/*--------------------------------------------------------------------*/ /*--- begin guest_generic_bb_to_IR.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2004-2017 OpenWorks LLP info@open-works.net This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. The GNU General Public License is contained in the file COPYING. Neither the names of the U.S. Department of Energy nor the University of California nor the names of its contributors may be used to endorse or promote products derived from this software without prior written permission. */ #include "libvex_basictypes.h" #include "libvex_ir.h" #include "libvex.h" #include "main_util.h" #include "main_globals.h" #include "guest_generic_bb_to_IR.h" /* Forwards .. */ VEX_REGPARM(2) static UInt genericg_compute_checksum_4al ( HWord first_w32, HWord n_w32s ); VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_1 ( HWord first_w32 ); VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_2 ( HWord first_w32 ); VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_3 ( HWord first_w32 ); VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_4 ( HWord first_w32 ); VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_5 ( HWord first_w32 ); VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_6 ( HWord first_w32 ); VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_7 ( HWord first_w32 ); VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_8 ( HWord first_w32 ); VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_9 ( HWord first_w32 ); VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_10 ( HWord first_w32 ); VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_11 ( HWord first_w32 ); VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_12 ( HWord first_w32 ); VEX_REGPARM(2) static ULong genericg_compute_checksum_8al ( HWord first_w64, HWord n_w64s ); VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_1 ( HWord first_w64 ); VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_2 ( HWord first_w64 ); VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_3 ( HWord first_w64 ); VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_4 ( HWord first_w64 ); VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_5 ( HWord first_w64 ); VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_6 ( HWord first_w64 ); VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_7 ( HWord first_w64 ); VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_8 ( HWord first_w64 ); VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_9 ( HWord first_w64 ); VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_10 ( HWord first_w64 ); VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_11 ( HWord first_w64 ); VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_12 ( HWord first_w64 ); /* Small helpers */ static Bool const_False ( void* callback_opaque, Addr a ) { return False; } /* Disassemble a complete basic block, starting at guest_IP_start, returning a new IRSB. The disassembler may chase across basic block boundaries if it wishes and if chase_into_ok allows it. The precise guest address ranges from which code has been taken are written into vge. guest_IP_bbstart is taken to be the IP in the guest's address space corresponding to the instruction at &guest_code[0]. dis_instr_fn is the arch-specific fn to disassemble on function; it is this that does the real work. needs_self_check is a callback used to ask the caller which of the extents, if any, a self check is required for. The returned value is a bitmask with a 1 in position i indicating that the i'th extent needs a check. Since there can be at most 3 extents, the returned values must be between 0 and 7. The number of extents which did get a self check (0 to 3) is put in n_sc_extents. The caller already knows this because it told us which extents to add checks for, via the needs_self_check callback, but we ship the number back out here for the caller's convenience. preamble_function is a callback which allows the caller to add its own IR preamble (following the self-check, if any). May be NULL. If non-NULL, the IRSB under construction is handed to this function, which presumably adds IR statements to it. The callback may optionally complete the block and direct bb_to_IR not to disassemble any instructions into it; this is indicated by the callback returning True. offB_CMADDR and offB_CMLEN are the offsets of guest_CMADDR and guest_CMLEN. Since this routine has to work for any guest state, without knowing what it is, those offsets have to passed in. callback_opaque is a caller-supplied pointer to data which the callbacks may want to see. Vex has no idea what it is. (In fact it's a VgInstrumentClosure.) */ /* Regarding IP updating. dis_instr_fn (that does the guest specific work of disassembling an individual instruction) must finish the resulting IR with "PUT(guest_IP) = ". Hence in all cases it must state the next instruction address. If the block is to be ended at that point, then this routine (bb_to_IR) will set up the next/jumpkind/offsIP fields so as to make a transfer (of the right kind) to "GET(guest_IP)". Hence if dis_instr_fn generates incorrect IP updates we will see it immediately (due to jumping to the wrong next guest address). However it is also necessary to set this up so it can be optimised nicely. The IRSB exit is defined to update the guest IP, so that chaining works -- since the chain_me stubs expect the chain-to address to be in the guest state. Hence what the IRSB next fields will contain initially is (implicitly) PUT(guest_IP) [implicitly] = GET(guest_IP) [explicit expr on ::next] which looks pretty strange at first. Eg so unconditional branch to some address 0x123456 looks like this: PUT(guest_IP) = 0x123456; // dis_instr_fn generates this // the exit PUT(guest_IP) [implicitly] = GET(guest_IP); exit-Boring after redundant-GET and -PUT removal by iropt, we get what we want: // the exit PUT(guest_IP) [implicitly] = 0x123456; exit-Boring This makes the IRSB-end case the same as the side-exit case: update IP, then transfer. There is no redundancy of representation for the destination, and we use the destination specified by dis_instr_fn, so any errors it makes show up sooner. */ IRSB* bb_to_IR ( /*OUT*/VexGuestExtents* vge, /*OUT*/UInt* n_sc_extents, /*OUT*/UInt* n_guest_instrs, /* stats only */ /*MOD*/VexRegisterUpdates* pxControl, /*IN*/ void* callback_opaque, /*IN*/ DisOneInstrFn dis_instr_fn, /*IN*/ const UChar* guest_code, /*IN*/ Addr guest_IP_bbstart, /*IN*/ Bool (*chase_into_ok)(void*,Addr), /*IN*/ VexEndness host_endness, /*IN*/ Bool sigill_diag, /*IN*/ VexArch arch_guest, /*IN*/ const VexArchInfo* archinfo_guest, /*IN*/ const VexAbiInfo* abiinfo_both, /*IN*/ IRType guest_word_type, /*IN*/ UInt (*needs_self_check) (void*, /*MB_MOD*/VexRegisterUpdates*, const VexGuestExtents*), /*IN*/ Bool (*preamble_function)(void*,IRSB*), /*IN*/ Int offB_GUEST_CMSTART, /*IN*/ Int offB_GUEST_CMLEN, /*IN*/ Int offB_GUEST_IP, /*IN*/ Int szB_GUEST_IP ) { Long delta; Int i, n_instrs, first_stmt_idx; Bool resteerOK, debug_print; DisResult dres; IRStmt* imark; IRStmt* nop; static Int n_resteers = 0; Int d_resteers = 0; Int selfcheck_idx = 0; IRSB* irsb; Addr guest_IP_curr_instr; IRConst* guest_IP_bbstart_IRConst = NULL; Int n_cond_resteers_allowed = 2; Bool (*resteerOKfn)(void*,Addr) = NULL; debug_print = toBool(vex_traceflags & VEX_TRACE_FE); /* check sanity .. */ vassert(sizeof(HWord) == sizeof(void*)); vassert(vex_control.guest_max_insns >= 1); vassert(vex_control.guest_max_insns <= 100); vassert(vex_control.guest_chase_thresh >= 0); vassert(vex_control.guest_chase_thresh < vex_control.guest_max_insns); vassert(guest_word_type == Ity_I32 || guest_word_type == Ity_I64); if (guest_word_type == Ity_I32) { vassert(szB_GUEST_IP == 4); vassert((offB_GUEST_IP % 4) == 0); } else { vassert(szB_GUEST_IP == 8); vassert((offB_GUEST_IP % 8) == 0); } /* Although we will try to disassemble up to vex_control.guest_max_insns insns into the block, the individual insn assemblers may hint to us that a disassembled instruction is verbose. In that case we will lower the limit so as to ensure that the JIT doesn't run out of space. See bug 375839 for the motivating example. */ Int guest_max_insns_really = vex_control.guest_max_insns; /* Start a new, empty extent. */ vge->n_used = 1; vge->base[0] = guest_IP_bbstart; vge->len[0] = 0; *n_sc_extents = 0; /* And a new IR superblock to dump the result into. */ irsb = emptyIRSB(); /* Delta keeps track of how far along the guest_code array we have so far gone. */ delta = 0; n_instrs = 0; *n_guest_instrs = 0; /* Guest addresses as IRConsts. Used in self-checks to specify the restart-after-discard point. */ guest_IP_bbstart_IRConst = guest_word_type==Ity_I32 ? IRConst_U32(toUInt(guest_IP_bbstart)) : IRConst_U64(guest_IP_bbstart); /* Leave 15 spaces in which to put the check statements for a self checking translation (up to 3 extents, and 5 stmts required for each). We won't know until later the extents and checksums of the areas, if any, that need to be checked. */ nop = IRStmt_NoOp(); selfcheck_idx = irsb->stmts_used; for (i = 0; i < 3 * 5; i++) addStmtToIRSB( irsb, nop ); /* If the caller supplied a function to add its own preamble, use it now. */ if (preamble_function) { Bool stopNow = preamble_function( callback_opaque, irsb ); if (stopNow) { /* The callback has completed the IR block without any guest insns being disassembled into it, so just return it at this point, even if a self-check was requested - as there is nothing to self-check. The 15 self-check no-ops will still be in place, but they are harmless. */ return irsb; } } /* Process instructions. */ while (True) { vassert(n_instrs < guest_max_insns_really); /* Regardless of what chase_into_ok says, is chasing permissible at all right now? Set resteerOKfn accordingly. */ resteerOK = toBool( n_instrs < vex_control.guest_chase_thresh /* we can't afford to have a resteer once we're on the last extent slot. */ && vge->n_used < 3 ); resteerOKfn = resteerOK ? chase_into_ok : const_False; /* n_cond_resteers_allowed keeps track of whether we're still allowing dis_instr_fn to chase conditional branches. It starts (at 2) and gets decremented each time dis_instr_fn tells us it has chased a conditional branch. We then decrement it, and use it to tell later calls to dis_instr_fn whether or not it is allowed to chase conditional branches. */ vassert(n_cond_resteers_allowed >= 0 && n_cond_resteers_allowed <= 2); /* This is the IP of the instruction we're just about to deal with. */ guest_IP_curr_instr = guest_IP_bbstart + delta; /* This is the irsb statement array index of the first stmt in this insn. That will always be the instruction-mark descriptor. */ first_stmt_idx = irsb->stmts_used; /* Add an instruction-mark statement. We won't know until after disassembling the instruction how long it instruction is, so just put in a zero length and we'll fix it up later. On ARM, the least significant bit of the instr address distinguishes ARM vs Thumb instructions. All instructions actually start on at least 2-aligned addresses. So we need to ignore the bottom bit of the insn address when forming the IMark's address field, but put that bottom bit in the delta field, so that comparisons against guest_R15T for Thumb can be done correctly. By inspecting the delta field, instruction processors can determine whether the instruction was originally Thumb or ARM. For more details of this convention, see comments on definition of guest_R15T in libvex_guest_arm.h. */ if (arch_guest == VexArchARM && (guest_IP_curr_instr & 1)) { /* Thumb insn => mask out the T bit, but put it in delta */ addStmtToIRSB( irsb, IRStmt_IMark(guest_IP_curr_instr & ~(Addr)1, 0, /* len */ 1 /* delta */ ) ); } else { /* All other targets: store IP as-is, and set delta to zero. */ addStmtToIRSB( irsb, IRStmt_IMark(guest_IP_curr_instr, 0, /* len */ 0 /* delta */ ) ); } if (debug_print && n_instrs > 0) vex_printf("\n"); /* Finally, actually disassemble an instruction. */ vassert(irsb->next == NULL); dres = dis_instr_fn ( irsb, resteerOKfn, toBool(n_cond_resteers_allowed > 0), callback_opaque, guest_code, delta, guest_IP_curr_instr, arch_guest, archinfo_guest, abiinfo_both, host_endness, sigill_diag ); /* stay sane ... */ vassert(dres.whatNext == Dis_StopHere || dres.whatNext == Dis_Continue || dres.whatNext == Dis_ResteerU || dres.whatNext == Dis_ResteerC); /* ... disassembled insn length is sane ... */ vassert(dres.len >= 0 && dres.len <= 24); /* ... continueAt is zero if no resteer requested ... */ if (dres.whatNext != Dis_ResteerU && dres.whatNext != Dis_ResteerC) vassert(dres.continueAt == 0); /* ... if we disallowed conditional resteers, check that one didn't actually happen anyway ... */ if (n_cond_resteers_allowed == 0) vassert(dres.whatNext != Dis_ResteerC); /* If the disassembly function passed us a hint, take note of it. */ if (LIKELY(dres.hint == Dis_HintNone)) { /* Do nothing */ } else { vassert(dres.hint == Dis_HintVerbose); /* The current insn is known to be verbose. Lower the max insns limit if necessary so as to avoid running the JIT out of space in the event that we've encountered the start of a long sequence of them. This is expected to be a very rare event. In any case the remaining limit (30 insns) is still so high that most blocks will terminate anyway before then. So this is very unlikely to give a perf hit in practice. See bug 375839 for the motivating example. */ if (guest_max_insns_really > 30) { guest_max_insns_really = 30; } } /* Fill in the insn-mark length field. */ vassert(first_stmt_idx >= 0 && first_stmt_idx < irsb->stmts_used); imark = irsb->stmts[first_stmt_idx]; vassert(imark); vassert(imark->tag == Ist_IMark); vassert(imark->Ist.IMark.len == 0); imark->Ist.IMark.len = dres.len; /* Print the resulting IR, if needed. */ if (vex_traceflags & VEX_TRACE_FE) { for (i = first_stmt_idx; i < irsb->stmts_used; i++) { vex_printf(" "); ppIRStmt(irsb->stmts[i]); vex_printf("\n"); } } /* Individual insn disassembly may not mess with irsb->next. This function is the only place where it can be set. */ vassert(irsb->next == NULL); vassert(irsb->jumpkind == Ijk_Boring); vassert(irsb->offsIP == 0); /* Individual insn disassembly must finish the IR for each instruction with an assignment to the guest PC. */ vassert(first_stmt_idx < irsb->stmts_used); /* it follows that irsb->stmts_used must be > 0 */ { IRStmt* st = irsb->stmts[irsb->stmts_used-1]; vassert(st); vassert(st->tag == Ist_Put); vassert(st->Ist.Put.offset == offB_GUEST_IP); /* Really we should also check that the type of the Put'd data == guest_word_type, but that's a bit expensive. */ } /* Update the VexGuestExtents we are constructing. */ /* If vex_control.guest_max_insns is required to be < 100 and each insn is at max 20 bytes long, this limit of 5000 then seems reasonable since the max possible extent length will be 100 * 20 == 2000. */ vassert(vge->len[vge->n_used-1] < 5000); vge->len[vge->n_used-1] = toUShort(toUInt( vge->len[vge->n_used-1] + dres.len )); n_instrs++; /* Advance delta (inconspicuous but very important :-) */ delta += (Long)dres.len; switch (dres.whatNext) { case Dis_Continue: vassert(dres.continueAt == 0); vassert(dres.jk_StopHere == Ijk_INVALID); if (n_instrs < guest_max_insns_really) { /* keep going */ } else { /* We have to stop. See comment above re irsb field settings here. */ irsb->next = IRExpr_Get(offB_GUEST_IP, guest_word_type); /* irsb->jumpkind must already by Ijk_Boring */ irsb->offsIP = offB_GUEST_IP; goto done; } break; case Dis_StopHere: vassert(dres.continueAt == 0); vassert(dres.jk_StopHere != Ijk_INVALID); /* See comment above re irsb field settings here. */ irsb->next = IRExpr_Get(offB_GUEST_IP, guest_word_type); irsb->jumpkind = dres.jk_StopHere; irsb->offsIP = offB_GUEST_IP; goto done; case Dis_ResteerU: case Dis_ResteerC: /* Check that we actually allowed a resteer .. */ vassert(resteerOK); if (dres.whatNext == Dis_ResteerC) { vassert(n_cond_resteers_allowed > 0); n_cond_resteers_allowed--; } /* figure out a new delta to continue at. */ vassert(resteerOKfn(callback_opaque,dres.continueAt)); delta = dres.continueAt - guest_IP_bbstart; /* we now have to start a new extent slot. */ vge->n_used++; vassert(vge->n_used <= 3); vge->base[vge->n_used-1] = dres.continueAt; vge->len[vge->n_used-1] = 0; n_resteers++; d_resteers++; if (0 && (n_resteers & 0xFF) == 0) vex_printf("resteer[%d,%d] to 0x%lx (delta = %lld)\n", n_resteers, d_resteers, dres.continueAt, delta); break; default: vpanic("bb_to_IR"); } } /*NOTREACHED*/ vassert(0); done: /* We're done. The only thing that might need attending to is that a self-checking preamble may need to be created. If so it gets placed in the 15 slots reserved above. The scheme is to compute a rather crude checksum of the code we're making a translation of, and add to the IR a call to a helper routine which recomputes the checksum every time the translation is run, and requests a retranslation if it doesn't match. This is obviously very expensive and considerable efforts are made to speed it up: * the checksum is computed from all the naturally aligned host-sized words that overlap the translated code. That means it could depend on up to 7 bytes before and 7 bytes after which aren't part of the translated area, and so if those change then we'll unnecessarily have to discard and retranslate. This seems like a pretty remote possibility and it seems as if the benefit of not having to deal with the ends of the range at byte precision far outweigh any possible extra translations needed. * there's a generic routine and 12 specialised cases, which handle the cases of 1 through 12-word lengths respectively. They seem to cover about 90% of the cases that occur in practice. We ask the caller, via needs_self_check, which of the 3 vge extents needs a check, and only generate check code for those that do. */ { Addr base2check; UInt len2check; HWord expectedhW; IRTemp tistart_tmp, tilen_tmp; HWord VEX_REGPARM(2) (*fn_generic)(HWord, HWord); HWord VEX_REGPARM(1) (*fn_spec)(HWord); const HChar* nm_generic; const HChar* nm_spec; HWord fn_generic_entry = 0; HWord fn_spec_entry = 0; UInt host_word_szB = sizeof(HWord); IRType host_word_type = Ity_INVALID; UInt extents_needing_check = needs_self_check(callback_opaque, pxControl, vge); if (host_word_szB == 4) host_word_type = Ity_I32; if (host_word_szB == 8) host_word_type = Ity_I64; vassert(host_word_type != Ity_INVALID); vassert(vge->n_used >= 1 && vge->n_used <= 3); /* Caller shouldn't claim that nonexistent extents need a check. */ vassert((extents_needing_check >> vge->n_used) == 0); for (i = 0; i < vge->n_used; i++) { /* Do we need to generate a check for this extent? */ if ((extents_needing_check & (1 << i)) == 0) continue; /* Tell the caller */ (*n_sc_extents)++; /* the extent we're generating a check for */ base2check = vge->base[i]; len2check = vge->len[i]; /* stay sane */ vassert(len2check >= 0 && len2check < 1000/*arbitrary*/); /* Skip the check if the translation involved zero bytes */ if (len2check == 0) continue; HWord first_hW = ((HWord)base2check) & ~(HWord)(host_word_szB-1); HWord last_hW = (((HWord)base2check) + len2check - 1) & ~(HWord)(host_word_szB-1); vassert(first_hW <= last_hW); HWord hW_diff = last_hW - first_hW; vassert(0 == (hW_diff & (host_word_szB-1))); HWord hWs_to_check = (hW_diff + host_word_szB) / host_word_szB; vassert(hWs_to_check > 0 && hWs_to_check < 1004/*arbitrary*/ / host_word_szB); /* vex_printf("%lx %lx %ld\n", first_hW, last_hW, hWs_to_check); */ if (host_word_szB == 8) { fn_generic = (VEX_REGPARM(2) HWord(*)(HWord, HWord)) genericg_compute_checksum_8al; nm_generic = "genericg_compute_checksum_8al"; } else { fn_generic = (VEX_REGPARM(2) HWord(*)(HWord, HWord)) genericg_compute_checksum_4al; nm_generic = "genericg_compute_checksum_4al"; } fn_spec = NULL; nm_spec = NULL; if (host_word_szB == 8) { const HChar* nm = NULL; ULong VEX_REGPARM(1) (*fn)(HWord) = NULL; switch (hWs_to_check) { case 1: fn = genericg_compute_checksum_8al_1; nm = "genericg_compute_checksum_8al_1"; break; case 2: fn = genericg_compute_checksum_8al_2; nm = "genericg_compute_checksum_8al_2"; break; case 3: fn = genericg_compute_checksum_8al_3; nm = "genericg_compute_checksum_8al_3"; break; case 4: fn = genericg_compute_checksum_8al_4; nm = "genericg_compute_checksum_8al_4"; break; case 5: fn = genericg_compute_checksum_8al_5; nm = "genericg_compute_checksum_8al_5"; break; case 6: fn = genericg_compute_checksum_8al_6; nm = "genericg_compute_checksum_8al_6"; break; case 7: fn = genericg_compute_checksum_8al_7; nm = "genericg_compute_checksum_8al_7"; break; case 8: fn = genericg_compute_checksum_8al_8; nm = "genericg_compute_checksum_8al_8"; break; case 9: fn = genericg_compute_checksum_8al_9; nm = "genericg_compute_checksum_8al_9"; break; case 10: fn = genericg_compute_checksum_8al_10; nm = "genericg_compute_checksum_8al_10"; break; case 11: fn = genericg_compute_checksum_8al_11; nm = "genericg_compute_checksum_8al_11"; break; case 12: fn = genericg_compute_checksum_8al_12; nm = "genericg_compute_checksum_8al_12"; break; default: break; } fn_spec = (VEX_REGPARM(1) HWord(*)(HWord)) fn; nm_spec = nm; } else { const HChar* nm = NULL; UInt VEX_REGPARM(1) (*fn)(HWord) = NULL; switch (hWs_to_check) { case 1: fn = genericg_compute_checksum_4al_1; nm = "genericg_compute_checksum_4al_1"; break; case 2: fn = genericg_compute_checksum_4al_2; nm = "genericg_compute_checksum_4al_2"; break; case 3: fn = genericg_compute_checksum_4al_3; nm = "genericg_compute_checksum_4al_3"; break; case 4: fn = genericg_compute_checksum_4al_4; nm = "genericg_compute_checksum_4al_4"; break; case 5: fn = genericg_compute_checksum_4al_5; nm = "genericg_compute_checksum_4al_5"; break; case 6: fn = genericg_compute_checksum_4al_6; nm = "genericg_compute_checksum_4al_6"; break; case 7: fn = genericg_compute_checksum_4al_7; nm = "genericg_compute_checksum_4al_7"; break; case 8: fn = genericg_compute_checksum_4al_8; nm = "genericg_compute_checksum_4al_8"; break; case 9: fn = genericg_compute_checksum_4al_9; nm = "genericg_compute_checksum_4al_9"; break; case 10: fn = genericg_compute_checksum_4al_10; nm = "genericg_compute_checksum_4al_10"; break; case 11: fn = genericg_compute_checksum_4al_11; nm = "genericg_compute_checksum_4al_11"; break; case 12: fn = genericg_compute_checksum_4al_12; nm = "genericg_compute_checksum_4al_12"; break; default: break; } fn_spec = (VEX_REGPARM(1) HWord(*)(HWord))fn; nm_spec = nm; } expectedhW = fn_generic( first_hW, hWs_to_check ); /* If we got a specialised version, check it produces the same result as the generic version! */ if (fn_spec) { vassert(nm_spec); vassert(expectedhW == fn_spec( first_hW )); } else { vassert(!nm_spec); } /* Set CMSTART and CMLEN. These will describe to the despatcher the area of guest code to invalidate should we exit with a self-check failure. */ tistart_tmp = newIRTemp(irsb->tyenv, guest_word_type); tilen_tmp = newIRTemp(irsb->tyenv, guest_word_type); IRConst* base2check_IRConst = guest_word_type==Ity_I32 ? IRConst_U32(toUInt(base2check)) : IRConst_U64(base2check); IRConst* len2check_IRConst = guest_word_type==Ity_I32 ? IRConst_U32(len2check) : IRConst_U64(len2check); irsb->stmts[selfcheck_idx + i * 5 + 0] = IRStmt_WrTmp(tistart_tmp, IRExpr_Const(base2check_IRConst) ); irsb->stmts[selfcheck_idx + i * 5 + 1] = IRStmt_WrTmp(tilen_tmp, IRExpr_Const(len2check_IRConst) ); irsb->stmts[selfcheck_idx + i * 5 + 2] = IRStmt_Put( offB_GUEST_CMSTART, IRExpr_RdTmp(tistart_tmp) ); irsb->stmts[selfcheck_idx + i * 5 + 3] = IRStmt_Put( offB_GUEST_CMLEN, IRExpr_RdTmp(tilen_tmp) ); /* Generate the entry point descriptors */ if (abiinfo_both->host_ppc_calls_use_fndescrs) { HWord* descr = (HWord*)fn_generic; fn_generic_entry = descr[0]; if (fn_spec) { descr = (HWord*)fn_spec; fn_spec_entry = descr[0]; } else { fn_spec_entry = (HWord)NULL; } } else { fn_generic_entry = (HWord)fn_generic; if (fn_spec) { fn_spec_entry = (HWord)fn_spec; } else { fn_spec_entry = (HWord)NULL; } } IRExpr* callexpr = NULL; if (fn_spec) { callexpr = mkIRExprCCall( host_word_type, 1/*regparms*/, nm_spec, (void*)fn_spec_entry, mkIRExprVec_1( mkIRExpr_HWord( (HWord)first_hW ) ) ); } else { callexpr = mkIRExprCCall( host_word_type, 2/*regparms*/, nm_generic, (void*)fn_generic_entry, mkIRExprVec_2( mkIRExpr_HWord( (HWord)first_hW ), mkIRExpr_HWord( (HWord)hWs_to_check ) ) ); } irsb->stmts[selfcheck_idx + i * 5 + 4] = IRStmt_Exit( IRExpr_Binop( host_word_type==Ity_I64 ? Iop_CmpNE64 : Iop_CmpNE32, callexpr, host_word_type==Ity_I64 ? IRExpr_Const(IRConst_U64(expectedhW)) : IRExpr_Const(IRConst_U32(expectedhW)) ), Ijk_InvalICache, /* Where we must restart if there's a failure: at the first extent, regardless of which extent the failure actually happened in. */ guest_IP_bbstart_IRConst, offB_GUEST_IP ); } /* for (i = 0; i < vge->n_used; i++) */ } /* irsb->next must now be set, since we've finished the block. Print it if necessary.*/ vassert(irsb->next != NULL); if (debug_print) { vex_printf(" "); vex_printf( "PUT(%d) = ", irsb->offsIP); ppIRExpr( irsb->next ); vex_printf( "; exit-"); ppIRJumpKind(irsb->jumpkind); vex_printf( "\n"); vex_printf( "\n"); } *n_guest_instrs = n_instrs; return irsb; } /*------------------------------------------------------------- A support routine for doing self-checking translations. -------------------------------------------------------------*/ /* CLEAN HELPER */ /* CALLED FROM GENERATED CODE */ /* Compute a checksum of host memory at [addr .. addr+len-1], as fast as possible. All _4al versions assume that the supplied address is 4 aligned. All length values are in 4-byte chunks. These fns arecalled once for every use of a self-checking translation, so they needs to be as fast as possible. */ /* --- 32-bit versions, used only on 32-bit hosts --- */ static inline UInt ROL32 ( UInt w, Int n ) { w = (w << n) | (w >> (32-n)); return w; } VEX_REGPARM(2) static UInt genericg_compute_checksum_4al ( HWord first_w32, HWord n_w32s ) { UInt sum1 = 0, sum2 = 0; UInt* p = (UInt*)first_w32; /* unrolled */ while (n_w32s >= 4) { UInt w; w = p[0]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[1]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[2]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[3]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; p += 4; n_w32s -= 4; sum1 ^= sum2; } while (n_w32s >= 1) { UInt w; w = p[0]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; p += 1; n_w32s -= 1; sum1 ^= sum2; } return sum1 + sum2; } /* Specialised versions of the above function */ VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_1 ( HWord first_w32 ) { UInt sum1 = 0, sum2 = 0; UInt* p = (UInt*)first_w32; UInt w; w = p[0]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_2 ( HWord first_w32 ) { UInt sum1 = 0, sum2 = 0; UInt* p = (UInt*)first_w32; UInt w; w = p[0]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[1]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_3 ( HWord first_w32 ) { UInt sum1 = 0, sum2 = 0; UInt* p = (UInt*)first_w32; UInt w; w = p[0]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[1]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[2]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_4 ( HWord first_w32 ) { UInt sum1 = 0, sum2 = 0; UInt* p = (UInt*)first_w32; UInt w; w = p[0]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[1]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[2]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[3]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_5 ( HWord first_w32 ) { UInt sum1 = 0, sum2 = 0; UInt* p = (UInt*)first_w32; UInt w; w = p[0]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[1]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[2]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[3]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_6 ( HWord first_w32 ) { UInt sum1 = 0, sum2 = 0; UInt* p = (UInt*)first_w32; UInt w; w = p[0]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[1]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[2]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[3]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[5]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_7 ( HWord first_w32 ) { UInt sum1 = 0, sum2 = 0; UInt* p = (UInt*)first_w32; UInt w; w = p[0]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[1]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[2]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[3]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[5]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[6]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_8 ( HWord first_w32 ) { UInt sum1 = 0, sum2 = 0; UInt* p = (UInt*)first_w32; UInt w; w = p[0]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[1]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[2]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[3]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[5]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[6]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[7]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_9 ( HWord first_w32 ) { UInt sum1 = 0, sum2 = 0; UInt* p = (UInt*)first_w32; UInt w; w = p[0]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[1]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[2]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[3]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[5]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[6]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[7]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[8]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_10 ( HWord first_w32 ) { UInt sum1 = 0, sum2 = 0; UInt* p = (UInt*)first_w32; UInt w; w = p[0]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[1]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[2]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[3]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[5]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[6]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[7]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[8]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[9]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_11 ( HWord first_w32 ) { UInt sum1 = 0, sum2 = 0; UInt* p = (UInt*)first_w32; UInt w; w = p[0]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[1]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[2]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[3]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[5]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[6]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[7]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[8]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[9]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[10]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static UInt genericg_compute_checksum_4al_12 ( HWord first_w32 ) { UInt sum1 = 0, sum2 = 0; UInt* p = (UInt*)first_w32; UInt w; w = p[0]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[1]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[2]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[3]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[5]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[6]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[7]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; w = p[8]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[9]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[10]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; w = p[11]; sum1 = ROL32(sum1 ^ w, 31); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } /* --- 64-bit versions, used only on 64-bit hosts --- */ static inline ULong ROL64 ( ULong w, Int n ) { w = (w << n) | (w >> (64-n)); return w; } VEX_REGPARM(2) static ULong genericg_compute_checksum_8al ( HWord first_w64, HWord n_w64s ) { ULong sum1 = 0, sum2 = 0; ULong* p = (ULong*)first_w64; /* unrolled */ while (n_w64s >= 4) { ULong w; w = p[0]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[1]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[2]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[3]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; p += 4; n_w64s -= 4; sum1 ^= sum2; } while (n_w64s >= 1) { ULong w; w = p[0]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; p += 1; n_w64s -= 1; sum1 ^= sum2; } return sum1 + sum2; } /* Specialised versions of the above function */ VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_1 ( HWord first_w64 ) { ULong sum1 = 0, sum2 = 0; ULong* p = (ULong*)first_w64; ULong w; w = p[0]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_2 ( HWord first_w64 ) { ULong sum1 = 0, sum2 = 0; ULong* p = (ULong*)first_w64; ULong w; w = p[0]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[1]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_3 ( HWord first_w64 ) { ULong sum1 = 0, sum2 = 0; ULong* p = (ULong*)first_w64; ULong w; w = p[0]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[1]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[2]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_4 ( HWord first_w64 ) { ULong sum1 = 0, sum2 = 0; ULong* p = (ULong*)first_w64; ULong w; w = p[0]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[1]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[2]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[3]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_5 ( HWord first_w64 ) { ULong sum1 = 0, sum2 = 0; ULong* p = (ULong*)first_w64; ULong w; w = p[0]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[1]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[2]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[3]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_6 ( HWord first_w64 ) { ULong sum1 = 0, sum2 = 0; ULong* p = (ULong*)first_w64; ULong w; w = p[0]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[1]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[2]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[3]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[5]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_7 ( HWord first_w64 ) { ULong sum1 = 0, sum2 = 0; ULong* p = (ULong*)first_w64; ULong w; w = p[0]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[1]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[2]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[3]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[5]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[6]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_8 ( HWord first_w64 ) { ULong sum1 = 0, sum2 = 0; ULong* p = (ULong*)first_w64; ULong w; w = p[0]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[1]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[2]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[3]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[5]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[6]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[7]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_9 ( HWord first_w64 ) { ULong sum1 = 0, sum2 = 0; ULong* p = (ULong*)first_w64; ULong w; w = p[0]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[1]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[2]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[3]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[5]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[6]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[7]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[8]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_10 ( HWord first_w64 ) { ULong sum1 = 0, sum2 = 0; ULong* p = (ULong*)first_w64; ULong w; w = p[0]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[1]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[2]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[3]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[5]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[6]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[7]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[8]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[9]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_11 ( HWord first_w64 ) { ULong sum1 = 0, sum2 = 0; ULong* p = (ULong*)first_w64; ULong w; w = p[0]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[1]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[2]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[3]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[5]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[6]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[7]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[8]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[9]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[10]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } VEX_REGPARM(1) static ULong genericg_compute_checksum_8al_12 ( HWord first_w64 ) { ULong sum1 = 0, sum2 = 0; ULong* p = (ULong*)first_w64; ULong w; w = p[0]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[1]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[2]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[3]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[4]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[5]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[6]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[7]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; w = p[8]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[9]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[10]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; w = p[11]; sum1 = ROL64(sum1 ^ w, 63); sum2 += w; sum1 ^= sum2; return sum1 + sum2; } /*--------------------------------------------------------------------*/ /*--- end guest_generic_bb_to_IR.c ---*/ /*--------------------------------------------------------------------*/