// This artificial program runs a lot of code. The exact amount depends on // the command line -- if an arg "0" is given, it does exactly // the same amount of work, but using four times as much code. // If an arg >= 1 is given, the amount of code is multiplied by this arg. // // It's a stress test for Valgrind's translation speed; natively the two // modes run in about the same time (the I-cache effects aren't big enough // to make a difference), but under Valgrind the one running more code is // significantly slower due to the extra translation time. // 31 Aug 2015: this only "works" on x86/amd64/s390 by accident; the // test is essentially kludged. This "generates" code into memory // (the mmap'd area) and the executes it. But historically and even // after this commit (r15601), the test has been run without // --smc-check=all or all-non-file. That just happens to work because // the "generated" code is never modified, so there's never a // translated-vs-reality coherence problem. Really we ought to run // with the new-as-of-r15601 default --smc-check=all-non-file, but that // hugely slows it down and makes the results non-comparable with // pre r15601 results, so instead the .vgperf files now specify the // old default value --smc-check=stack explicitly. #include #include #include #include #if defined(__mips__) #include #include #endif #include "tests/sys_mman.h" #define FN_SIZE 1280 // Must be big enough to hold the compiled f() // and any literal pool that might be used #define N_LOOPS 20000 // Should be divisible by four #define RATIO 4 // Ratio of code sizes between the two modes int f(int x, int y) { int i; for (i = 0; i < 5000; i++) { switch (x % 8) { case 1: y += 3; case 2: y += x; case 3: y *= 2; default: y--; } } return y; } int main(int argc, char* argv[]) { int h, i, sum1 = 0, sum2 = 0, sum3 = 0, sum4 = 0; int n_fns, n_reps; if (argc <= 1) { // Mode 1: not so much code n_fns = N_LOOPS / RATIO; n_reps = RATIO; printf("mode 1: "); } else { // Mode 2: lots of code const int mul = atoi(argv[1]); if (mul == 0) n_fns = N_LOOPS; else n_fns = N_LOOPS * mul; n_reps = 1; printf("mode 1: "); } printf("%d copies of f(), %d reps\n", n_fns, n_reps); char* a = mmap(0, FN_SIZE * n_fns, PROT_EXEC|PROT_WRITE|PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1,0); assert(a != (char*)MAP_FAILED); // Make a whole lot of copies of f(). FN_SIZE is much bigger than f() // will ever be (we hope). for (i = 0; i < n_fns; i++) { memcpy(&a[FN_SIZE*i], f, FN_SIZE); } #if defined(__mips__) syscall(__NR_cacheflush, a, FN_SIZE * n_fns, ICACHE); #endif for (h = 0; h < n_reps; h += 1) { for (i = 0; i < n_fns; i += 4) { int(*f1)(int,int) = (void*)&a[FN_SIZE*(i+0)]; int(*f2)(int,int) = (void*)&a[FN_SIZE*(i+1)]; int(*f3)(int,int) = (void*)&a[FN_SIZE*(i+2)]; int(*f4)(int,int) = (void*)&a[FN_SIZE*(i+3)]; sum1 += f1(i+0, n_fns-i+0); sum2 += f2(i+1, n_fns-i+1); sum3 += f3(i+2, n_fns-i+2); sum4 += f4(i+3, n_fns-i+3); if (i % 1000 == 0) printf("."); } } printf("result = %d\n", sum1 + sum2 + sum3 + sum4); return 0; }