/* * Copyright (c) 2015-2016 The Khronos Group Inc. * Copyright (c) 2015-2016 Valve Corporation * Copyright (c) 2015-2016 LunarG, Inc. * Copyright (c) 2015-2016 Google, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Courtney Goeltzenleuchter * Author: Tony Barbour */ #include "vkrenderframework.h" #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) #define GET_DEVICE_PROC_ADDR(dev, entrypoint) \ { \ fp##entrypoint = (PFN_vk##entrypoint)vkGetDeviceProcAddr(dev, "vk" #entrypoint); \ assert(fp##entrypoint != NULL); \ } // TODO : These functions are duplicated is vk_layer_utils.cpp, share code // Return true if format contains depth and stencil information bool vk_format_is_depth_and_stencil(VkFormat format) { bool is_ds = false; switch (format) { case VK_FORMAT_D16_UNORM_S8_UINT: case VK_FORMAT_D24_UNORM_S8_UINT: case VK_FORMAT_D32_SFLOAT_S8_UINT: is_ds = true; break; default: break; } return is_ds; } // Return true if format is a stencil-only format bool vk_format_is_stencil_only(VkFormat format) { return (format == VK_FORMAT_S8_UINT); } // Return true if format is a depth-only format bool vk_format_is_depth_only(VkFormat format) { bool is_depth = false; switch (format) { case VK_FORMAT_D16_UNORM: case VK_FORMAT_X8_D24_UNORM_PACK32: case VK_FORMAT_D32_SFLOAT: is_depth = true; break; default: break; } return is_depth; } VkRenderFramework::VkRenderFramework() : inst(VK_NULL_HANDLE), m_device(NULL), m_commandPool(VK_NULL_HANDLE), m_commandBuffer(NULL), m_renderPass(VK_NULL_HANDLE), m_framebuffer(VK_NULL_HANDLE), m_width(256.0), // default window width m_height(256.0), // default window height m_render_target_fmt(VK_FORMAT_R8G8B8A8_UNORM), m_depth_stencil_fmt(VK_FORMAT_UNDEFINED), m_clear_via_load_op(true), m_depth_clear_color(1.0), m_stencil_clear_color(0), m_depthStencil(NULL), m_CreateDebugReportCallback(VK_NULL_HANDLE), m_DestroyDebugReportCallback(VK_NULL_HANDLE), m_globalMsgCallback(VK_NULL_HANDLE), m_devMsgCallback(VK_NULL_HANDLE) { memset(&m_renderPassBeginInfo, 0, sizeof(m_renderPassBeginInfo)); m_renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; // clear the back buffer to dark grey m_clear_color.float32[0] = 0.25f; m_clear_color.float32[1] = 0.25f; m_clear_color.float32[2] = 0.25f; m_clear_color.float32[3] = 0.0f; } VkRenderFramework::~VkRenderFramework() {} void VkRenderFramework::InitFramework() { std::vector instance_layer_names; std::vector instance_extension_names; std::vector device_extension_names; instance_extension_names.push_back(VK_KHR_SURFACE_EXTENSION_NAME); device_extension_names.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME); #ifdef _WIN32 instance_extension_names.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME); #endif #ifdef VK_USE_PLATFORM_XCB_KHR instance_extension_names.push_back(VK_KHR_XCB_SURFACE_EXTENSION_NAME); #endif InitFramework(instance_layer_names, instance_extension_names, device_extension_names); } void VkRenderFramework::InitFramework(std::vector instance_layer_names, std::vector instance_extension_names, std::vector device_extension_names, PFN_vkDebugReportCallbackEXT dbgFunction, void *userData) { VkInstanceCreateInfo instInfo = {}; std::vector instance_extensions; std::vector device_extensions; VkResult U_ASSERT_ONLY err; /* TODO: Verify requested extensions are available */ instInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; instInfo.pNext = NULL; instInfo.pApplicationInfo = &app_info; instInfo.enabledLayerCount = instance_layer_names.size(); instInfo.ppEnabledLayerNames = instance_layer_names.data(); instInfo.enabledExtensionCount = instance_extension_names.size(); instInfo.ppEnabledExtensionNames = instance_extension_names.data(); err = vkCreateInstance(&instInfo, NULL, &this->inst); ASSERT_VK_SUCCESS(err); err = vkEnumeratePhysicalDevices(inst, &this->gpu_count, NULL); ASSERT_LE(this->gpu_count, ARRAY_SIZE(objs)) << "Too many gpus"; ASSERT_VK_SUCCESS(err); err = vkEnumeratePhysicalDevices(inst, &this->gpu_count, objs); ASSERT_VK_SUCCESS(err); ASSERT_GE(this->gpu_count, (uint32_t)1) << "No GPU available"; if (dbgFunction) { m_CreateDebugReportCallback = (PFN_vkCreateDebugReportCallbackEXT)vkGetInstanceProcAddr(this->inst, "vkCreateDebugReportCallbackEXT"); ASSERT_NE(m_CreateDebugReportCallback, (PFN_vkCreateDebugReportCallbackEXT)NULL) << "Did not get function pointer for CreateDebugReportCallback"; if (m_CreateDebugReportCallback) { VkDebugReportCallbackCreateInfoEXT dbgCreateInfo; memset(&dbgCreateInfo, 0, sizeof(dbgCreateInfo)); dbgCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT; dbgCreateInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT; dbgCreateInfo.pfnCallback = dbgFunction; dbgCreateInfo.pUserData = userData; err = m_CreateDebugReportCallback(this->inst, &dbgCreateInfo, NULL, &m_globalMsgCallback); ASSERT_VK_SUCCESS(err); m_DestroyDebugReportCallback = (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr(this->inst, "vkDestroyDebugReportCallbackEXT"); ASSERT_NE(m_DestroyDebugReportCallback, (PFN_vkDestroyDebugReportCallbackEXT)NULL) << "Did not get function pointer for " "DestroyDebugReportCallback"; m_DebugReportMessage = (PFN_vkDebugReportMessageEXT)vkGetInstanceProcAddr(this->inst, "vkDebugReportMessageEXT"); ASSERT_NE(m_DebugReportMessage, (PFN_vkDebugReportMessageEXT)NULL) << "Did not get function pointer for DebugReportMessage"; } } /* TODO: Verify requested physical device extensions are available */ this->device_extension_names = device_extension_names; } void VkRenderFramework::ShutdownFramework() { delete m_commandBuffer; if (m_commandPool) vkDestroyCommandPool(device(), m_commandPool, NULL); if (m_framebuffer) vkDestroyFramebuffer(device(), m_framebuffer, NULL); if (m_renderPass) vkDestroyRenderPass(device(), m_renderPass, NULL); if (m_globalMsgCallback) m_DestroyDebugReportCallback(this->inst, m_globalMsgCallback, NULL); if (m_devMsgCallback) m_DestroyDebugReportCallback(this->inst, m_devMsgCallback, NULL); while (!m_renderTargets.empty()) { vkDestroyImageView(device(), m_renderTargets.back()->targetView(m_render_target_fmt), NULL); vkDestroyImage(device(), m_renderTargets.back()->image(), NULL); vkFreeMemory(device(), m_renderTargets.back()->memory(), NULL); m_renderTargets.pop_back(); } delete m_depthStencil; // reset the driver delete m_device; if (this->inst) vkDestroyInstance(this->inst, NULL); } void VkRenderFramework::InitState(VkPhysicalDeviceFeatures *features) { VkResult U_ASSERT_ONLY err; m_device = new VkDeviceObj(0, objs[0], device_extension_names, features); m_device->get_device_queue(); m_depthStencil = new VkDepthStencilObj(m_device); m_render_target_fmt = VkTestFramework::GetFormat(inst, m_device); m_lineWidth = 1.0f; m_depthBiasConstantFactor = 0.0f; m_depthBiasClamp = 0.0f; m_depthBiasSlopeFactor = 0.0f; m_blendConstants[0] = 1.0f; m_blendConstants[1] = 1.0f; m_blendConstants[2] = 1.0f; m_blendConstants[3] = 1.0f; m_minDepthBounds = 0.f; m_maxDepthBounds = 1.f; m_compareMask = 0xff; m_writeMask = 0xff; m_reference = 0; VkCommandPoolCreateInfo cmd_pool_info; cmd_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, cmd_pool_info.pNext = NULL, cmd_pool_info.queueFamilyIndex = m_device->graphics_queue_node_index_; cmd_pool_info.flags = 0, err = vkCreateCommandPool(device(), &cmd_pool_info, NULL, &m_commandPool); assert(!err); m_commandBuffer = new VkCommandBufferObj(m_device, m_commandPool); } void VkRenderFramework::InitViewport(float width, float height) { VkViewport viewport; VkRect2D scissor; viewport.x = 0; viewport.y = 0; viewport.width = 1.f * width; viewport.height = 1.f * height; viewport.minDepth = 0.f; viewport.maxDepth = 1.f; m_viewports.push_back(viewport); scissor.extent.width = (int32_t)width; scissor.extent.height = (int32_t)height; scissor.offset.x = 0; scissor.offset.y = 0; m_scissors.push_back(scissor); m_width = width; m_height = height; } void VkRenderFramework::InitViewport() { InitViewport(m_width, m_height); } void VkRenderFramework::InitRenderTarget() { InitRenderTarget(1); } void VkRenderFramework::InitRenderTarget(uint32_t targets) { InitRenderTarget(targets, NULL); } void VkRenderFramework::InitRenderTarget(VkImageView *dsBinding) { InitRenderTarget(1, dsBinding); } void VkRenderFramework::InitRenderTarget(uint32_t targets, VkImageView *dsBinding) { std::vector attachments; std::vector color_references; std::vector bindings; attachments.reserve(targets + 1); // +1 for dsBinding color_references.reserve(targets); bindings.reserve(targets + 1); // +1 for dsBinding VkAttachmentDescription att = {}; att.format = m_render_target_fmt; att.samples = VK_SAMPLE_COUNT_1_BIT; att.loadOp = (m_clear_via_load_op) ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_LOAD; att.storeOp = VK_ATTACHMENT_STORE_OP_STORE; att.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; att.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; att.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; att.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference ref = {}; ref.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; m_renderPassClearValues.clear(); VkClearValue clear = {}; clear.color = m_clear_color; VkImageView bind = {}; for (uint32_t i = 0; i < targets; i++) { attachments.push_back(att); ref.attachment = i; color_references.push_back(ref); m_renderPassClearValues.push_back(clear); VkImageObj *img = new VkImageObj(m_device); VkFormatProperties props; vkGetPhysicalDeviceFormatProperties(m_device->phy().handle(), m_render_target_fmt, &props); if (props.linearTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) { img->init((uint32_t)m_width, (uint32_t)m_height, m_render_target_fmt, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, VK_IMAGE_TILING_LINEAR); } else if (props.optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) { img->init((uint32_t)m_width, (uint32_t)m_height, m_render_target_fmt, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, VK_IMAGE_TILING_OPTIMAL); } else { FAIL() << "Neither Linear nor Optimal allowed for render target"; } m_renderTargets.push_back(img); bind = img->targetView(m_render_target_fmt); bindings.push_back(bind); } VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.flags = 0; subpass.inputAttachmentCount = 0; subpass.pInputAttachments = NULL; subpass.colorAttachmentCount = targets; subpass.pColorAttachments = color_references.data(); subpass.pResolveAttachments = NULL; VkAttachmentReference ds_reference; if (dsBinding) { att.format = m_depth_stencil_fmt; att.loadOp = (m_clear_via_load_op) ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_LOAD; ; att.storeOp = VK_ATTACHMENT_STORE_OP_STORE; att.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD; att.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE; att.initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; att.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachments.push_back(att); clear.depthStencil.depth = m_depth_clear_color; clear.depthStencil.stencil = m_stencil_clear_color; m_renderPassClearValues.push_back(clear); bindings.push_back(*dsBinding); ds_reference.attachment = targets; ds_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; subpass.pDepthStencilAttachment = &ds_reference; } else { subpass.pDepthStencilAttachment = NULL; } subpass.preserveAttachmentCount = 0; subpass.pPreserveAttachments = NULL; VkRenderPassCreateInfo rp_info = {}; rp_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; rp_info.attachmentCount = attachments.size(); rp_info.pAttachments = attachments.data(); rp_info.subpassCount = 1; rp_info.pSubpasses = &subpass; vkCreateRenderPass(device(), &rp_info, NULL, &m_renderPass); // Create Framebuffer and RenderPass with color attachments and any // depth/stencil attachment VkFramebufferCreateInfo fb_info = {}; fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; fb_info.pNext = NULL; fb_info.renderPass = m_renderPass; fb_info.attachmentCount = bindings.size(); fb_info.pAttachments = bindings.data(); fb_info.width = (uint32_t)m_width; fb_info.height = (uint32_t)m_height; fb_info.layers = 1; vkCreateFramebuffer(device(), &fb_info, NULL, &m_framebuffer); m_renderPassBeginInfo.renderPass = m_renderPass; m_renderPassBeginInfo.framebuffer = m_framebuffer; m_renderPassBeginInfo.renderArea.extent.width = (int32_t)m_width; m_renderPassBeginInfo.renderArea.extent.height = (int32_t)m_height; m_renderPassBeginInfo.clearValueCount = m_renderPassClearValues.size(); m_renderPassBeginInfo.pClearValues = m_renderPassClearValues.data(); } VkDeviceObj::VkDeviceObj(uint32_t id, VkPhysicalDevice obj) : vk_testing::Device(obj), id(id) { init(); props = phy().properties(); queue_props = phy().queue_properties(); } VkDeviceObj::VkDeviceObj(uint32_t id, VkPhysicalDevice obj, std::vector &extension_names, VkPhysicalDeviceFeatures *features) : vk_testing::Device(obj), id(id) { init(extension_names, features); props = phy().properties(); queue_props = phy().queue_properties(); } void VkDeviceObj::get_device_queue() { ASSERT_NE(true, graphics_queues().empty()); m_queue = graphics_queues()[0]->handle(); } VkDescriptorSetObj::VkDescriptorSetObj(VkDeviceObj *device) : m_device(device), m_nextSlot(0) {} VkDescriptorSetObj::~VkDescriptorSetObj() { if (m_set) { delete m_set; } } int VkDescriptorSetObj::AppendDummy() { /* request a descriptor but do not update it */ VkDescriptorSetLayoutBinding binding = {}; binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; binding.descriptorCount = 1; binding.binding = m_layout_bindings.size(); binding.stageFlags = VK_SHADER_STAGE_ALL; binding.pImmutableSamplers = NULL; m_layout_bindings.push_back(binding); m_type_counts[VK_DESCRIPTOR_TYPE_STORAGE_BUFFER] += binding.descriptorCount; return m_nextSlot++; } int VkDescriptorSetObj::AppendBuffer(VkDescriptorType type, VkConstantBufferObj &constantBuffer) { assert(type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER || type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC || type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER || type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC); VkDescriptorSetLayoutBinding binding = {}; binding.descriptorType = type; binding.descriptorCount = 1; binding.binding = m_layout_bindings.size(); binding.stageFlags = VK_SHADER_STAGE_ALL; binding.pImmutableSamplers = NULL; m_layout_bindings.push_back(binding); m_type_counts[type] += binding.descriptorCount; m_writes.push_back(vk_testing::Device::write_descriptor_set(vk_testing::DescriptorSet(), m_nextSlot, 0, type, 1, &constantBuffer.m_descriptorBufferInfo)); return m_nextSlot++; } int VkDescriptorSetObj::AppendSamplerTexture(VkSamplerObj *sampler, VkTextureObj *texture) { VkDescriptorSetLayoutBinding binding = {}; binding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; binding.descriptorCount = 1; binding.binding = m_layout_bindings.size(); binding.stageFlags = VK_SHADER_STAGE_ALL; binding.pImmutableSamplers = NULL; m_layout_bindings.push_back(binding); m_type_counts[VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER] += binding.descriptorCount; VkDescriptorImageInfo tmp = texture->m_imageInfo; tmp.sampler = sampler->handle(); m_imageSamplerDescriptors.push_back(tmp); m_writes.push_back(vk_testing::Device::write_descriptor_set(vk_testing::DescriptorSet(), m_nextSlot, 0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &tmp)); return m_nextSlot++; } VkPipelineLayout VkDescriptorSetObj::GetPipelineLayout() const { return m_pipeline_layout.handle(); } VkDescriptorSet VkDescriptorSetObj::GetDescriptorSetHandle() const { return m_set->handle(); } void VkDescriptorSetObj::CreateVKDescriptorSet(VkCommandBufferObj *commandBuffer) { if (m_type_counts.size()) { // create VkDescriptorPool VkDescriptorPoolSize poolSize; vector sizes; for (auto it = m_type_counts.begin(); it != m_type_counts.end(); ++it) { poolSize.descriptorCount = it->second; poolSize.type = it->first; sizes.push_back(poolSize); } VkDescriptorPoolCreateInfo pool = {}; pool.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; pool.poolSizeCount = sizes.size(); pool.maxSets = 1; pool.pPoolSizes = sizes.data(); init(*m_device, pool); } // create VkDescriptorSetLayout VkDescriptorSetLayoutCreateInfo layout = {}; layout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; layout.bindingCount = m_layout_bindings.size(); layout.pBindings = m_layout_bindings.data(); m_layout.init(*m_device, layout); vector layouts; layouts.push_back(&m_layout); // create VkPipelineLayout VkPipelineLayoutCreateInfo pipeline_layout = {}; pipeline_layout.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pipeline_layout.setLayoutCount = layouts.size(); pipeline_layout.pSetLayouts = NULL; m_pipeline_layout.init(*m_device, pipeline_layout, layouts); if (m_type_counts.size()) { // create VkDescriptorSet m_set = alloc_sets(*m_device, m_layout); // build the update array size_t imageSamplerCount = 0; for (std::vector::iterator it = m_writes.begin(); it != m_writes.end(); it++) { it->dstSet = m_set->handle(); if (it->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) it->pImageInfo = &m_imageSamplerDescriptors[imageSamplerCount++]; } // do the updates m_device->update_descriptor_sets(m_writes); } } VkRenderpassObj::VkRenderpassObj(VkDeviceObj *dev) { // Create a renderPass with a single color attachment VkAttachmentReference attach = {}; attach.layout = VK_IMAGE_LAYOUT_GENERAL; VkSubpassDescription subpass = {}; subpass.pColorAttachments = &attach; subpass.colorAttachmentCount = 1; VkRenderPassCreateInfo rpci = {}; rpci.subpassCount = 1; rpci.pSubpasses = &subpass; rpci.attachmentCount = 1; VkAttachmentDescription attach_desc = {}; attach_desc.format = VK_FORMAT_B8G8R8A8_UNORM; attach_desc.samples = VK_SAMPLE_COUNT_1_BIT; attach_desc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL; rpci.pAttachments = &attach_desc; rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; device = dev->device(); vkCreateRenderPass(device, &rpci, NULL, &m_renderpass); } VkRenderpassObj::~VkRenderpassObj() { vkDestroyRenderPass(device, m_renderpass, NULL); } VkImageObj::VkImageObj(VkDeviceObj *dev) { m_device = dev; m_descriptorImageInfo.imageView = VK_NULL_HANDLE; m_descriptorImageInfo.imageLayout = VK_IMAGE_LAYOUT_GENERAL; } void VkImageObj::ImageMemoryBarrier(VkCommandBufferObj *cmd_buf, VkImageAspectFlags aspect, VkFlags output_mask /*= VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_MEMORY_OUTPUT_COPY_BIT*/, VkFlags input_mask /*= VK_ACCESS_HOST_READ_BIT | VK_ACCESS_INDIRECT_COMMAND_READ_BIT | VK_ACCESS_INDEX_READ_BIT | VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_MEMORY_INPUT_COPY_BIT*/, VkImageLayout image_layout) { const VkImageSubresourceRange subresourceRange = subresource_range(aspect, 0, 1, 0, 1); VkImageMemoryBarrier barrier; barrier = image_memory_barrier(output_mask, input_mask, layout(), image_layout, subresourceRange); VkImageMemoryBarrier *pmemory_barrier = &barrier; VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; // write barrier to the command buffer vkCmdPipelineBarrier(cmd_buf->handle(), src_stages, dest_stages, 0, 0, NULL, 0, NULL, 1, pmemory_barrier); } void VkImageObj::SetLayout(VkCommandBufferObj *cmd_buf, VkImageAspectFlags aspect, VkImageLayout image_layout) { VkFlags src_mask, dst_mask; const VkFlags all_cache_outputs = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; const VkFlags all_cache_inputs = VK_ACCESS_HOST_READ_BIT | VK_ACCESS_INDIRECT_COMMAND_READ_BIT | VK_ACCESS_INDEX_READ_BIT | VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_MEMORY_READ_BIT; if (image_layout == m_descriptorImageInfo.imageLayout) { return; } switch (image_layout) { case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) src_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; else src_mask = VK_ACCESS_TRANSFER_WRITE_BIT; dst_mask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_TRANSFER_READ_BIT; break; case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) src_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; else if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) src_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; else src_mask = VK_ACCESS_TRANSFER_WRITE_BIT; dst_mask = VK_ACCESS_TRANSFER_WRITE_BIT; break; case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) src_mask = VK_ACCESS_TRANSFER_WRITE_BIT; else src_mask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; dst_mask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_MEMORY_READ_BIT; break; case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) src_mask = VK_ACCESS_TRANSFER_READ_BIT; else src_mask = 0; dst_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; break; case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL: dst_mask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; src_mask = all_cache_outputs; break; default: src_mask = all_cache_outputs; dst_mask = all_cache_inputs; break; } if (m_descriptorImageInfo.imageLayout == VK_IMAGE_LAYOUT_UNDEFINED) src_mask = 0; ImageMemoryBarrier(cmd_buf, aspect, src_mask, dst_mask, image_layout); m_descriptorImageInfo.imageLayout = image_layout; } void VkImageObj::SetLayout(VkImageAspectFlags aspect, VkImageLayout image_layout) { VkResult U_ASSERT_ONLY err; if (image_layout == m_descriptorImageInfo.imageLayout) { return; } VkCommandPoolCreateInfo cmd_pool_info = {}; cmd_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; cmd_pool_info.pNext = NULL; cmd_pool_info.queueFamilyIndex = m_device->graphics_queue_node_index_; cmd_pool_info.flags = 0; vk_testing::CommandPool pool(*m_device, cmd_pool_info); VkCommandBufferObj cmd_buf(m_device, pool.handle()); /* Build command buffer to set image layout in the driver */ err = cmd_buf.BeginCommandBuffer(); assert(!err); SetLayout(&cmd_buf, aspect, image_layout); err = cmd_buf.EndCommandBuffer(); assert(!err); cmd_buf.QueueCommandBuffer(); } bool VkImageObj::IsCompatible(VkFlags usage, VkFlags features) { if ((usage & VK_IMAGE_USAGE_SAMPLED_BIT) && !(features & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)) return false; return true; } void VkImageObj::init_no_layout(uint32_t w, uint32_t h, VkFormat fmt, VkFlags usage, VkImageTiling requested_tiling, VkMemoryPropertyFlags reqs) { VkFormatProperties image_fmt; VkImageTiling tiling = VK_IMAGE_TILING_OPTIMAL; vkGetPhysicalDeviceFormatProperties(m_device->phy().handle(), fmt, &image_fmt); if (requested_tiling == VK_IMAGE_TILING_LINEAR) { if (IsCompatible(usage, image_fmt.linearTilingFeatures)) { tiling = VK_IMAGE_TILING_LINEAR; } else if (IsCompatible(usage, image_fmt.optimalTilingFeatures)) { tiling = VK_IMAGE_TILING_OPTIMAL; } else { ASSERT_TRUE(false) << "Error: Cannot find requested tiling configuration"; } } else if (IsCompatible(usage, image_fmt.optimalTilingFeatures)) { tiling = VK_IMAGE_TILING_OPTIMAL; } else if (IsCompatible(usage, image_fmt.linearTilingFeatures)) { tiling = VK_IMAGE_TILING_LINEAR; } else { ASSERT_TRUE(false) << "Error: Cannot find requested tiling configuration"; } VkImageCreateInfo imageCreateInfo = vk_testing::Image::create_info(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = fmt; imageCreateInfo.extent.width = w; imageCreateInfo.extent.height = h; imageCreateInfo.mipLevels = 1; imageCreateInfo.tiling = tiling; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; layout(imageCreateInfo.initialLayout); imageCreateInfo.usage = usage; vk_testing::Image::init(*m_device, imageCreateInfo, reqs); } void VkImageObj::init(uint32_t w, uint32_t h, VkFormat fmt, VkFlags usage, VkImageTiling requested_tiling, VkMemoryPropertyFlags reqs) { init_no_layout(w, h, fmt, usage, requested_tiling, reqs); VkImageLayout newLayout; if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; else if (usage & VK_IMAGE_USAGE_SAMPLED_BIT) newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; else newLayout = m_descriptorImageInfo.imageLayout; VkImageAspectFlags image_aspect = 0; if (vk_format_is_depth_and_stencil(fmt)) { image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT; } else if (vk_format_is_depth_only(fmt)) { image_aspect = VK_IMAGE_ASPECT_DEPTH_BIT; } else if (vk_format_is_stencil_only(fmt)) { image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT; } else { // color image_aspect = VK_IMAGE_ASPECT_COLOR_BIT; } SetLayout(image_aspect, newLayout); } VkResult VkImageObj::CopyImage(VkImageObj &src_image) { VkResult U_ASSERT_ONLY err; VkImageLayout src_image_layout, dest_image_layout; VkCommandPoolCreateInfo cmd_pool_info = {}; cmd_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; cmd_pool_info.pNext = NULL; cmd_pool_info.queueFamilyIndex = m_device->graphics_queue_node_index_; cmd_pool_info.flags = 0; vk_testing::CommandPool pool(*m_device, cmd_pool_info); VkCommandBufferObj cmd_buf(m_device, pool.handle()); /* Build command buffer to copy staging texture to usable texture */ err = cmd_buf.BeginCommandBuffer(); assert(!err); /* TODO: Can we determine image aspect from image object? */ src_image_layout = src_image.layout(); src_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); dest_image_layout = (this->layout() == VK_IMAGE_LAYOUT_UNDEFINED) ? VK_IMAGE_LAYOUT_GENERAL : this->layout(); this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); VkImageCopy copy_region = {}; copy_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copy_region.srcSubresource.baseArrayLayer = 0; copy_region.srcSubresource.mipLevel = 0; copy_region.srcSubresource.layerCount = 1; copy_region.srcOffset.x = 0; copy_region.srcOffset.y = 0; copy_region.srcOffset.z = 0; copy_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copy_region.dstSubresource.baseArrayLayer = 0; copy_region.dstSubresource.mipLevel = 0; copy_region.dstSubresource.layerCount = 1; copy_region.dstOffset.x = 0; copy_region.dstOffset.y = 0; copy_region.dstOffset.z = 0; copy_region.extent = src_image.extent(); vkCmdCopyImage(cmd_buf.handle(), src_image.handle(), src_image.layout(), handle(), layout(), 1, ©_region); src_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, src_image_layout); this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, dest_image_layout); err = cmd_buf.EndCommandBuffer(); assert(!err); cmd_buf.QueueCommandBuffer(); return VK_SUCCESS; } VkTextureObj::VkTextureObj(VkDeviceObj *device, uint32_t *colors) : VkImageObj(device) { m_device = device; const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM; uint32_t tex_colors[2] = {0xffff0000, 0xff00ff00}; void *data; uint32_t x, y; VkImageObj stagingImage(device); VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; stagingImage.init(16, 16, tex_format, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, VK_IMAGE_TILING_LINEAR, reqs); VkSubresourceLayout layout = stagingImage.subresource_layout(subresource(VK_IMAGE_ASPECT_COLOR_BIT, 0, 0)); if (colors == NULL) colors = tex_colors; memset(&m_imageInfo, 0, sizeof(m_imageInfo)); VkImageViewCreateInfo view = {}; view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; view.pNext = NULL; view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = tex_format; view.components.r = VK_COMPONENT_SWIZZLE_R; view.components.g = VK_COMPONENT_SWIZZLE_G; view.components.b = VK_COMPONENT_SWIZZLE_B; view.components.a = VK_COMPONENT_SWIZZLE_A; view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view.subresourceRange.baseMipLevel = 0; view.subresourceRange.levelCount = 1; view.subresourceRange.baseArrayLayer = 0; view.subresourceRange.layerCount = 1; /* create image */ init(16, 16, tex_format, VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL); stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL); /* create image view */ view.image = handle(); m_textureView.init(*m_device, view); m_imageInfo.imageView = m_textureView.handle(); data = stagingImage.MapMemory(); for (y = 0; y < extent().height; y++) { uint32_t *row = (uint32_t *)((char *)data + layout.rowPitch * y); for (x = 0; x < extent().width; x++) row[x] = colors[(x & 1) ^ (y & 1)]; } stagingImage.UnmapMemory(); stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); VkImageObj::CopyImage(stagingImage); } VkSamplerObj::VkSamplerObj(VkDeviceObj *device) { m_device = device; VkSamplerCreateInfo samplerCreateInfo; memset(&samplerCreateInfo, 0, sizeof(samplerCreateInfo)); samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; samplerCreateInfo.magFilter = VK_FILTER_NEAREST; samplerCreateInfo.minFilter = VK_FILTER_NEAREST; samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerCreateInfo.mipLodBias = 0.0; samplerCreateInfo.anisotropyEnable = VK_FALSE; samplerCreateInfo.maxAnisotropy = 1; samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER; samplerCreateInfo.minLod = 0.0; samplerCreateInfo.maxLod = 0.0; samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; samplerCreateInfo.unnormalizedCoordinates = VK_FALSE; init(*m_device, samplerCreateInfo); } /* * Basic ConstantBuffer constructor. Then use create methods to fill in the * details. */ VkConstantBufferObj::VkConstantBufferObj(VkDeviceObj *device, VkBufferUsageFlags usage) { m_device = device; m_commandBuffer = 0; memset(&m_descriptorBufferInfo, 0, sizeof(m_descriptorBufferInfo)); // Special case for usages outside of original limits of framework if ((VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT) != usage) { init_no_mem(*m_device, create_info(0, usage)); } } VkConstantBufferObj::~VkConstantBufferObj() { // TODO: Should we call QueueRemoveMemReference for the constant buffer // memory here? if (m_commandBuffer) { delete m_commandBuffer; delete m_commandPool; } } VkConstantBufferObj::VkConstantBufferObj(VkDeviceObj *device, int constantCount, int constantSize, const void *data, VkBufferUsageFlags usage) { m_device = device; m_commandBuffer = 0; memset(&m_descriptorBufferInfo, 0, sizeof(m_descriptorBufferInfo)); m_numVertices = constantCount; m_stride = constantSize; VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; const VkDeviceSize allocationSize = static_cast(constantCount * constantSize); if ((VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT) == usage) { init_as_src_and_dst(*m_device, allocationSize, reqs); } else { init(*m_device, create_info(allocationSize, usage), reqs); } void *pData = memory().map(); memcpy(pData, data, static_cast(allocationSize)); memory().unmap(); /* * Constant buffers are going to be used as vertex input buffers * or as shader uniform buffers. So, we'll create the shaderbuffer * descriptor here so it's ready if needed. */ this->m_descriptorBufferInfo.buffer = handle(); this->m_descriptorBufferInfo.offset = 0; this->m_descriptorBufferInfo.range = allocationSize; } void VkConstantBufferObj::Bind(VkCommandBuffer commandBuffer, VkDeviceSize offset, uint32_t binding) { vkCmdBindVertexBuffers(commandBuffer, binding, 1, &handle(), &offset); } void VkConstantBufferObj::BufferMemoryBarrier(VkFlags srcAccessMask /*= VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_MEMORY_OUTPUT_COPY_BIT*/, VkFlags dstAccessMask /*= VK_ACCESS_HOST_READ_BIT | VK_ACCESS_INDIRECT_COMMAND_READ_BIT | VK_ACCESS_INDEX_READ_BIT | VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_MEMORY_INPUT_COPY_BIT*/) { VkResult err = VK_SUCCESS; if (!m_commandBuffer) { m_fence.init(*m_device, vk_testing::Fence::create_info()); VkCommandPoolCreateInfo cmd_pool_info = {}; cmd_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; cmd_pool_info.pNext = NULL; cmd_pool_info.queueFamilyIndex = m_device->graphics_queue_node_index_; cmd_pool_info.flags = 0; m_commandPool = new vk_testing::CommandPool(*m_device, cmd_pool_info); m_commandBuffer = new VkCommandBufferObj(m_device, m_commandPool->handle()); } else { m_device->wait(m_fence); } // open the command buffer VkCommandBufferBeginInfo cmd_buf_info = {}; VkCommandBufferInheritanceInfo cmd_buf_hinfo = {}; cmd_buf_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; cmd_buf_info.pNext = NULL; cmd_buf_info.flags = 0; cmd_buf_info.pInheritanceInfo = &cmd_buf_hinfo; cmd_buf_hinfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO; cmd_buf_hinfo.pNext = NULL; cmd_buf_hinfo.renderPass = VK_NULL_HANDLE; cmd_buf_hinfo.subpass = 0; cmd_buf_hinfo.framebuffer = VK_NULL_HANDLE; cmd_buf_hinfo.occlusionQueryEnable = VK_FALSE; cmd_buf_hinfo.queryFlags = 0; cmd_buf_hinfo.pipelineStatistics = 0; err = m_commandBuffer->BeginCommandBuffer(&cmd_buf_info); ASSERT_VK_SUCCESS(err); VkBufferMemoryBarrier memory_barrier = buffer_memory_barrier(srcAccessMask, dstAccessMask, 0, m_numVertices * m_stride); VkBufferMemoryBarrier *pmemory_barrier = &memory_barrier; VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; // write barrier to the command buffer m_commandBuffer->PipelineBarrier(src_stages, dest_stages, 0, 0, NULL, 1, pmemory_barrier, 0, NULL); // finish recording the command buffer err = m_commandBuffer->EndCommandBuffer(); ASSERT_VK_SUCCESS(err); // submit the command buffer to the universal queue VkCommandBuffer bufferArray[1]; bufferArray[0] = m_commandBuffer->GetBufferHandle(); VkSubmitInfo submit_info; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.pNext = NULL; submit_info.waitSemaphoreCount = 0; submit_info.pWaitSemaphores = NULL; submit_info.pWaitDstStageMask = NULL; submit_info.commandBufferCount = 1; submit_info.pCommandBuffers = bufferArray; submit_info.signalSemaphoreCount = 0; submit_info.pSignalSemaphores = NULL; err = vkQueueSubmit(m_device->m_queue, 1, &submit_info, m_fence.handle()); ASSERT_VK_SUCCESS(err); } VkIndexBufferObj::VkIndexBufferObj(VkDeviceObj *device) : VkConstantBufferObj(device) {} void VkIndexBufferObj::CreateAndInitBuffer(int numIndexes, VkIndexType indexType, const void *data) { m_numVertices = numIndexes; m_indexType = indexType; switch (indexType) { case VK_INDEX_TYPE_UINT16: m_stride = 2; break; case VK_INDEX_TYPE_UINT32: m_stride = 4; break; default: assert(!"unknown index type"); m_stride = 2; break; } const size_t allocationSize = numIndexes * m_stride; VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; init_as_src_and_dst(*m_device, allocationSize, reqs); void *pData = memory().map(); memcpy(pData, data, allocationSize); memory().unmap(); // set up the descriptor for the constant buffer this->m_descriptorBufferInfo.buffer = handle(); this->m_descriptorBufferInfo.offset = 0; this->m_descriptorBufferInfo.range = allocationSize; } void VkIndexBufferObj::Bind(VkCommandBuffer commandBuffer, VkDeviceSize offset) { vkCmdBindIndexBuffer(commandBuffer, handle(), offset, m_indexType); } VkIndexType VkIndexBufferObj::GetIndexType() { return m_indexType; } VkPipelineShaderStageCreateInfo VkShaderObj::GetStageCreateInfo() const { VkPipelineShaderStageCreateInfo stageInfo = {}; stageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; stageInfo.stage = m_stage; stageInfo.module = handle(); stageInfo.pName = m_name; return stageInfo; } VkShaderObj::VkShaderObj(VkDeviceObj *device, const char *shader_code, VkShaderStageFlagBits stage, VkRenderFramework *framework, char const *name) { VkResult U_ASSERT_ONLY err = VK_SUCCESS; std::vector spv; VkShaderModuleCreateInfo moduleCreateInfo; size_t shader_len; m_stage = stage; m_device = device; m_name = name; moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; moduleCreateInfo.pNext = NULL; if (framework->m_use_glsl) { shader_len = strlen(shader_code); moduleCreateInfo.codeSize = 3 * sizeof(uint32_t) + shader_len + 1; moduleCreateInfo.pCode = (uint32_t *)malloc(moduleCreateInfo.codeSize); moduleCreateInfo.flags = 0; /* try version 0 first: VkShaderStage followed by GLSL */ ((uint32_t *)moduleCreateInfo.pCode)[0] = ICD_SPV_MAGIC; ((uint32_t *)moduleCreateInfo.pCode)[1] = 0; ((uint32_t *)moduleCreateInfo.pCode)[2] = stage; memcpy(((uint32_t *)moduleCreateInfo.pCode + 3), shader_code, shader_len + 1); } else { // Use Reference GLSL to SPV compiler framework->GLSLtoSPV(stage, shader_code, spv); moduleCreateInfo.pCode = spv.data(); moduleCreateInfo.codeSize = spv.size() * sizeof(unsigned int); moduleCreateInfo.flags = 0; } err = init_try(*m_device, moduleCreateInfo); assert(VK_SUCCESS == err); } VkPipelineObj::VkPipelineObj(VkDeviceObj *device) { m_device = device; m_vi_state.pNext = VK_NULL_HANDLE; m_vi_state.flags = 0; m_vi_state.vertexBindingDescriptionCount = 0; m_vi_state.pVertexBindingDescriptions = VK_NULL_HANDLE; m_vi_state.vertexAttributeDescriptionCount = 0; m_vi_state.pVertexAttributeDescriptions = VK_NULL_HANDLE; m_vertexBufferCount = 0; m_ia_state.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; m_ia_state.pNext = VK_NULL_HANDLE; m_ia_state.flags = 0; m_ia_state.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; m_ia_state.primitiveRestartEnable = VK_FALSE; m_rs_state.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; m_rs_state.pNext = VK_NULL_HANDLE; m_rs_state.flags = 0; m_rs_state.depthClampEnable = VK_TRUE; m_rs_state.rasterizerDiscardEnable = VK_FALSE; m_rs_state.polygonMode = VK_POLYGON_MODE_FILL; m_rs_state.cullMode = VK_CULL_MODE_BACK_BIT; m_rs_state.frontFace = VK_FRONT_FACE_CLOCKWISE; m_rs_state.depthBiasEnable = VK_FALSE; m_rs_state.lineWidth = 1.0f; m_rs_state.depthBiasConstantFactor = 0.0f; m_rs_state.depthBiasClamp = 0.0f; m_rs_state.depthBiasSlopeFactor = 0.0f; memset(&m_cb_state, 0, sizeof(m_cb_state)); m_cb_state.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; m_cb_state.pNext = VK_NULL_HANDLE; m_cb_state.logicOp = VK_LOGIC_OP_COPY; m_cb_state.blendConstants[0] = 1.0f; m_cb_state.blendConstants[1] = 1.0f; m_cb_state.blendConstants[2] = 1.0f; m_cb_state.blendConstants[3] = 1.0f; m_ms_state.pNext = VK_NULL_HANDLE; m_ms_state.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; m_ms_state.flags = 0; m_ms_state.pSampleMask = NULL; m_ms_state.alphaToCoverageEnable = VK_FALSE; m_ms_state.alphaToOneEnable = VK_FALSE; m_ms_state.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; m_ms_state.minSampleShading = 0; m_ms_state.sampleShadingEnable = 0; m_vp_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; m_vp_state.pNext = VK_NULL_HANDLE; m_vp_state.flags = 0; m_vp_state.viewportCount = 1; m_vp_state.scissorCount = 1; m_vp_state.pViewports = NULL; m_vp_state.pScissors = NULL; m_ds_state = nullptr; }; void VkPipelineObj::AddShader(VkShaderObj *shader) { m_shaderObjs.push_back(shader); } void VkPipelineObj::AddVertexInputAttribs(VkVertexInputAttributeDescription *vi_attrib, uint32_t count) { m_vi_state.pVertexAttributeDescriptions = vi_attrib; m_vi_state.vertexAttributeDescriptionCount = count; } void VkPipelineObj::AddVertexInputBindings(VkVertexInputBindingDescription *vi_binding, uint32_t count) { m_vi_state.pVertexBindingDescriptions = vi_binding; m_vi_state.vertexBindingDescriptionCount = count; } void VkPipelineObj::AddColorAttachment(uint32_t binding, const VkPipelineColorBlendAttachmentState *att) { if (binding + 1 > m_colorAttachments.size()) { m_colorAttachments.resize(binding + 1); } m_colorAttachments[binding] = *att; } void VkPipelineObj::SetDepthStencil(const VkPipelineDepthStencilStateCreateInfo *ds_state) { m_ds_state = ds_state; } void VkPipelineObj::SetViewport(const vector viewports) { m_viewports = viewports; // If we explicitly set a null viewport, pass it through to create info // but preserve viewportCount because it musn't change if (m_viewports.size() == 0) { m_vp_state.pViewports = nullptr; } } void VkPipelineObj::SetScissor(const vector scissors) { m_scissors = scissors; // If we explicitly set a null scissors, pass it through to create info // but preserve viewportCount because it musn't change if (m_scissors.size() == 0) { m_vp_state.pScissors = nullptr; } } void VkPipelineObj::MakeDynamic(VkDynamicState state) { /* Only add a state once */ for (auto it = m_dynamic_state_enables.begin(); it != m_dynamic_state_enables.end(); it++) { if ((*it) == state) return; } m_dynamic_state_enables.push_back(state); } void VkPipelineObj::SetMSAA(const VkPipelineMultisampleStateCreateInfo *ms_state) { m_ms_state = *ms_state; } void VkPipelineObj::SetInputAssembly(const VkPipelineInputAssemblyStateCreateInfo *ia_state) { m_ia_state = *ia_state; } void VkPipelineObj::SetRasterization(const VkPipelineRasterizationStateCreateInfo *rs_state) { m_rs_state = *rs_state; } void VkPipelineObj::SetTessellation(const VkPipelineTessellationStateCreateInfo *te_state) { m_te_state = *te_state; } VkResult VkPipelineObj::CreateVKPipeline(VkPipelineLayout layout, VkRenderPass render_pass) { VkGraphicsPipelineCreateInfo info = {}; VkPipelineDynamicStateCreateInfo dsci = {}; info.stageCount = m_shaderObjs.size(); info.pStages = new VkPipelineShaderStageCreateInfo[info.stageCount]; for (size_t i = 0; i < m_shaderObjs.size(); i++) { ((VkPipelineShaderStageCreateInfo *)info.pStages)[i] = m_shaderObjs[i]->GetStageCreateInfo(); } m_vi_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; info.pVertexInputState = &m_vi_state; m_ia_state.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; info.pInputAssemblyState = &m_ia_state; info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; info.pNext = NULL; info.flags = 0; info.layout = layout; m_cb_state.attachmentCount = m_colorAttachments.size(); m_cb_state.pAttachments = m_colorAttachments.data(); if (m_viewports.size() > 0) { m_vp_state.viewportCount = m_viewports.size(); m_vp_state.pViewports = m_viewports.data(); } else { MakeDynamic(VK_DYNAMIC_STATE_VIEWPORT); } if (m_scissors.size() > 0) { m_vp_state.scissorCount = m_scissors.size(); m_vp_state.pScissors = m_scissors.data(); } else { MakeDynamic(VK_DYNAMIC_STATE_SCISSOR); } if (m_dynamic_state_enables.size() > 0) { dsci.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dsci.dynamicStateCount = m_dynamic_state_enables.size(); dsci.pDynamicStates = m_dynamic_state_enables.data(); info.pDynamicState = &dsci; } info.renderPass = render_pass; info.subpass = 0; info.pViewportState = &m_vp_state; info.pRasterizationState = &m_rs_state; info.pMultisampleState = &m_ms_state; info.pDepthStencilState = m_ds_state; info.pColorBlendState = &m_cb_state; if (m_ia_state.topology == VK_PRIMITIVE_TOPOLOGY_PATCH_LIST) { m_te_state.sType = VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO; info.pTessellationState = &m_te_state; } else { info.pTessellationState = nullptr; } return init_try(*m_device, info); } VkCommandBufferObj::VkCommandBufferObj(VkDeviceObj *device, VkCommandPool pool) { m_device = device; init(*device, vk_testing::CommandBuffer::create_info(pool)); } VkCommandBuffer VkCommandBufferObj::GetBufferHandle() { return handle(); } VkResult VkCommandBufferObj::BeginCommandBuffer(VkCommandBufferBeginInfo *pInfo) { begin(pInfo); return VK_SUCCESS; } VkResult VkCommandBufferObj::BeginCommandBuffer() { begin(); return VK_SUCCESS; } VkResult VkCommandBufferObj::EndCommandBuffer() { end(); return VK_SUCCESS; } void VkCommandBufferObj::PipelineBarrier(VkPipelineStageFlags src_stages, VkPipelineStageFlags dest_stages, VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier *pImageMemoryBarriers) { vkCmdPipelineBarrier(handle(), src_stages, dest_stages, dependencyFlags, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers); } void VkCommandBufferObj::ClearAllBuffers(VkClearColorValue clear_color, float depth_clear_color, uint32_t stencil_clear_color, VkDepthStencilObj *depthStencilObj) { uint32_t i; const VkFlags output_mask = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; const VkFlags input_mask = 0; // whatever we want to do, we do it to the whole buffer VkImageSubresourceRange srRange = {}; srRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; srRange.baseMipLevel = 0; srRange.levelCount = VK_REMAINING_MIP_LEVELS; srRange.baseArrayLayer = 0; srRange.layerCount = VK_REMAINING_ARRAY_LAYERS; VkImageMemoryBarrier memory_barrier = {}; memory_barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; memory_barrier.srcAccessMask = output_mask; memory_barrier.dstAccessMask = input_mask; memory_barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL; memory_barrier.subresourceRange = srRange; VkImageMemoryBarrier *pmemory_barrier = &memory_barrier; VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; for (i = 0; i < m_renderTargets.size(); i++) { memory_barrier.image = m_renderTargets[i]->image(); memory_barrier.oldLayout = m_renderTargets[i]->layout(); vkCmdPipelineBarrier(handle(), src_stages, dest_stages, 0, 0, NULL, 0, NULL, 1, pmemory_barrier); m_renderTargets[i]->layout(memory_barrier.newLayout); vkCmdClearColorImage(handle(), m_renderTargets[i]->image(), VK_IMAGE_LAYOUT_GENERAL, &clear_color, 1, &srRange); } if (depthStencilObj) { VkImageSubresourceRange dsRange = {}; dsRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; dsRange.baseMipLevel = 0; dsRange.levelCount = VK_REMAINING_MIP_LEVELS; dsRange.baseArrayLayer = 0; dsRange.layerCount = VK_REMAINING_ARRAY_LAYERS; // prepare the depth buffer for clear memory_barrier.oldLayout = memory_barrier.newLayout; memory_barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL; memory_barrier.image = depthStencilObj->handle(); memory_barrier.subresourceRange = dsRange; vkCmdPipelineBarrier(handle(), src_stages, dest_stages, 0, 0, NULL, 0, NULL, 1, pmemory_barrier); VkClearDepthStencilValue clear_value = {depth_clear_color, stencil_clear_color}; vkCmdClearDepthStencilImage(handle(), depthStencilObj->handle(), VK_IMAGE_LAYOUT_GENERAL, &clear_value, 1, &dsRange); // prepare depth buffer for rendering memory_barrier.image = depthStencilObj->handle(); memory_barrier.newLayout = memory_barrier.oldLayout; memory_barrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL; memory_barrier.subresourceRange = dsRange; vkCmdPipelineBarrier(handle(), src_stages, dest_stages, 0, 0, NULL, 0, NULL, 1, pmemory_barrier); } } void VkCommandBufferObj::FillBuffer(VkBuffer buffer, VkDeviceSize offset, VkDeviceSize fill_size, uint32_t data) { vkCmdFillBuffer(handle(), buffer, offset, fill_size, data); } void VkCommandBufferObj::UpdateBuffer(VkBuffer buffer, VkDeviceSize dstOffset, VkDeviceSize dataSize, const void *pData) { vkCmdUpdateBuffer(handle(), buffer, dstOffset, dataSize, pData); } void VkCommandBufferObj::CopyImage(VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageCopy *pRegions) { vkCmdCopyImage(handle(), srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions); } void VkCommandBufferObj::ResolveImage(VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageResolve *pRegions) { vkCmdResolveImage(handle(), srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions); } void VkCommandBufferObj::PrepareAttachments() { uint32_t i; const VkFlags output_mask = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; const VkFlags input_mask = VK_ACCESS_HOST_READ_BIT | VK_ACCESS_INDIRECT_COMMAND_READ_BIT | VK_ACCESS_INDEX_READ_BIT | VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_MEMORY_READ_BIT; VkImageSubresourceRange srRange = {}; srRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; srRange.baseMipLevel = 0; srRange.levelCount = VK_REMAINING_MIP_LEVELS; srRange.baseArrayLayer = 0; srRange.layerCount = VK_REMAINING_ARRAY_LAYERS; VkImageMemoryBarrier memory_barrier = {}; memory_barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; memory_barrier.srcAccessMask = output_mask; memory_barrier.dstAccessMask = input_mask; memory_barrier.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; memory_barrier.subresourceRange = srRange; VkImageMemoryBarrier *pmemory_barrier = &memory_barrier; VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; for (i = 0; i < m_renderTargets.size(); i++) { memory_barrier.image = m_renderTargets[i]->image(); memory_barrier.oldLayout = m_renderTargets[i]->layout(); vkCmdPipelineBarrier(handle(), src_stages, dest_stages, 0, 0, NULL, 0, NULL, 1, pmemory_barrier); m_renderTargets[i]->layout(memory_barrier.newLayout); } } void VkCommandBufferObj::BeginRenderPass(const VkRenderPassBeginInfo &info) { vkCmdBeginRenderPass(handle(), &info, VK_SUBPASS_CONTENTS_INLINE); } void VkCommandBufferObj::EndRenderPass() { vkCmdEndRenderPass(handle()); } void VkCommandBufferObj::SetViewport(uint32_t firstViewport, uint32_t viewportCount, const VkViewport *pViewports) { vkCmdSetViewport(handle(), firstViewport, viewportCount, pViewports); } void VkCommandBufferObj::SetScissor(uint32_t firstScissor, uint32_t scissorCount, const VkRect2D *pScissors) { vkCmdSetScissor(handle(), firstScissor, scissorCount, pScissors); } void VkCommandBufferObj::SetLineWidth(float lineWidth) { vkCmdSetLineWidth(handle(), lineWidth); } void VkCommandBufferObj::SetDepthBias(float depthBiasConstantFactor, float depthBiasClamp, float depthBiasSlopeFactor) { vkCmdSetDepthBias(handle(), depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor); } void VkCommandBufferObj::SetBlendConstants(const float blendConstants[4]) { vkCmdSetBlendConstants(handle(), blendConstants); } void VkCommandBufferObj::SetDepthBounds(float minDepthBounds, float maxDepthBounds) { vkCmdSetDepthBounds(handle(), minDepthBounds, maxDepthBounds); } void VkCommandBufferObj::SetStencilReadMask(VkStencilFaceFlags faceMask, uint32_t compareMask) { vkCmdSetStencilCompareMask(handle(), faceMask, compareMask); } void VkCommandBufferObj::SetStencilWriteMask(VkStencilFaceFlags faceMask, uint32_t writeMask) { vkCmdSetStencilWriteMask(handle(), faceMask, writeMask); } void VkCommandBufferObj::SetStencilReference(VkStencilFaceFlags faceMask, uint32_t reference) { vkCmdSetStencilReference(handle(), faceMask, reference); } void VkCommandBufferObj::AddRenderTarget(VkImageObj *renderTarget) { m_renderTargets.push_back(renderTarget); } void VkCommandBufferObj::DrawIndexed(uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) { vkCmdDrawIndexed(handle(), indexCount, instanceCount, firstIndex, vertexOffset, firstInstance); } void VkCommandBufferObj::Draw(uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) { vkCmdDraw(handle(), vertexCount, instanceCount, firstVertex, firstInstance); } void VkCommandBufferObj::QueueCommandBuffer(bool checkSuccess) { VkFence nullFence = {VK_NULL_HANDLE}; QueueCommandBuffer(nullFence, checkSuccess); } void VkCommandBufferObj::QueueCommandBuffer(VkFence fence, bool checkSuccess) { VkResult err = VK_SUCCESS; // submit the command buffer to the universal queue VkSubmitInfo submit_info; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.pNext = NULL; submit_info.waitSemaphoreCount = 0; submit_info.pWaitSemaphores = NULL; submit_info.pWaitDstStageMask = NULL; submit_info.commandBufferCount = 1; submit_info.pCommandBuffers = &handle(); submit_info.signalSemaphoreCount = 0; submit_info.pSignalSemaphores = NULL; err = vkQueueSubmit(m_device->m_queue, 1, &submit_info, fence); if (checkSuccess) { ASSERT_VK_SUCCESS(err); } err = vkQueueWaitIdle(m_device->m_queue); if (checkSuccess) { ASSERT_VK_SUCCESS(err); } // Wait for work to finish before cleaning up. vkDeviceWaitIdle(m_device->device()); } void VkCommandBufferObj::BindPipeline(VkPipelineObj &pipeline) { vkCmdBindPipeline(handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline.handle()); } void VkCommandBufferObj::BindDescriptorSet(VkDescriptorSetObj &descriptorSet) { VkDescriptorSet set_obj = descriptorSet.GetDescriptorSetHandle(); // bind pipeline, vertex buffer (descriptor set) and WVP (dynamic buffer // view) vkCmdBindDescriptorSets(handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, descriptorSet.GetPipelineLayout(), 0, 1, &set_obj, 0, NULL); } void VkCommandBufferObj::BindIndexBuffer(VkIndexBufferObj *indexBuffer, VkDeviceSize offset) { vkCmdBindIndexBuffer(handle(), indexBuffer->handle(), offset, indexBuffer->GetIndexType()); } void VkCommandBufferObj::BindVertexBuffer(VkConstantBufferObj *vertexBuffer, VkDeviceSize offset, uint32_t binding) { vkCmdBindVertexBuffers(handle(), binding, 1, &vertexBuffer->handle(), &offset); } bool VkDepthStencilObj::Initialized() { return m_initialized; } VkDepthStencilObj::VkDepthStencilObj(VkDeviceObj *device) : VkImageObj(device) { m_initialized = false; } VkImageView *VkDepthStencilObj::BindInfo() { return &m_attachmentBindInfo; } void VkDepthStencilObj::Init(VkDeviceObj *device, int32_t width, int32_t height, VkFormat format, VkImageUsageFlags usage) { VkImageViewCreateInfo view_info = {}; m_device = device; m_initialized = true; m_depth_stencil_fmt = format; /* create image */ init(width, height, m_depth_stencil_fmt, usage, VK_IMAGE_TILING_OPTIMAL); VkImageAspectFlags aspect = VK_IMAGE_ASPECT_DEPTH_BIT; if (vk_format_is_depth_and_stencil(format)) aspect |= VK_IMAGE_ASPECT_STENCIL_BIT; SetLayout(aspect, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; view_info.pNext = NULL; view_info.image = VK_NULL_HANDLE; view_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; view_info.subresourceRange.baseMipLevel = 0; view_info.subresourceRange.levelCount = 1; view_info.subresourceRange.baseArrayLayer = 0; view_info.subresourceRange.layerCount = 1; view_info.flags = 0; view_info.format = m_depth_stencil_fmt; view_info.image = handle(); view_info.viewType = VK_IMAGE_VIEW_TYPE_2D; m_imageView.init(*m_device, view_info); m_attachmentBindInfo = m_imageView.handle(); }