used macros. class MacroAssembler: public Assembler { public: MacroAssembler(Isolate* isolate, void* buffer, int size, CodeObjectRequired create_code_object); void Load(Register dst, const Operand& src, Representation r); void Store(Register src, const Operand& dst, Representation r); // Load a register with a long value as efficiently as possible. void Set(Register dst, int32_t x) { if (x == 0) { xor_(dst, dst); } else { mov(dst, Immediate(x)); } } void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); } // Operations on roots in the root-array. void LoadRoot(Register destination, Heap::RootListIndex index); void StoreRoot(Register source, Register scratch, Heap::RootListIndex index); void CompareRoot(Register with, Register scratch, Heap::RootListIndex index); // These methods can only be used with constant roots (i.e. non-writable // and not in new space). void CompareRoot(Register with, Heap::RootListIndex index); void CompareRoot(const Operand& with, Heap::RootListIndex index); void PushRoot(Heap::RootListIndex index); // Compare the object in a register to a value and jump if they are equal. void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal, Label::Distance if_equal_distance = Label::kFar) { CompareRoot(with, index); j(equal, if_equal, if_equal_distance); } void JumpIfRoot(const Operand& with, Heap::RootListIndex index, Label* if_equal, Label::Distance if_equal_distance = Label::kFar) { CompareRoot(with, index); j(equal, if_equal, if_equal_distance); } // Compare the object in a register to a value and jump if they are not equal. void JumpIfNotRoot(Register with, Heap::RootListIndex index, Label* if_not_equal, Label::Distance if_not_equal_distance = Label::kFar) { CompareRoot(with, index); j(not_equal, if_not_equal, if_not_equal_distance); } void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index, Label* if_not_equal, Label::Distance if_not_equal_distance = Label::kFar) { CompareRoot(with, index); j(not_equal, if_not_equal, if_not_equal_distance); } // These functions do not arrange the registers in any particular order so // they are not useful for calls that can cause a GC. The caller can // exclude up to 3 registers that do not need to be saved and restored. void PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg); void PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, Register exclusion2 = no_reg, Register exclusion3 = no_reg); // --------------------------------------------------------------------------- // GC Support enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd }; // Record in the remembered set the fact that we have a pointer to new space // at the address pointed to by the addr register. Only works if addr is not // in new space. void RememberedSetHelper(Register object, // Used for debug code. Register addr, Register scratch, SaveFPRegsMode save_fp, RememberedSetFinalAction and_then); void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met, Label::Distance condition_met_distance = Label::kFar); void CheckPageFlagForMap( Handle map, int mask, Condition cc, Label* condition_met, Label::Distance condition_met_distance = Label::kFar); // Check if object is in new space. Jumps if the object is not in new space. // The register scratch can be object itself, but scratch will be clobbered. void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch, Label::Distance distance = Label::kFar) { InNewSpace(object, scratch, zero, branch, distance); } // Check if object is in new space. Jumps if the object is in new space. // The register scratch can be object itself, but it will be clobbered. void JumpIfInNewSpace(Register object, Register scratch, Label* branch, Label::Distance distance = Label::kFar) { InNewSpace(object, scratch, not_zero, branch, distance); } // Check if an object has a given incremental marking color. Also uses ecx! void HasColor(Register object, Register scratch0, Register scratch1, Label* has_color, Label::Distance has_color_distance, int first_bit, int second_bit); void JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black, Label::Distance on_black_distance = Label::kFar); // Checks the color of an object. If the object is white we jump to the // incremental marker. void JumpIfWhite(Register value, Register scratch1, Register scratch2, Label* value_is_white, Label::Distance distance); // Notify the garbage collector that we wrote a pointer into an object. // |object| is the object being stored into, |value| is the object being // stored. value and scratch registers are clobbered by the operation. // The offset is the offset from the start of the object, not the offset from // the tagged HeapObject pointer. For use with FieldOperand(reg, off). void RecordWriteField( Register object, int offset, Register value, Register scratch, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK, PointersToHereCheck pointers_to_here_check_for_value = kPointersToHereMaybeInteresting); // As above, but the offset has the tag presubtracted. For use with // Operand(reg, off). void RecordWriteContextSlot( Register context, int offset, Register value, Register scratch, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK, PointersToHereCheck pointers_to_here_check_for_value = kPointersToHereMaybeInteresting) { RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp, remembered_set_action, smi_check, pointers_to_here_check_for_value); } // Notify the garbage collector that we wrote a pointer into a fixed array. // |array| is the array being stored into, |value| is the // object being stored. |index| is the array index represented as a // Smi. All registers are clobbered by the operation RecordWriteArray // filters out smis so it does not update the write barrier if the // value is a smi. void RecordWriteArray( Register array, Register value, Register index, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK, PointersToHereCheck pointers_to_here_check_for_value = kPointersToHereMaybeInteresting); // For page containing |object| mark region covering |address| // dirty. |object| is the object being stored into, |value| is the // object being stored. The address and value registers are clobbered by the // operation. RecordWrite filters out smis so it does not update the // write barrier if the value is a smi. void RecordWrite( Register object, Register address, Register value, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, SmiCheck smi_check = INLINE_SMI_CHECK, PointersToHereCheck pointers_to_here_check_for_value = kPointersToHereMaybeInteresting); // Notify the garbage collector that we wrote a code entry into a // JSFunction. Only scratch is clobbered by the operation. void RecordWriteCodeEntryField(Register js_function, Register code_entry, Register scratch); // For page containing |object| mark the region covering the object's map // dirty. |object| is the object being stored into, |map| is the Map object // that was stored. void RecordWriteForMap(Register object, Handle map, Register scratch1, Register scratch2, SaveFPRegsMode save_fp); // --------------------------------------------------------------------------- // Debugger Support void DebugBreak(); // Generates function and stub prologue code. void StubPrologue(StackFrame::Type type); void Prologue(bool code_pre_aging); // Enter specific kind of exit frame. Expects the number of // arguments in register eax and sets up the number of arguments in // register edi and the pointer to the first argument in register // esi. void EnterExitFrame(int argc, bool save_doubles, StackFrame::Type frame_type); void EnterApiExitFrame(int argc); // Leave the current exit frame. Expects the return value in // register eax:edx (untouched) and the pointer to the first // argument in register esi (if pop_arguments == true). void LeaveExitFrame(bool save_doubles, bool pop_arguments = true); // Leave the current exit frame. Expects the return value in // register eax (untouched). void LeaveApiExitFrame(bool restore_context); // Find the function context up the context chain. void LoadContext(Register dst, int context_chain_length); // Load the global proxy from the current context. void LoadGlobalProxy(Register dst); // Load the global function with the given index. void LoadGlobalFunction(int index, Register function); // Load the initial map from the global function. The registers // function and map can be the same. void LoadGlobalFunctionInitialMap(Register function, Register map); // Push and pop the registers that can hold pointers. void PushSafepointRegisters() { pushad(); } void PopSafepointRegisters() { popad(); } // Store the value in register/immediate src in the safepoint // register stack slot for register dst. void StoreToSafepointRegisterSlot(Register dst, Register src); void StoreToSafepointRegisterSlot(Register dst, Immediate src); void LoadFromSafepointRegisterSlot(Register dst, Register src); // Nop, because x87 does not have a root register. void InitializeRootRegister() {} void LoadHeapObject(Register result, Handle object); void CmpHeapObject(Register reg, Handle object); void PushHeapObject(Handle object); void LoadObject(Register result, Handle object) { AllowDeferredHandleDereference heap_object_check; if (object->IsHeapObject()) { LoadHeapObject(result, Handle::cast(object)); } else { Move(result, Immediate(object)); } } void CmpObject(Register reg, Handle object) { AllowDeferredHandleDereference heap_object_check; if (object->IsHeapObject()) { CmpHeapObject(reg, Handle::cast(object)); } else { cmp(reg, Immediate(object)); } } void CmpWeakValue(Register value, Handle cell, Register scratch); void GetWeakValue(Register value, Handle cell); void LoadWeakValue(Register value, Handle cell, Label* miss); // --------------------------------------------------------------------------- // JavaScript invokes // Removes current frame and its arguments from the stack preserving // the arguments and a return address pushed to the stack for the next call. // |ra_state| defines whether return address is already pushed to stack or // not. Both |callee_args_count| and |caller_args_count_reg| do not include // receiver. |callee_args_count| is not modified, |caller_args_count_reg| // is trashed. |number_of_temp_values_after_return_address| specifies // the number of words pushed to the stack after the return address. This is // to allow "allocation" of scratch registers that this function requires // by saving their values on the stack. void PrepareForTailCall(const ParameterCount& callee_args_count, Register caller_args_count_reg, Register scratch0, Register scratch1, ReturnAddressState ra_state, int number_of_temp_values_after_return_address); // Invoke the JavaScript function code by either calling or jumping. void InvokeFunctionCode(Register function, Register new_target, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); // On function call, call into the debugger if necessary. void CheckDebugHook(Register fun, Register new_target, const ParameterCount& expected, const ParameterCount& actual); // Invoke the JavaScript function in the given register. Changes the // current context to the context in the function before invoking. void InvokeFunction(Register function, Register new_target, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); void InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); void InvokeFunction(Handle function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper); void ShlPair(Register high, Register low, uint8_t imm8); void ShlPair_cl(Register high, Register low); void ShrPair(Register high, Register low, uint8_t imm8); void ShrPair_cl(Register high, Register src); void SarPair(Register high, Register low, uint8_t imm8); void SarPair_cl(Register high, Register low); // Expression support // Support for constant splitting. bool IsUnsafeImmediate(const Immediate& x); void SafeMove(Register dst, const Immediate& x); void SafePush(const Immediate& x); // Compare object type for heap object. // Incoming register is heap_object and outgoing register is map. void CmpObjectType(Register heap_object, InstanceType type, Register map); // Compare instance type for map. void CmpInstanceType(Register map, InstanceType type); // Compare an object's map with the specified map. void CompareMap(Register obj, Handle map); // Check if the map of an object is equal to a specified map and branch to // label if not. Skip the smi check if not required (object is known to be a // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match // against maps that are ElementsKind transition maps of the specified map. void CheckMap(Register obj, Handle map, Label* fail, SmiCheckType smi_check_type); // Check if the map of an object is equal to a specified weak map and branch // to a specified target if equal. Skip the smi check if not required // (object is known to be a heap object) void DispatchWeakMap(Register obj, Register scratch1, Register scratch2, Handle cell, Handle success, SmiCheckType smi_check_type); // Check if the object in register heap_object is a string. Afterwards the // register map contains the object map and the register instance_type // contains the instance_type. The registers map and instance_type can be the // same in which case it contains the instance type afterwards. Either of the // registers map and instance_type can be the same as heap_object. Condition IsObjectStringType(Register heap_object, Register map, Register instance_type); // Check if the object in register heap_object is a name. Afterwards the // register map contains the object map and the register instance_type // contains the instance_type. The registers map and instance_type can be the // same in which case it contains the instance type afterwards. Either of the // registers map and instance_type can be the same as heap_object. Condition IsObjectNameType(Register heap_object, Register map, Register instance_type); // FCmp is similar to integer cmp, but requires unsigned // jcc instructions (je, ja, jae, jb, jbe, je, and jz). void FCmp(); void FXamMinusZero(); void FXamSign(); void X87CheckIA(); void X87SetRC(int rc); void X87SetFPUCW(int cw); void ClampUint8(Register reg); void ClampTOSToUint8(Register result_reg); void SlowTruncateToI(Register result_reg, Register input_reg, int offset = HeapNumber::kValueOffset - kHeapObjectTag); void TruncateHeapNumberToI(Register result_reg, Register input_reg); void TruncateX87TOSToI(Register result_reg); void X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode, Label* lost_precision, Label* is_nan, Label* minus_zero, Label::Distance dst = Label::kFar); // Smi tagging support. void SmiTag(Register reg) { STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); add(reg, reg); } void SmiUntag(Register reg) { sar(reg, kSmiTagSize); } // Modifies the register even if it does not contain a Smi! void SmiUntag(Register reg, Label* is_smi) { STATIC_ASSERT(kSmiTagSize == 1); sar(reg, kSmiTagSize); STATIC_ASSERT(kSmiTag == 0); j(not_carry, is_smi); } void LoadUint32NoSSE2(Register src) { LoadUint32NoSSE2(Operand(src)); } void LoadUint32NoSSE2(const Operand& src); // Jump the register contains a smi. inline void JumpIfSmi(Register value, Label* smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(zero, smi_label, distance); } // Jump if the operand is a smi. inline void JumpIfSmi(Operand value, Label* smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(zero, smi_label, distance); } // Jump if register contain a non-smi. inline void JumpIfNotSmi(Register value, Label* not_smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(not_zero, not_smi_label, distance); } // Jump if the operand is not a smi. inline void JumpIfNotSmi(Operand value, Label* smi_label, Label::Distance distance = Label::kFar) { test(value, Immediate(kSmiTagMask)); j(not_zero, smi_label, distance); } // Jump if the value cannot be represented by a smi. inline void JumpIfNotValidSmiValue(Register value, Register scratch, Label* on_invalid, Label::Distance distance = Label::kFar) { mov(scratch, value); add(scratch, Immediate(0x40000000U)); j(sign, on_invalid, distance); } // Jump if the unsigned integer value cannot be represented by a smi. inline void JumpIfUIntNotValidSmiValue( Register value, Label* on_invalid, Label::Distance distance = Label::kFar) { cmp(value, Immediate(0x40000000U)); j(above_equal, on_invalid, distance); } void LoadInstanceDescriptors(Register map, Register descriptors); void EnumLength(Register dst, Register map); void NumberOfOwnDescriptors(Register dst, Register map); void LoadAccessor(Register dst, Register holder, int accessor_index, AccessorComponent accessor); template void DecodeField(Register reg) { static const int shift = Field::kShift; static const int mask = Field::kMask >> Field::kShift; if (shift != 0) { sar(reg, shift); } and_(reg, Immediate(mask)); } template void DecodeFieldToSmi(Register reg) { static const int shift = Field::kShift; static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize; STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0); STATIC_ASSERT(kSmiTag == 0); if (shift < kSmiTagSize) { shl(reg, kSmiTagSize - shift); } else if (shift > kSmiTagSize) { sar(reg, shift - kSmiTagSize); } and_(reg, Immediate(mask)); } // Abort execution if argument is not a number, enabled via --debug-code. void AssertNumber(Register object); void AssertNotNumber(Register object); // Abort execution if argument is not a smi, enabled via --debug-code. void AssertSmi(Register object); // Abort execution if argument is a smi, enabled via --debug-code. void AssertNotSmi(Register object); // Abort execution if argument is not a string, enabled via --debug-code. void AssertString(Register object); // Abort execution if argument is not a name, enabled via --debug-code. void AssertName(Register object); // Abort execution if argument is not a JSFunction, enabled via --debug-code. void AssertFunction(Register object); // Abort execution if argument is not a JSBoundFunction, // enabled via --debug-code. void AssertBoundFunction(Register object); // Abort execution if argument is not a JSGeneratorObject, // enabled via --debug-code. void AssertGeneratorObject(Register object); // Abort execution if argument is not a JSReceiver, enabled via --debug-code. void AssertReceiver(Register object); // Abort execution if argument is not undefined or an AllocationSite, enabled // via --debug-code. void AssertUndefinedOrAllocationSite(Register object); // --------------------------------------------------------------------------- // Exception handling // Push a new stack handler and link it into stack handler chain. void PushStackHandler(); // Unlink the stack handler on top of the stack from the stack handler chain. void PopStackHandler(); // --------------------------------------------------------------------------- // Inline caching support void GetNumberHash(Register r0, Register scratch); // --------------------------------------------------------------------------- // Allocation support // Allocate an object in new space or old space. If the given space // is exhausted control continues at the gc_required label. The allocated // object is returned in result and end of the new object is returned in // result_end. The register scratch can be passed as no_reg in which case // an additional object reference will be added to the reloc info. The // returned pointers in result and result_end have not yet been tagged as // heap objects. If result_contains_top_on_entry is true the content of // result is known to be the allocation top on entry (could be result_end // from a previous call). If result_contains_top_on_entry is true scratch // should be no_reg as it is never used. void Allocate(int object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); void Allocate(int header_size, ScaleFactor element_size, Register element_count, RegisterValueType element_count_type, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); void Allocate(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); // FastAllocate is right now only used for folded allocations. It just // increments the top pointer without checking against limit. This can only // be done if it was proved earlier that the allocation will succeed. void FastAllocate(int object_size, Register result, Register result_end, AllocationFlags flags); void FastAllocate(Register object_size, Register result, Register result_end, AllocationFlags flags); // Allocate a heap number in new space with undefined value. The // register scratch2 can be passed as no_reg; the others must be // valid registers. Returns tagged pointer in result register, or // jumps to gc_required if new space is full. void AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Label* gc_required, MutableMode mode = IMMUTABLE); // Allocate and initialize a JSValue wrapper with the specified {constructor} // and {value}. void AllocateJSValue(Register result, Register constructor, Register value, Register scratch, Label* gc_required); // Initialize fields with filler values. Fields starting at |current_address| // not including |end_address| are overwritten with the value in |filler|. At // the end the loop, |current_address| takes the value of |end_address|. void InitializeFieldsWithFiller(Register current_address, Register end_address, Register filler); // --------------------------------------------------------------------------- // Support functions. // Check a boolean-bit of a Smi field. void BooleanBitTest(Register object, int field_offset, int bit_index); // Check if result is zero and op is negative. void NegativeZeroTest(Register result, Register op, Label* then_label); // Check if result is zero and any of op1 and op2 are negative. // Register scratch is destroyed, and it must be different from op2. void NegativeZeroTest(Register result, Register op1, Register op2, Register scratch, Label* then_label); // Machine code version of Map::GetConstructor(). // |temp| holds |result|'s map when done. void GetMapConstructor(Register result, Register map, Register temp); // --------------------------------------------------------------------------- // Runtime calls // Call a code stub. Generate the code if necessary. void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None()); // Tail call a code stub (jump). Generate the code if necessary. void TailCallStub(CodeStub* stub); // Return from a code stub after popping its arguments. void StubReturn(int argc); // Call a runtime routine. void CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs); void CallRuntimeSaveDoubles(Runtime::FunctionId fid) { const Runtime::Function* function = Runtime::FunctionForId(fid); CallRuntime(function, function->nargs, kSaveFPRegs); } // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, SaveFPRegsMode save_doubles = kDontSaveFPRegs) { const Runtime::Function* function = Runtime::FunctionForId(fid); CallRuntime(function, function->nargs, save_doubles); } // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId fid, int num_arguments, SaveFPRegsMode save_doubles = kDontSaveFPRegs) { CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles); } // Convenience function: call an external reference. void CallExternalReference(ExternalReference ref, int num_arguments); // Convenience function: tail call a runtime routine (jump). void TailCallRuntime(Runtime::FunctionId fid); // Before calling a C-function from generated code, align arguments on stack. // After aligning the frame, arguments must be stored in esp[0], esp[4], // etc., not pushed. The argument count assumes all arguments are word sized. // Some compilers/platforms require the stack to be aligned when calling // C++ code. // Needs a scratch register to do some arithmetic. This register will be // trashed. void PrepareCallCFunction(int num_arguments, Register scratch); // Calls a C function and cleans up the space for arguments allocated // by PrepareCallCFunction. The called function is not allowed to trigger a // garbage collection, since that might move the code and invalidate the // return address (unless this is somehow accounted for by the called // function). void CallCFunction(ExternalReference function, int num_arguments); void CallCFunction(Register function, int num_arguments); // Jump to a runtime routine. void JumpToExternalReference(const ExternalReference& ext, bool builtin_exit_frame = false); // --------------------------------------------------------------------------- // Utilities void Ret(); // Return and drop arguments from stack, where the number of arguments // may be bigger than 2^16 - 1. Requires a scratch register. void Ret(int bytes_dropped, Register scratch); // Emit code that loads |parameter_index|'th parameter from the stack to // the register according to the CallInterfaceDescriptor definition. // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed // below the caller's sp (on x87 it's at least return address). template void LoadParameterFromStack( Register reg, typename Descriptor::ParameterIndices parameter_index, int sp_to_ra_offset_in_words = 1) { DCHECK(Descriptor::kPassLastArgsOnStack); DCHECK_LT(parameter_index, Descriptor::kParameterCount); DCHECK_LE(Descriptor::kParameterCount - Descriptor::kStackArgumentsCount, parameter_index); int offset = (Descriptor::kParameterCount - parameter_index - 1 + sp_to_ra_offset_in_words) * kPointerSize; mov(reg, Operand(esp, offset)); } // Emit code to discard a non-negative number of pointer-sized elements // from the stack, clobbering only the esp register. void Drop(int element_count); void Call(Label* target) { call(target); } void Call(Handle target, RelocInfo::Mode rmode, TypeFeedbackId id = TypeFeedbackId::None()) { call(target, rmode, id); } void Jump(Handle target, RelocInfo::Mode rmode) { jmp(target, rmode); } void Push(Register src) { push(src); } void Push(const Operand& src) { push(src); } void Push(Immediate value) { push(value); } void Pop(Register dst) { pop(dst); } void Pop(const Operand& dst) { pop(dst); } void PushReturnAddressFrom(Register src) { push(src); } void PopReturnAddressTo(Register dst) { pop(dst); } void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); } void Lzcnt(Register dst, const Operand& src); void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); } void Tzcnt(Register dst, const Operand& src); void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); } void Popcnt(Register dst, const Operand& src); // Move if the registers are not identical. void Move(Register target, Register source); // Move a constant into a destination using the most efficient encoding. void Move(Register dst, const Immediate& x); void Move(const Operand& dst, const Immediate& x); void Move(Register dst, Handle handle) { LoadObject(dst, handle); } void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); } // Push a handle value. void Push(Handle handle) { push(Immediate(handle)); } void Push(Smi* smi) { Push(Immediate(smi)); } Handle CodeObject() { DCHECK(!code_object_.is_null()); return code_object_; } // Insert code to verify that the x87 stack has the specified depth (0-7) void VerifyX87StackDepth(uint32_t depth); // Emit code for a truncating division by a constant. The dividend register is // unchanged, the result is in edx, and eax gets clobbered. void TruncatingDiv(Register dividend, int32_t divisor); // --------------------------------------------------------------------------- // StatsCounter support void SetCounter(StatsCounter* counter, int value); void IncrementCounter(StatsCounter* counter, int value); void DecrementCounter(StatsCounter* counter, int value); void IncrementCounter(Condition cc, StatsCounter* counter, int value); void DecrementCounter(Condition cc, StatsCounter* counter, int value); // --------------------------------------------------------------------------- // Debugging // Calls Abort(msg) if the condition cc is not satisfied. // Use --debug_code to enable. void Assert(Condition cc, BailoutReason reason); void AssertFastElements(Register elements); // Like Assert(), but always enabled. void Check(Condition cc, BailoutReason reason); // Print a message to stdout and abort execution. void Abort(BailoutReason reason); // Check that the stack is aligned. void CheckStackAlignment(); // Verify restrictions about code generated in stubs. void set_generating_stub(bool value) { generating_stub_ = value; } bool generating_stub() { return generating_stub_; } void set_has_frame(bool value) { has_frame_ = value; } bool has_frame() { return has_frame_; } inline bool AllowThisStubCall(CodeStub* stub); // --------------------------------------------------------------------------- // String utilities. // Checks if both objects are sequential one-byte strings, and jumps to label // if either is not. void JumpIfNotBothSequentialOneByteStrings( Register object1, Register object2, Register scratch1, Register scratch2, Label* on_not_flat_one_byte_strings); // Checks if the given register or operand is a unique name void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name, Label::Distance distance = Label::kFar) { JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance); } void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name, Label::Distance distance = Label::kFar); void EmitSeqStringSetCharCheck(Register string, Register index, Register value, uint32_t encoding_mask); static int SafepointRegisterStackIndex(Register reg) { return SafepointRegisterStackIndex(reg.code()); } // Load the type feedback vector from a JavaScript frame. void EmitLoadFeedbackVector(Register vector); // Activation support. void EnterFrame(StackFrame::Type type); void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg); void LeaveFrame(StackFrame::Type type); void EnterBuiltinFrame(Register context, Register target, Register argc); void LeaveBuiltinFrame(Register context, Register target, Register argc); // Expects object in eax and returns map with validated enum cache // in eax. Assumes that any other register can be used as a scratch. void CheckEnumCache(Label* call_runtime); // AllocationMemento support. Arrays may have an associated // AllocationMemento object that can be checked for in order to pretransition // to another type. // On entry, receiver_reg should point to the array object. // scratch_reg gets clobbered. // If allocation info is present, conditional code is set to equal. void TestJSArrayForAllocationMemento(Register receiver_reg, Register scratch_reg, Label* no_memento_found); private: bool generating_stub_; bool has_frame_; // This handle will be patched with the code object on installation. Handle code_object_; // Helper functions for generating invokes. void InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Label* done, bool* definitely_mismatches, InvokeFlag flag, Label::Distance done_distance, const CallWrapper& call_wrapper); void EnterExitFramePrologue(StackFrame::Type frame_type); void EnterExitFrameEpilogue(int argc, bool save_doubles); void LeaveExitFrameEpilogue(bool restore_context); // Allocation support helpers. void LoadAllocationTopHelper(Register result, Register scratch, AllocationFlags flags); void UpdateAllocationTopHelper(Register result_end, Register scratch, AllocationFlags flags); // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. void InNewSpace(Register object, Register scratch, Condition cc, Label* condition_met, Label::Distance condition_met_distance = Label::kFar); // Helper for finding the mark bits for an address. Afterwards, the // bitmap register points at the word with the mark bits and the mask // the position of the first bit. Uses ecx as scratch and leaves addr_reg // unchanged. inline void GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg); // Compute memory operands for safepoint stack slots. Operand SafepointRegisterSlot(Register reg); static int SafepointRegisterStackIndex(int reg_code); // Needs access to SafepointRegisterStackIndex for compiled frame // traversal. friend class StandardFrame; }; // The code patcher is used to patch (typically) small parts of code e.g. for // debugging and other types of instrumentation. When using the code patcher // the exact number of bytes specified must be emitted. Is not legal to emit // relocation information. If any of these constraints are violated it causes // an assertion. class CodePatcher { public: CodePatcher(Isolate* isolate, byte* address, int size); ~CodePatcher(); // Macro assembler to emit code. MacroAssembler* masm() { return &masm_; } private: byte* address_; // The address of the code being patched. int size_; // Number of bytes of the expected patch size. MacroAssembler masm_; // Macro assembler used to generate the code. }; // ----------------------------------------------------------------------------- // Static helper functions. // Generate an Operand for loading a field from an object. inline Operand FieldOperand(Register object, int offset) { return Operand(object, offset - kHeapObjectTag); } // Generate an Operand for loading an indexed field from an object. inline Operand FieldOperand(Register object, Register index, ScaleFactor scale, int offset) { return Operand(object, index, scale, offset - kHeapObjectTag); } inline Operand FixedArrayElementOperand(Register array, Register index_as_smi, int additional_offset = 0) { int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize; return FieldOperand(array, index_as_smi, times_half_pointer_size, offset); } inline Operand ContextOperand(Register context, int index) { return Operand(context, Context::SlotOffset(index)); } inline Operand ContextOperand(Register context, Register index) { return Operand(context, index, times_pointer_size, Context::SlotOffset(0)); } inline Operand NativeContextOperand() { return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX); } #define ACCESS_MASM(masm) masm-> } // namespace internal } // namespace v8 #endif // V8_X87_MACRO_ASSEMBLER_X87_H_