/*--------------------------------------------------------------------*/ /*--- Tiny zlib decompressor tinfl.c ---*/ /*--------------------------------------------------------------------*/ /* tinfl.c v1.11 - public domain inflate with zlib header parsing/adler32 checking (inflate-only subset of miniz.c) Rich Geldreich , last updated May 20, 2011 Implements RFC 1950: http://www.ietf.org/rfc/rfc1950.txt and RFC 1951: http://www.ietf.org/rfc/rfc1951.txt The original file has been modified in order to be a part of Valgrind project, a dynamic binary instrumentation framework. RT-RK Institute for Computer Based Systems, 2016 (mips-valgrind@rt-rk.com) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #ifndef TINFL_HEADER_INCLUDED #define TINFL_HEADER_INCLUDED /* The entire decompressor coroutine is implemented in tinfl_decompress(). The other functions are optional high-level helpers. */ #include "pub_core_basics.h" typedef UChar mz_uint8; typedef Short mz_int16; typedef UShort mz_uint16; typedef UInt mz_uint32; typedef UInt mz_uint; typedef ULong mz_uint64; #if defined(VGA_x86) || defined(VGA_amd64) // Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES to 1 if integer loads and stores to // unaligned addresses are acceptable on the target platform (slightly faster). #define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1 #endif #define MINIZ_LITTLE_ENDIAN ( defined(VG_LITTLEENDIAN) ) #define MINIZ_HAS_64BIT_REGISTERS ( VG_WORDSIZE == 8 ) // Works around MSVC's spammy "warning C4127: conditional expression is // constant" message. #ifdef _MSC_VER #define MZ_MACRO_END while (0, 0) #else #define MZ_MACRO_END while (0) #endif /* Decompression flags used by tinfl_decompress(). TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the input is a raw deflate stream. TINFL_FLAG_HAS_MORE_INPUT: If set, there are more input bytes available beyond the end of the supplied input buffer. If clear, the input buffer contains all remaining input. TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large enough to hold the entire decompressed stream. If clear, the output buffer is at least the size of the dictionary (typically 32KB). TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the decompressed bytes. */ enum { TINFL_FLAG_PARSE_ZLIB_HEADER = 1, TINFL_FLAG_HAS_MORE_INPUT = 2, TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF = 4, TINFL_FLAG_COMPUTE_ADLER32 = 8 }; // High level decompression functions: // tinfl_decompress_mem_to_heap() decompresses a block in memory to a heap block allocated via malloc(). // On entry: // pSrc_buf, src_buf_len: Pointer and size of the Deflate or zlib source data to decompress. // On return: // Function returns a pointer to the decompressed data, or NULL on failure. // *pOut_len will be set to the decompressed data's size, which could be larger than src_buf_len on uncompressible data. // The caller must free() the returned block when it's no longer needed. void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, SizeT src_buf_len, SizeT *pOut_len, int flags); // tinfl_decompress_mem_to_mem() decompresses a block in memory to another block in memory. // Returns TINFL_DECOMPRESS_MEM_TO_MEM_FAILED on failure, or the number of bytes written on success. #define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((SizeT)(-1)) SizeT tinfl_decompress_mem_to_mem(void *pOut_buf, SizeT out_buf_len, const void *pSrc_buf, SizeT src_buf_len, int flags); // tinfl_decompress_mem_to_callback() decompresses a block in memory to an internal 32KB buffer, and a user provided callback function will be called to flush the buffer. // Returns 1 on success or 0 on failure. typedef int (*tinfl_put_buf_func_ptr)(const void* pBuf, int len, void *pUser); int tinfl_decompress_mem_to_callback(const void *pIn_buf, SizeT *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags); struct tinfl_decompressor_tag; typedef struct tinfl_decompressor_tag tinfl_decompressor; // Max size of LZ dictionary. #define TINFL_LZ_DICT_SIZE 32768 // Return status. typedef enum { TINFL_STATUS_BAD_PARAM = -3, TINFL_STATUS_ADLER32_MISMATCH = -2, TINFL_STATUS_FAILED = -1, TINFL_STATUS_DONE = 0, TINFL_STATUS_NEEDS_MORE_INPUT = 1, TINFL_STATUS_HAS_MORE_OUTPUT = 2 } tinfl_status; // Initializes the decompressor to its initial state. #define tinfl_init(r) do { (r)->m_state = 0; } MZ_MACRO_END #define tinfl_get_adler32(r) (r)->m_check_adler32 // Main low-level decompressor coroutine function. This is the only function actually needed for decompression. All the other functions are just high-level helpers for improved usability. // This is a universal API, i.e. it can be used as a building block to build any desired higher level decompression API. In the limit case, it can be called once per every byte input or output. tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, SizeT *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, SizeT *pOut_buf_size, const mz_uint32 decomp_flags); // Internal/private bits follow. enum { TINFL_MAX_HUFF_TABLES = 3, TINFL_MAX_HUFF_SYMBOLS_0 = 288, TINFL_MAX_HUFF_SYMBOLS_1 = 32, TINFL_MAX_HUFF_SYMBOLS_2 = 19, TINFL_FAST_LOOKUP_BITS = 10, TINFL_FAST_LOOKUP_SIZE = 1 << TINFL_FAST_LOOKUP_BITS }; typedef struct { mz_uint8 m_code_size[TINFL_MAX_HUFF_SYMBOLS_0]; mz_int16 m_look_up[TINFL_FAST_LOOKUP_SIZE], m_tree[TINFL_MAX_HUFF_SYMBOLS_0 * 2]; } tinfl_huff_table; #if MINIZ_HAS_64BIT_REGISTERS #define TINFL_USE_64BIT_BITBUF 1 #endif #if TINFL_USE_64BIT_BITBUF typedef mz_uint64 tinfl_bit_buf_t; #define TINFL_BITBUF_SIZE (64) #else typedef mz_uint32 tinfl_bit_buf_t; #define TINFL_BITBUF_SIZE (32) #endif struct tinfl_decompressor_tag { mz_uint32 m_state, m_num_bits, m_zhdr0, m_zhdr1, m_z_adler32, m_final, m_type, m_check_adler32, m_dist, m_counter, m_num_extra, m_table_sizes[TINFL_MAX_HUFF_TABLES]; tinfl_bit_buf_t m_bit_buf; SizeT m_dist_from_out_buf_start; tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES]; mz_uint8 m_raw_header[4], m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0 + TINFL_MAX_HUFF_SYMBOLS_1 + 137]; }; #endif // #ifdef TINFL_HEADER_INCLUDED // ------------------- End of Header: Implementation follows. (If you only want the header, define MINIZ_HEADER_FILE_ONLY.) #ifndef TINFL_HEADER_FILE_ONLY #include "pub_core_mallocfree.h" #include "pub_core_libcbase.h" #define MZ_MAX(a,b) (((a)>(b))?(a):(b)) #define MZ_MIN(a,b) (((a)<(b))?(a):(b)) #define MZ_CLEAR_OBJ(obj) VG_(memset)(&(obj), 0, sizeof(obj)) #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN #define MZ_READ_LE16(p) *((const mz_uint16 *)(p)) #define MZ_READ_LE32(p) *((const mz_uint32 *)(p)) #else #define MZ_READ_LE16(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U)) #define MZ_READ_LE32(p) ((mz_uint32)(((const mz_uint8 *)(p))[0]) | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U) | ((mz_uint32)(((const mz_uint8 *)(p))[2]) << 16U) | ((mz_uint32)(((const mz_uint8 *)(p))[3]) << 24U)) #endif #define TINFL_MEMCPY(d, s, l) VG_(memcpy)(d, s, l) #define TINFL_MEMSET(p, c, l) VG_(memset)(p, c, l) #define TINFL_CR_BEGIN switch(r->m_state) { case 0: #define TINFL_CR_RETURN(state_index, result) do { status = result; r->m_state = state_index; goto common_exit; case state_index:; } MZ_MACRO_END #define TINFL_CR_RETURN_FOREVER(state_index, result) do { for ( ; ; ) { TINFL_CR_RETURN(state_index, result); } } MZ_MACRO_END #define TINFL_CR_FINISH } // TODO: If the caller has indicated that there's no more input, and we attempt to read beyond the input buf, then something is wrong with the input because the inflator never // reads ahead more than it needs to. Currently TINFL_GET_BYTE() pads the end of the stream with 0's in this scenario. #define TINFL_GET_BYTE(state_index, c) do { \ if (pIn_buf_cur >= pIn_buf_end) { \ for ( ; ; ) { \ if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { \ TINFL_CR_RETURN(state_index, TINFL_STATUS_NEEDS_MORE_INPUT); \ if (pIn_buf_cur < pIn_buf_end) { \ c = *pIn_buf_cur++; \ break; \ } \ } else { \ c = 0; \ break; \ } \ } \ } else c = *pIn_buf_cur++; } MZ_MACRO_END #define TINFL_NEED_BITS(state_index, n) do { mz_uint c; TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; } while (num_bits < (mz_uint)(n)) #define TINFL_SKIP_BITS(state_index, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END #define TINFL_GET_BITS(state_index, b, n) do { if (num_bits < (mz_uint)(n)) { TINFL_NEED_BITS(state_index, n); } b = bit_buf & ((1 << (n)) - 1); bit_buf >>= (n); num_bits -= (n); } MZ_MACRO_END // TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes remaining in the input buffer falls below 2. // It reads just enough bytes from the input stream that are needed to decode the next Huffman code (and absolutely no more). It works by trying to fully decode a // Huffman code by using whatever bits are currently present in the bit buffer. If this fails, it reads another byte, and tries again until it succeeds or until the // bit buffer contains >=15 bits (deflate's max. Huffman code size). #define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \ do { \ temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \ if (temp >= 0) { \ code_len = temp >> 9; \ if ((code_len) && (num_bits >= code_len)) \ break; \ } else if (num_bits > TINFL_FAST_LOOKUP_BITS) { \ code_len = TINFL_FAST_LOOKUP_BITS; \ do { \ temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \ } while ((temp < 0) && (num_bits >= (code_len + 1))); if (temp >= 0) break; \ } TINFL_GET_BYTE(state_index, c); bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); num_bits += 8; \ } while (num_bits < 15); // TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex than you would initially expect because the zlib API expects the decompressor to never read // beyond the final byte of the deflate stream. (In other words, when this macro wants to read another byte from the input, it REALLY needs another byte in order to fully // decode the next Huffman code.) Handling this properly is particularly important on raw deflate (non-zlib) streams, which aren't followed by a byte aligned adler-32. // The slow path is only executed at the very end of the input buffer. #define TINFL_HUFF_DECODE(state_index, sym, pHuff) do { \ int temp; mz_uint code_len, c; \ if (num_bits < 15) { \ if ((pIn_buf_end - pIn_buf_cur) < 2) { \ TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \ } else { \ bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | (((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); pIn_buf_cur += 2; num_bits += 16; \ } \ } \ if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) \ code_len = temp >> 9, temp &= 511; \ else { \ code_len = TINFL_FAST_LOOKUP_BITS; do { temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; } while (temp < 0); \ } sym = temp; bit_buf >>= code_len; num_bits -= code_len; } MZ_MACRO_END tinfl_status tinfl_decompress(tinfl_decompressor *r, const mz_uint8 *pIn_buf_next, SizeT *pIn_buf_size, mz_uint8 *pOut_buf_start, mz_uint8 *pOut_buf_next, SizeT *pOut_buf_size, const mz_uint32 decomp_flags) { static const int s_length_base[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 }; static const int s_length_extra[31]= { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; static const int s_dist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; static const int s_dist_extra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; static const mz_uint8 s_length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; static const int s_min_table_sizes[3] = { 257, 1, 4 }; tinfl_status status = TINFL_STATUS_FAILED; mz_uint32 num_bits, dist, counter, num_extra; tinfl_bit_buf_t bit_buf; const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end = pIn_buf_next + *pIn_buf_size; mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end = pOut_buf_next + *pOut_buf_size; SizeT out_buf_size_mask = (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) ? (SizeT)-1 : ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1, dist_from_out_buf_start; // Ensure the output buffer's size is a power of 2, unless the output buffer is large enough to hold the entire output file (in which case it doesn't matter). if (((out_buf_size_mask + 1) & out_buf_size_mask) || (pOut_buf_next < pOut_buf_start)) { *pIn_buf_size = *pOut_buf_size = 0; return TINFL_STATUS_BAD_PARAM; } num_bits = r->m_num_bits; bit_buf = r->m_bit_buf; dist = r->m_dist; counter = r->m_counter; num_extra = r->m_num_extra; dist_from_out_buf_start = r->m_dist_from_out_buf_start; TINFL_CR_BEGIN bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0; r->m_z_adler32 = r->m_check_adler32 = 1; if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) { TINFL_GET_BYTE(1, r->m_zhdr0); TINFL_GET_BYTE(2, r->m_zhdr1); counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) || (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8)); if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) || ((out_buf_size_mask + 1) < (SizeT)(1U << (8U + (r->m_zhdr0 >> 4))))); if (counter) { TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED); } } do { TINFL_GET_BITS(3, r->m_final, 3); r->m_type = r->m_final >> 1; if (r->m_type == 0) { TINFL_SKIP_BITS(5, num_bits & 7); for (counter = 0; counter < 4; ++counter) { if (num_bits) TINFL_GET_BITS(6, r->m_raw_header[counter], 8); else TINFL_GET_BYTE(7, r->m_raw_header[counter]); } if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) != (mz_uint)(0xFFFF ^ (r->m_raw_header[2] | (r->m_raw_header[3] << 8)))) { TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED); } while ((counter) && (num_bits)) { TINFL_GET_BITS(51, dist, 8); while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT); } *pOut_buf_cur++ = (mz_uint8)dist; counter--; } while (counter) { SizeT n; while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT); } while (pIn_buf_cur >= pIn_buf_end) { if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { TINFL_CR_RETURN(38, TINFL_STATUS_NEEDS_MORE_INPUT); } else { TINFL_CR_RETURN_FOREVER(40, TINFL_STATUS_FAILED); } } n = MZ_MIN(MZ_MIN((SizeT)(pOut_buf_end - pOut_buf_cur), (SizeT)(pIn_buf_end - pIn_buf_cur)), counter); TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n); pIn_buf_cur += n; pOut_buf_cur += n; counter -= (mz_uint)n; } } else if (r->m_type == 3) { TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED); } else { if (r->m_type == 1) { mz_uint8 *p = r->m_tables[0].m_code_size; mz_uint i; r->m_table_sizes[0] = 288; r->m_table_sizes[1] = 32; TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32); for ( i = 0; i <= 143; ++i) *p++ = 8; for ( ; i <= 255; ++i) *p++ = 9; for ( ; i <= 279; ++i) *p++ = 7; for ( ; i <= 287; ++i) *p++ = 8; } else { for (counter = 0; counter < 3; counter++) { TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]); r->m_table_sizes[counter] += s_min_table_sizes[counter]; } MZ_CLEAR_OBJ(r->m_tables[2].m_code_size); for (counter = 0; counter < r->m_table_sizes[2]; counter++) { mz_uint s; TINFL_GET_BITS(14, s, 3); r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s; } r->m_table_sizes[2] = 19; } for ( ; (int)r->m_type >= 0; r->m_type--) { int tree_next, tree_cur; tinfl_huff_table *pTable; mz_uint i, j, used_syms, total, sym_index, next_code[17], total_syms[16]; pTable = &r->m_tables[r->m_type]; MZ_CLEAR_OBJ(total_syms); MZ_CLEAR_OBJ(pTable->m_look_up); MZ_CLEAR_OBJ(pTable->m_tree); for (i = 0; i < r->m_table_sizes[r->m_type]; ++i) total_syms[pTable->m_code_size[i]]++; used_syms = 0, total = 0; next_code[0] = next_code[1] = 0; for (i = 1; i <= 15; ++i) { used_syms += total_syms[i]; next_code[i + 1] = (total = ((total + total_syms[i]) << 1)); } if ((65536 != total) && (used_syms > 1)) { TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED); } for (tree_next = -1, sym_index = 0; sym_index < r->m_table_sizes[r->m_type]; ++sym_index) { mz_uint rev_code = 0, l, cur_code, code_size = pTable->m_code_size[sym_index]; if (!code_size) continue; cur_code = next_code[code_size]++; for (l = code_size; l > 0; l--, cur_code >>= 1) rev_code = (rev_code << 1) | (cur_code & 1); if (code_size <= TINFL_FAST_LOOKUP_BITS) { mz_int16 k = (mz_int16)((code_size << 9) | sym_index); while (rev_code < TINFL_FAST_LOOKUP_SIZE) { pTable->m_look_up[rev_code] = k; rev_code += (1 << code_size); } continue; } if (0 == (tree_cur = pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)])) { pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] = (mz_int16)tree_next; tree_cur = tree_next; tree_next -= 2; } rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1); for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--) { tree_cur -= ((rev_code >>= 1) & 1); if (!pTable->m_tree[-tree_cur - 1]) { pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next; tree_cur = tree_next; tree_next -= 2; } else tree_cur = pTable->m_tree[-tree_cur - 1]; } tree_cur -= ((rev_code >>= 1) & 1); pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index; } if (r->m_type == 2) { for (counter = 0; counter < (r->m_table_sizes[0] + r->m_table_sizes[1]); ) { mz_uint s; TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]); if (dist < 16) { r->m_len_codes[counter++] = (mz_uint8)dist; continue; } if ((dist == 16) && (!counter)) { TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED); } num_extra = "\02\03\07"[dist - 16]; TINFL_GET_BITS(18, s, num_extra); s += "\03\03\013"[dist - 16]; TINFL_MEMSET(r->m_len_codes + counter, (dist == 16) ? r->m_len_codes[counter - 1] : 0, s); counter += s; } if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter) { TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED); } TINFL_MEMCPY(r->m_tables[0].m_code_size, r->m_len_codes, r->m_table_sizes[0]); TINFL_MEMCPY(r->m_tables[1].m_code_size, r->m_len_codes + r->m_table_sizes[0], r->m_table_sizes[1]); } } for ( ; ; ) { mz_uint8 *pSrc; for ( ; ; ) { if (((pIn_buf_end - pIn_buf_cur) < 4) || ((pOut_buf_end - pOut_buf_cur) < 2)) { TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]); if (counter >= 256) break; while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT); } *pOut_buf_cur++ = (mz_uint8)counter; } else { int sym2; mz_uint code_len; #if TINFL_USE_64BIT_BITBUF if (num_bits < 30) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits); pIn_buf_cur += 4; num_bits += 32; } #else if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; } #endif if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) code_len = sym2 >> 9; else { code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0); } counter = sym2; bit_buf >>= code_len; num_bits -= code_len; if (counter & 256) break; #if !TINFL_USE_64BIT_BITBUF if (num_bits < 15) { bit_buf |= (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); pIn_buf_cur += 2; num_bits += 16; } #endif if ((sym2 = r->m_tables[0].m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= 0) code_len = sym2 >> 9; else { code_len = TINFL_FAST_LOOKUP_BITS; do { sym2 = r->m_tables[0].m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; } while (sym2 < 0); } bit_buf >>= code_len; num_bits -= code_len; pOut_buf_cur[0] = (mz_uint8)counter; if (sym2 & 256) { pOut_buf_cur++; counter = sym2; break; } pOut_buf_cur[1] = (mz_uint8)sym2; pOut_buf_cur += 2; } } if ((counter &= 511) == 256) break; num_extra = s_length_extra[counter - 257]; counter = s_length_base[counter - 257]; if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(25, extra_bits, num_extra); counter += extra_bits; } TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]); num_extra = s_dist_extra[dist]; dist = s_dist_base[dist]; if (num_extra) { mz_uint extra_bits; TINFL_GET_BITS(27, extra_bits, num_extra); dist += extra_bits; } dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start; if ((dist > dist_from_out_buf_start) && (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) { TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED); } pSrc = pOut_buf_start + ((dist_from_out_buf_start - dist) & out_buf_size_mask); if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end) { while (counter--) { while (pOut_buf_cur >= pOut_buf_end) { TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT); } *pOut_buf_cur++ = pOut_buf_start[(dist_from_out_buf_start++ - dist) & out_buf_size_mask]; } continue; } #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES else if ((counter >= 9) && (counter <= dist)) { const mz_uint8 *pSrc_end = pSrc + (counter & ~7); do { ((mz_uint32 *)pOut_buf_cur)[0] = ((const mz_uint32 *)pSrc)[0]; ((mz_uint32 *)pOut_buf_cur)[1] = ((const mz_uint32 *)pSrc)[1]; pOut_buf_cur += 8; } while ((pSrc += 8) < pSrc_end); if ((counter &= 7) < 3) { if (counter) { pOut_buf_cur[0] = pSrc[0]; if (counter > 1) pOut_buf_cur[1] = pSrc[1]; pOut_buf_cur += counter; } continue; } } #endif do { pOut_buf_cur[0] = pSrc[0]; pOut_buf_cur[1] = pSrc[1]; pOut_buf_cur[2] = pSrc[2]; pOut_buf_cur += 3; pSrc += 3; } while ((int)(counter -= 3) > 2); if ((int)counter > 0) { pOut_buf_cur[0] = pSrc[0]; if ((int)counter > 1) pOut_buf_cur[1] = pSrc[1]; pOut_buf_cur += counter; } } } } while (!(r->m_final & 1)); if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) { TINFL_SKIP_BITS(32, num_bits & 7); for (counter = 0; counter < 4; ++counter) { mz_uint s; if (num_bits) TINFL_GET_BITS(41, s, 8); else TINFL_GET_BYTE(42, s); r->m_z_adler32 = (r->m_z_adler32 << 8) | s; } } TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE); TINFL_CR_FINISH common_exit: r->m_num_bits = num_bits; r->m_bit_buf = bit_buf; r->m_dist = dist; r->m_counter = counter; r->m_num_extra = num_extra; r->m_dist_from_out_buf_start = dist_from_out_buf_start; *pIn_buf_size = pIn_buf_cur - pIn_buf_next; *pOut_buf_size = pOut_buf_cur - pOut_buf_next; if ((decomp_flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) && (status >= 0)) { const mz_uint8 *ptr = pOut_buf_next; SizeT buf_len = *pOut_buf_size; mz_uint32 i, s1 = r->m_check_adler32 & 0xffff, s2 = r->m_check_adler32 >> 16; SizeT block_len = buf_len % 5552; while (buf_len) { for (i = 0; i + 7 < block_len; i += 8, ptr += 8) { s1 += ptr[0], s2 += s1; s1 += ptr[1], s2 += s1; s1 += ptr[2], s2 += s1; s1 += ptr[3], s2 += s1; s1 += ptr[4], s2 += s1; s1 += ptr[5], s2 += s1; s1 += ptr[6], s2 += s1; s1 += ptr[7], s2 += s1; } for ( ; i < block_len; ++i) s1 += *ptr++, s2 += s1; s1 %= 65521U, s2 %= 65521U; buf_len -= block_len; block_len = 5552; } r->m_check_adler32 = (s2 << 16) + s1; if ((status == TINFL_STATUS_DONE) && (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) && (r->m_check_adler32 != r->m_z_adler32)) status = TINFL_STATUS_ADLER32_MISMATCH; } return status; } // Higher level helper functions. void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, SizeT src_buf_len, SizeT *pOut_len, int flags) { tinfl_decompressor decomp; void *pBuf = NULL, *pNew_buf; SizeT src_buf_ofs = 0, out_buf_capacity = 0; *pOut_len = 0; tinfl_init(&decomp); for ( ; ; ) { SizeT src_buf_size = src_buf_len - src_buf_ofs, dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity; tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8*)pSrc_buf + src_buf_ofs, &src_buf_size, (mz_uint8*)pBuf, pBuf ? (mz_uint8*)pBuf + *pOut_len : NULL, &dst_buf_size, (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF); if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT)) { VG_(free)(pBuf); *pOut_len = 0; return NULL; } src_buf_ofs += src_buf_size; *pOut_len += dst_buf_size; if (status == TINFL_STATUS_DONE) break; new_out_buf_capacity = out_buf_capacity * 2; if (new_out_buf_capacity < 128) new_out_buf_capacity = 128; pNew_buf = VG_(realloc)("tinfl.tinfl_decompress_mem_to_heap.1", pBuf, new_out_buf_capacity); if (!pNew_buf) { VG_(free)(pBuf); *pOut_len = 0; return NULL; } pBuf = pNew_buf; out_buf_capacity = new_out_buf_capacity; } return pBuf; } SizeT tinfl_decompress_mem_to_mem(void *pOut_buf, SizeT out_buf_len, const void *pSrc_buf, SizeT src_buf_len, int flags) { tinfl_decompressor decomp; tinfl_status status; tinfl_init(&decomp); status = tinfl_decompress(&decomp, (const mz_uint8*)pSrc_buf, &src_buf_len, (mz_uint8*)pOut_buf, (mz_uint8*)pOut_buf, &out_buf_len, (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF); return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED : out_buf_len; } int tinfl_decompress_mem_to_callback(const void *pIn_buf, SizeT *pIn_buf_size, tinfl_put_buf_func_ptr pPut_buf_func, void *pPut_buf_user, int flags) { int result = 0; tinfl_decompressor decomp; mz_uint8 *pDict = (mz_uint8*)VG_(malloc)("tinfl.tinfl_decompress_mem_to_callback.1", TINFL_LZ_DICT_SIZE); SizeT in_buf_ofs = 0, dict_ofs = 0; if (!pDict) return TINFL_STATUS_FAILED; tinfl_init(&decomp); for ( ; ; ) { SizeT in_buf_size = *pIn_buf_size - in_buf_ofs, dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs; tinfl_status status = tinfl_decompress(&decomp, (const mz_uint8*)pIn_buf + in_buf_ofs, &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size, (flags & ~(TINFL_FLAG_HAS_MORE_INPUT | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))); in_buf_ofs += in_buf_size; if ((dst_buf_size) && (!(*pPut_buf_func)(pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user))) break; if (status != TINFL_STATUS_HAS_MORE_OUTPUT) { result = (status == TINFL_STATUS_DONE); break; } dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1); } VG_(free)(pDict); *pIn_buf_size = in_buf_ofs; return result; } #endif // #ifndef TINFL_HEADER_FILE_ONLY