/* * Wrapper functions for OpenSSL libcrypto * Copyright (c) 2004-2015, Jouni Malinen * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "includes.h" #include #include #include #include #include #include #include #include #include #ifdef CONFIG_OPENSSL_CMAC #include #endif /* CONFIG_OPENSSL_CMAC */ #ifdef CONFIG_ECC #include #endif /* CONFIG_ECC */ #include "common.h" #include "wpabuf.h" #include "dh_group5.h" #include "sha1.h" #include "sha256.h" #include "sha384.h" #include "md5.h" #include "aes_wrap.h" #include "crypto.h" #if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER) /* Compatibility wrappers for older versions. */ static HMAC_CTX * HMAC_CTX_new(void) { HMAC_CTX *ctx; ctx = os_zalloc(sizeof(*ctx)); if (ctx) HMAC_CTX_init(ctx); return ctx; } static void HMAC_CTX_free(HMAC_CTX *ctx) { if (!ctx) return; HMAC_CTX_cleanup(ctx); bin_clear_free(ctx, sizeof(*ctx)); } static EVP_MD_CTX * EVP_MD_CTX_new(void) { EVP_MD_CTX *ctx; ctx = os_zalloc(sizeof(*ctx)); if (ctx) EVP_MD_CTX_init(ctx); return ctx; } static void EVP_MD_CTX_free(EVP_MD_CTX *ctx) { if (!ctx) return; EVP_MD_CTX_cleanup(ctx); bin_clear_free(ctx, sizeof(*ctx)); } #endif /* OpenSSL version < 1.1.0 */ static BIGNUM * get_group5_prime(void) { #if OPENSSL_VERSION_NUMBER >= 0x10100000L && !defined(LIBRESSL_VERSION_NUMBER) return BN_get_rfc3526_prime_1536(NULL); #elif !defined(OPENSSL_IS_BORINGSSL) return get_rfc3526_prime_1536(NULL); #else static const unsigned char RFC3526_PRIME_1536[] = { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, }; return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL); #endif } #ifdef OPENSSL_NO_SHA256 #define NO_SHA256_WRAPPER #endif #ifdef OPENSSL_NO_SHA512 #define NO_SHA384_WRAPPER #endif static int openssl_digest_vector(const EVP_MD *type, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { EVP_MD_CTX *ctx; size_t i; unsigned int mac_len; if (TEST_FAIL()) return -1; ctx = EVP_MD_CTX_new(); if (!ctx) return -1; if (!EVP_DigestInit_ex(ctx, type, NULL)) { wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s", ERR_error_string(ERR_get_error(), NULL)); EVP_MD_CTX_free(ctx); return -1; } for (i = 0; i < num_elem; i++) { if (!EVP_DigestUpdate(ctx, addr[i], len[i])) { wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate " "failed: %s", ERR_error_string(ERR_get_error(), NULL)); EVP_MD_CTX_free(ctx); return -1; } } if (!EVP_DigestFinal(ctx, mac, &mac_len)) { wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s", ERR_error_string(ERR_get_error(), NULL)); EVP_MD_CTX_free(ctx); return -1; } EVP_MD_CTX_free(ctx); return 0; } #ifndef CONFIG_FIPS int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac); } #endif /* CONFIG_FIPS */ void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher) { u8 pkey[8], next, tmp; int i; DES_key_schedule ks; /* Add parity bits to the key */ next = 0; for (i = 0; i < 7; i++) { tmp = key[i]; pkey[i] = (tmp >> i) | next | 1; next = tmp << (7 - i); } pkey[i] = next | 1; DES_set_key((DES_cblock *) &pkey, &ks); DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks, DES_ENCRYPT); } #ifndef CONFIG_NO_RC4 int rc4_skip(const u8 *key, size_t keylen, size_t skip, u8 *data, size_t data_len) { #ifdef OPENSSL_NO_RC4 return -1; #else /* OPENSSL_NO_RC4 */ EVP_CIPHER_CTX *ctx; int outl; int res = -1; unsigned char skip_buf[16]; ctx = EVP_CIPHER_CTX_new(); if (!ctx || !EVP_CIPHER_CTX_set_padding(ctx, 0) || !EVP_CipherInit_ex(ctx, EVP_rc4(), NULL, NULL, NULL, 1) || !EVP_CIPHER_CTX_set_key_length(ctx, keylen) || !EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, 1)) goto out; while (skip >= sizeof(skip_buf)) { size_t len = skip; if (len > sizeof(skip_buf)) len = sizeof(skip_buf); if (!EVP_CipherUpdate(ctx, skip_buf, &outl, skip_buf, len)) goto out; skip -= len; } if (EVP_CipherUpdate(ctx, data, &outl, data, data_len)) res = 0; out: if (ctx) EVP_CIPHER_CTX_free(ctx); return res; #endif /* OPENSSL_NO_RC4 */ } #endif /* CONFIG_NO_RC4 */ #ifndef CONFIG_FIPS int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac); } #endif /* CONFIG_FIPS */ int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac); } #ifndef NO_SHA256_WRAPPER int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac); } #endif /* NO_SHA256_WRAPPER */ #ifndef NO_SHA384_WRAPPER int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return openssl_digest_vector(EVP_sha384(), num_elem, addr, len, mac); } #endif /* NO_SHA384_WRAPPER */ static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen) { switch (keylen) { case 16: return EVP_aes_128_ecb(); #ifndef OPENSSL_IS_BORINGSSL case 24: return EVP_aes_192_ecb(); #endif /* OPENSSL_IS_BORINGSSL */ case 32: return EVP_aes_256_ecb(); } return NULL; } void * aes_encrypt_init(const u8 *key, size_t len) { EVP_CIPHER_CTX *ctx; const EVP_CIPHER *type; if (TEST_FAIL()) return NULL; type = aes_get_evp_cipher(len); if (type == NULL) return NULL; ctx = EVP_CIPHER_CTX_new(); if (ctx == NULL) return NULL; if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) { os_free(ctx); return NULL; } EVP_CIPHER_CTX_set_padding(ctx, 0); return ctx; } void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt) { EVP_CIPHER_CTX *c = ctx; int clen = 16; if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) { wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s", ERR_error_string(ERR_get_error(), NULL)); } } void aes_encrypt_deinit(void *ctx) { EVP_CIPHER_CTX *c = ctx; u8 buf[16]; int len = sizeof(buf); if (EVP_EncryptFinal_ex(c, buf, &len) != 1) { wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: " "%s", ERR_error_string(ERR_get_error(), NULL)); } if (len != 0) { wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d " "in AES encrypt", len); } EVP_CIPHER_CTX_free(c); } void * aes_decrypt_init(const u8 *key, size_t len) { EVP_CIPHER_CTX *ctx; const EVP_CIPHER *type; if (TEST_FAIL()) return NULL; type = aes_get_evp_cipher(len); if (type == NULL) return NULL; ctx = EVP_CIPHER_CTX_new(); if (ctx == NULL) return NULL; if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) { EVP_CIPHER_CTX_free(ctx); return NULL; } EVP_CIPHER_CTX_set_padding(ctx, 0); return ctx; } void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain) { EVP_CIPHER_CTX *c = ctx; int plen = 16; if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) { wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s", ERR_error_string(ERR_get_error(), NULL)); } } void aes_decrypt_deinit(void *ctx) { EVP_CIPHER_CTX *c = ctx; u8 buf[16]; int len = sizeof(buf); if (EVP_DecryptFinal_ex(c, buf, &len) != 1) { wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: " "%s", ERR_error_string(ERR_get_error(), NULL)); } if (len != 0) { wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d " "in AES decrypt", len); } EVP_CIPHER_CTX_free(c); } #ifndef CONFIG_FIPS #ifndef CONFIG_OPENSSL_INTERNAL_AES_WRAP int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher) { AES_KEY actx; int res; if (TEST_FAIL()) return -1; if (AES_set_encrypt_key(kek, kek_len << 3, &actx)) return -1; res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8); OPENSSL_cleanse(&actx, sizeof(actx)); return res <= 0 ? -1 : 0; } int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher, u8 *plain) { AES_KEY actx; int res; if (TEST_FAIL()) return -1; if (AES_set_decrypt_key(kek, kek_len << 3, &actx)) return -1; res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8); OPENSSL_cleanse(&actx, sizeof(actx)); return res <= 0 ? -1 : 0; } #endif /* CONFIG_OPENSSL_INTERNAL_AES_WRAP */ #endif /* CONFIG_FIPS */ int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len) { EVP_CIPHER_CTX *ctx; int clen, len; u8 buf[16]; int res = -1; if (TEST_FAIL()) return -1; ctx = EVP_CIPHER_CTX_new(); if (!ctx) return -1; clen = data_len; len = sizeof(buf); if (EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 && EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 && EVP_EncryptUpdate(ctx, data, &clen, data, data_len) == 1 && clen == (int) data_len && EVP_EncryptFinal_ex(ctx, buf, &len) == 1 && len == 0) res = 0; EVP_CIPHER_CTX_free(ctx); return res; } int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len) { EVP_CIPHER_CTX *ctx; int plen, len; u8 buf[16]; int res = -1; if (TEST_FAIL()) return -1; ctx = EVP_CIPHER_CTX_new(); if (!ctx) return -1; plen = data_len; len = sizeof(buf); if (EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 && EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 && EVP_DecryptUpdate(ctx, data, &plen, data, data_len) == 1 && plen == (int) data_len && EVP_DecryptFinal_ex(ctx, buf, &len) == 1 && len == 0) res = 0; EVP_CIPHER_CTX_free(ctx); return res; } int crypto_mod_exp(const u8 *base, size_t base_len, const u8 *power, size_t power_len, const u8 *modulus, size_t modulus_len, u8 *result, size_t *result_len) { BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result; int ret = -1; BN_CTX *ctx; ctx = BN_CTX_new(); if (ctx == NULL) return -1; bn_base = BN_bin2bn(base, base_len, NULL); bn_exp = BN_bin2bn(power, power_len, NULL); bn_modulus = BN_bin2bn(modulus, modulus_len, NULL); bn_result = BN_new(); if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL || bn_result == NULL) goto error; if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1) goto error; *result_len = BN_bn2bin(bn_result, result); ret = 0; error: BN_clear_free(bn_base); BN_clear_free(bn_exp); BN_clear_free(bn_modulus); BN_clear_free(bn_result); BN_CTX_free(ctx); return ret; } struct crypto_cipher { EVP_CIPHER_CTX *enc; EVP_CIPHER_CTX *dec; }; struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, const u8 *iv, const u8 *key, size_t key_len) { struct crypto_cipher *ctx; const EVP_CIPHER *cipher; ctx = os_zalloc(sizeof(*ctx)); if (ctx == NULL) return NULL; switch (alg) { #ifndef CONFIG_NO_RC4 #ifndef OPENSSL_NO_RC4 case CRYPTO_CIPHER_ALG_RC4: cipher = EVP_rc4(); break; #endif /* OPENSSL_NO_RC4 */ #endif /* CONFIG_NO_RC4 */ #ifndef OPENSSL_NO_AES case CRYPTO_CIPHER_ALG_AES: switch (key_len) { case 16: cipher = EVP_aes_128_cbc(); break; #ifndef OPENSSL_IS_BORINGSSL case 24: cipher = EVP_aes_192_cbc(); break; #endif /* OPENSSL_IS_BORINGSSL */ case 32: cipher = EVP_aes_256_cbc(); break; default: os_free(ctx); return NULL; } break; #endif /* OPENSSL_NO_AES */ #ifndef OPENSSL_NO_DES case CRYPTO_CIPHER_ALG_3DES: cipher = EVP_des_ede3_cbc(); break; case CRYPTO_CIPHER_ALG_DES: cipher = EVP_des_cbc(); break; #endif /* OPENSSL_NO_DES */ #ifndef OPENSSL_NO_RC2 case CRYPTO_CIPHER_ALG_RC2: cipher = EVP_rc2_ecb(); break; #endif /* OPENSSL_NO_RC2 */ default: os_free(ctx); return NULL; } if (!(ctx->enc = EVP_CIPHER_CTX_new()) || !EVP_CIPHER_CTX_set_padding(ctx->enc, 0) || !EVP_EncryptInit_ex(ctx->enc, cipher, NULL, NULL, NULL) || !EVP_CIPHER_CTX_set_key_length(ctx->enc, key_len) || !EVP_EncryptInit_ex(ctx->enc, NULL, NULL, key, iv)) { if (ctx->enc) EVP_CIPHER_CTX_free(ctx->enc); os_free(ctx); return NULL; } if (!(ctx->dec = EVP_CIPHER_CTX_new()) || !EVP_CIPHER_CTX_set_padding(ctx->dec, 0) || !EVP_DecryptInit_ex(ctx->dec, cipher, NULL, NULL, NULL) || !EVP_CIPHER_CTX_set_key_length(ctx->dec, key_len) || !EVP_DecryptInit_ex(ctx->dec, NULL, NULL, key, iv)) { EVP_CIPHER_CTX_free(ctx->enc); if (ctx->dec) EVP_CIPHER_CTX_free(ctx->dec); os_free(ctx); return NULL; } return ctx; } int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain, u8 *crypt, size_t len) { int outl; if (!EVP_EncryptUpdate(ctx->enc, crypt, &outl, plain, len)) return -1; return 0; } int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt, u8 *plain, size_t len) { int outl; outl = len; if (!EVP_DecryptUpdate(ctx->dec, plain, &outl, crypt, len)) return -1; return 0; } void crypto_cipher_deinit(struct crypto_cipher *ctx) { EVP_CIPHER_CTX_free(ctx->enc); EVP_CIPHER_CTX_free(ctx->dec); os_free(ctx); } void * dh5_init(struct wpabuf **priv, struct wpabuf **publ) { #if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER) DH *dh; struct wpabuf *pubkey = NULL, *privkey = NULL; size_t publen, privlen; *priv = NULL; wpabuf_free(*publ); *publ = NULL; dh = DH_new(); if (dh == NULL) return NULL; dh->g = BN_new(); if (dh->g == NULL || BN_set_word(dh->g, 2) != 1) goto err; dh->p = get_group5_prime(); if (dh->p == NULL) goto err; if (DH_generate_key(dh) != 1) goto err; publen = BN_num_bytes(dh->pub_key); pubkey = wpabuf_alloc(publen); if (pubkey == NULL) goto err; privlen = BN_num_bytes(dh->priv_key); privkey = wpabuf_alloc(privlen); if (privkey == NULL) goto err; BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen)); BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen)); *priv = privkey; *publ = pubkey; return dh; err: wpabuf_clear_free(pubkey); wpabuf_clear_free(privkey); DH_free(dh); return NULL; #else DH *dh; struct wpabuf *pubkey = NULL, *privkey = NULL; size_t publen, privlen; BIGNUM *p = NULL, *g; const BIGNUM *priv_key = NULL, *pub_key = NULL; *priv = NULL; wpabuf_free(*publ); *publ = NULL; dh = DH_new(); if (dh == NULL) return NULL; g = BN_new(); p = get_group5_prime(); if (!g || BN_set_word(g, 2) != 1 || !p || DH_set0_pqg(dh, p, NULL, g) != 1) goto err; p = NULL; g = NULL; if (DH_generate_key(dh) != 1) goto err; DH_get0_key(dh, &pub_key, &priv_key); publen = BN_num_bytes(pub_key); pubkey = wpabuf_alloc(publen); if (!pubkey) goto err; privlen = BN_num_bytes(priv_key); privkey = wpabuf_alloc(privlen); if (!privkey) goto err; BN_bn2bin(pub_key, wpabuf_put(pubkey, publen)); BN_bn2bin(priv_key, wpabuf_put(privkey, privlen)); *priv = privkey; *publ = pubkey; return dh; err: BN_free(p); BN_free(g); wpabuf_clear_free(pubkey); wpabuf_clear_free(privkey); DH_free(dh); return NULL; #endif } void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ) { #if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER) DH *dh; dh = DH_new(); if (dh == NULL) return NULL; dh->g = BN_new(); if (dh->g == NULL || BN_set_word(dh->g, 2) != 1) goto err; dh->p = get_group5_prime(); if (dh->p == NULL) goto err; dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL); if (dh->priv_key == NULL) goto err; dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL); if (dh->pub_key == NULL) goto err; if (DH_generate_key(dh) != 1) goto err; return dh; err: DH_free(dh); return NULL; #else DH *dh; BIGNUM *p = NULL, *g, *priv_key = NULL, *pub_key = NULL; dh = DH_new(); if (dh == NULL) return NULL; g = BN_new(); p = get_group5_prime(); if (!g || BN_set_word(g, 2) != 1 || !p || DH_set0_pqg(dh, p, NULL, g) != 1) goto err; p = NULL; g = NULL; priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL); pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL); if (!priv_key || !pub_key || DH_set0_key(dh, pub_key, priv_key) != 1) goto err; pub_key = NULL; priv_key = NULL; if (DH_generate_key(dh) != 1) goto err; return dh; err: BN_free(p); BN_free(g); BN_free(pub_key); BN_clear_free(priv_key); DH_free(dh); return NULL; #endif } struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public, const struct wpabuf *own_private) { BIGNUM *pub_key; struct wpabuf *res = NULL; size_t rlen; DH *dh = ctx; int keylen; if (ctx == NULL) return NULL; pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public), NULL); if (pub_key == NULL) return NULL; rlen = DH_size(dh); res = wpabuf_alloc(rlen); if (res == NULL) goto err; keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh); if (keylen < 0) goto err; wpabuf_put(res, keylen); BN_clear_free(pub_key); return res; err: BN_clear_free(pub_key); wpabuf_clear_free(res); return NULL; } void dh5_free(void *ctx) { DH *dh; if (ctx == NULL) return; dh = ctx; DH_free(dh); } struct crypto_hash { HMAC_CTX *ctx; }; struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, size_t key_len) { struct crypto_hash *ctx; const EVP_MD *md; switch (alg) { #ifndef OPENSSL_NO_MD5 case CRYPTO_HASH_ALG_HMAC_MD5: md = EVP_md5(); break; #endif /* OPENSSL_NO_MD5 */ #ifndef OPENSSL_NO_SHA case CRYPTO_HASH_ALG_HMAC_SHA1: md = EVP_sha1(); break; #endif /* OPENSSL_NO_SHA */ #ifndef OPENSSL_NO_SHA256 #ifdef CONFIG_SHA256 case CRYPTO_HASH_ALG_HMAC_SHA256: md = EVP_sha256(); break; #endif /* CONFIG_SHA256 */ #endif /* OPENSSL_NO_SHA256 */ default: return NULL; } ctx = os_zalloc(sizeof(*ctx)); if (ctx == NULL) return NULL; ctx->ctx = HMAC_CTX_new(); if (!ctx->ctx) { os_free(ctx); return NULL; } if (HMAC_Init_ex(ctx->ctx, key, key_len, md, NULL) != 1) { HMAC_CTX_free(ctx->ctx); bin_clear_free(ctx, sizeof(*ctx)); return NULL; } return ctx; } void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len) { if (ctx == NULL) return; HMAC_Update(ctx->ctx, data, len); } int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len) { unsigned int mdlen; int res; if (ctx == NULL) return -2; if (mac == NULL || len == NULL) { HMAC_CTX_free(ctx->ctx); bin_clear_free(ctx, sizeof(*ctx)); return 0; } mdlen = *len; res = HMAC_Final(ctx->ctx, mac, &mdlen); HMAC_CTX_free(ctx->ctx); bin_clear_free(ctx, sizeof(*ctx)); if (res == 1) { *len = mdlen; return 0; } return -1; } static int openssl_hmac_vector(const EVP_MD *type, const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac, unsigned int mdlen) { HMAC_CTX *ctx; size_t i; int res; if (TEST_FAIL()) return -1; ctx = HMAC_CTX_new(); if (!ctx) return -1; res = HMAC_Init_ex(ctx, key, key_len, type, NULL); if (res != 1) goto done; for (i = 0; i < num_elem; i++) HMAC_Update(ctx, addr[i], len[i]); res = HMAC_Final(ctx, mac, &mdlen); done: HMAC_CTX_free(ctx); return res == 1 ? 0 : -1; } #ifndef CONFIG_FIPS int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len, mac, 16); } int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac); } #endif /* CONFIG_FIPS */ int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len, int iterations, u8 *buf, size_t buflen) { if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid, ssid_len, iterations, buflen, buf) != 1) return -1; return 0; } int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr, len, mac, 20); } int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac); } #ifdef CONFIG_SHA256 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr, len, mac, 32); } int hmac_sha256(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac); } #endif /* CONFIG_SHA256 */ #ifdef CONFIG_SHA384 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr, len, mac, 48); } int hmac_sha384(const u8 *key, size_t key_len, const u8 *data, size_t data_len, u8 *mac) { return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac); } #endif /* CONFIG_SHA384 */ int crypto_get_random(void *buf, size_t len) { if (RAND_bytes(buf, len) != 1) return -1; return 0; } #ifdef CONFIG_OPENSSL_CMAC int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { CMAC_CTX *ctx; int ret = -1; size_t outlen, i; if (TEST_FAIL()) return -1; ctx = CMAC_CTX_new(); if (ctx == NULL) return -1; if (key_len == 32) { if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL)) goto fail; } else if (key_len == 16) { if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL)) goto fail; } else { goto fail; } for (i = 0; i < num_elem; i++) { if (!CMAC_Update(ctx, addr[i], len[i])) goto fail; } if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16) goto fail; ret = 0; fail: CMAC_CTX_free(ctx); return ret; } int omac1_aes_128_vector(const u8 *key, size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) { return omac1_aes_vector(key, 16, num_elem, addr, len, mac); } int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac) { return omac1_aes_128_vector(key, 1, &data, &data_len, mac); } int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac) { return omac1_aes_vector(key, 32, 1, &data, &data_len, mac); } #endif /* CONFIG_OPENSSL_CMAC */ struct crypto_bignum * crypto_bignum_init(void) { if (TEST_FAIL()) return NULL; return (struct crypto_bignum *) BN_new(); } struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len) { BIGNUM *bn; if (TEST_FAIL()) return NULL; bn = BN_bin2bn(buf, len, NULL); return (struct crypto_bignum *) bn; } void crypto_bignum_deinit(struct crypto_bignum *n, int clear) { if (clear) BN_clear_free((BIGNUM *) n); else BN_free((BIGNUM *) n); } int crypto_bignum_to_bin(const struct crypto_bignum *a, u8 *buf, size_t buflen, size_t padlen) { int num_bytes, offset; if (TEST_FAIL()) return -1; if (padlen > buflen) return -1; num_bytes = BN_num_bytes((const BIGNUM *) a); if ((size_t) num_bytes > buflen) return -1; if (padlen > (size_t) num_bytes) offset = padlen - num_bytes; else offset = 0; os_memset(buf, 0, offset); BN_bn2bin((const BIGNUM *) a, buf + offset); return num_bytes + offset; } int crypto_bignum_add(const struct crypto_bignum *a, const struct crypto_bignum *b, struct crypto_bignum *c) { return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ? 0 : -1; } int crypto_bignum_mod(const struct crypto_bignum *a, const struct crypto_bignum *b, struct crypto_bignum *c) { int res; BN_CTX *bnctx; bnctx = BN_CTX_new(); if (bnctx == NULL) return -1; res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b, bnctx); BN_CTX_free(bnctx); return res ? 0 : -1; } int crypto_bignum_exptmod(const struct crypto_bignum *a, const struct crypto_bignum *b, const struct crypto_bignum *c, struct crypto_bignum *d) { int res; BN_CTX *bnctx; if (TEST_FAIL()) return -1; bnctx = BN_CTX_new(); if (bnctx == NULL) return -1; res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b, (const BIGNUM *) c, bnctx); BN_CTX_free(bnctx); return res ? 0 : -1; } int crypto_bignum_inverse(const struct crypto_bignum *a, const struct crypto_bignum *b, struct crypto_bignum *c) { BIGNUM *res; BN_CTX *bnctx; if (TEST_FAIL()) return -1; bnctx = BN_CTX_new(); if (bnctx == NULL) return -1; res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b, bnctx); BN_CTX_free(bnctx); return res ? 0 : -1; } int crypto_bignum_sub(const struct crypto_bignum *a, const struct crypto_bignum *b, struct crypto_bignum *c) { if (TEST_FAIL()) return -1; return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ? 0 : -1; } int crypto_bignum_div(const struct crypto_bignum *a, const struct crypto_bignum *b, struct crypto_bignum *c) { int res; BN_CTX *bnctx; if (TEST_FAIL()) return -1; bnctx = BN_CTX_new(); if (bnctx == NULL) return -1; res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a, (const BIGNUM *) b, bnctx); BN_CTX_free(bnctx); return res ? 0 : -1; } int crypto_bignum_mulmod(const struct crypto_bignum *a, const struct crypto_bignum *b, const struct crypto_bignum *c, struct crypto_bignum *d) { int res; BN_CTX *bnctx; if (TEST_FAIL()) return -1; bnctx = BN_CTX_new(); if (bnctx == NULL) return -1; res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b, (const BIGNUM *) c, bnctx); BN_CTX_free(bnctx); return res ? 0 : -1; } int crypto_bignum_cmp(const struct crypto_bignum *a, const struct crypto_bignum *b) { return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b); } int crypto_bignum_bits(const struct crypto_bignum *a) { return BN_num_bits((const BIGNUM *) a); } int crypto_bignum_is_zero(const struct crypto_bignum *a) { return BN_is_zero((const BIGNUM *) a); } int crypto_bignum_is_one(const struct crypto_bignum *a) { return BN_is_one((const BIGNUM *) a); } int crypto_bignum_legendre(const struct crypto_bignum *a, const struct crypto_bignum *p) { BN_CTX *bnctx; BIGNUM *exp = NULL, *tmp = NULL; int res = -2; if (TEST_FAIL()) return -2; bnctx = BN_CTX_new(); if (bnctx == NULL) return -2; exp = BN_new(); tmp = BN_new(); if (!exp || !tmp || /* exp = (p-1) / 2 */ !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) || !BN_rshift1(exp, exp) || !BN_mod_exp(tmp, (const BIGNUM *) a, exp, (const BIGNUM *) p, bnctx)) goto fail; if (BN_is_word(tmp, 1)) res = 1; else if (BN_is_zero(tmp)) res = 0; else res = -1; fail: BN_clear_free(tmp); BN_clear_free(exp); BN_CTX_free(bnctx); return res; } #ifdef CONFIG_ECC struct crypto_ec { EC_GROUP *group; BN_CTX *bnctx; BIGNUM *prime; BIGNUM *order; BIGNUM *a; BIGNUM *b; }; struct crypto_ec * crypto_ec_init(int group) { struct crypto_ec *e; int nid; /* Map from IANA registry for IKE D-H groups to OpenSSL NID */ switch (group) { case 19: nid = NID_X9_62_prime256v1; break; case 20: nid = NID_secp384r1; break; case 21: nid = NID_secp521r1; break; case 25: nid = NID_X9_62_prime192v1; break; case 26: nid = NID_secp224r1; break; #ifdef NID_brainpoolP224r1 case 27: nid = NID_brainpoolP224r1; break; #endif /* NID_brainpoolP224r1 */ #ifdef NID_brainpoolP256r1 case 28: nid = NID_brainpoolP256r1; break; #endif /* NID_brainpoolP256r1 */ #ifdef NID_brainpoolP384r1 case 29: nid = NID_brainpoolP384r1; break; #endif /* NID_brainpoolP384r1 */ #ifdef NID_brainpoolP512r1 case 30: nid = NID_brainpoolP512r1; break; #endif /* NID_brainpoolP512r1 */ default: return NULL; } e = os_zalloc(sizeof(*e)); if (e == NULL) return NULL; e->bnctx = BN_CTX_new(); e->group = EC_GROUP_new_by_curve_name(nid); e->prime = BN_new(); e->order = BN_new(); e->a = BN_new(); e->b = BN_new(); if (e->group == NULL || e->bnctx == NULL || e->prime == NULL || e->order == NULL || e->a == NULL || e->b == NULL || !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) || !EC_GROUP_get_order(e->group, e->order, e->bnctx)) { crypto_ec_deinit(e); e = NULL; } return e; } void crypto_ec_deinit(struct crypto_ec *e) { if (e == NULL) return; BN_clear_free(e->b); BN_clear_free(e->a); BN_clear_free(e->order); BN_clear_free(e->prime); EC_GROUP_free(e->group); BN_CTX_free(e->bnctx); os_free(e); } struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e) { if (TEST_FAIL()) return NULL; if (e == NULL) return NULL; return (struct crypto_ec_point *) EC_POINT_new(e->group); } size_t crypto_ec_prime_len(struct crypto_ec *e) { return BN_num_bytes(e->prime); } size_t crypto_ec_prime_len_bits(struct crypto_ec *e) { return BN_num_bits(e->prime); } const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e) { return (const struct crypto_bignum *) e->prime; } const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e) { return (const struct crypto_bignum *) e->order; } void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear) { if (clear) EC_POINT_clear_free((EC_POINT *) p); else EC_POINT_free((EC_POINT *) p); } int crypto_ec_point_to_bin(struct crypto_ec *e, const struct crypto_ec_point *point, u8 *x, u8 *y) { BIGNUM *x_bn, *y_bn; int ret = -1; int len = BN_num_bytes(e->prime); if (TEST_FAIL()) return -1; x_bn = BN_new(); y_bn = BN_new(); if (x_bn && y_bn && EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point, x_bn, y_bn, e->bnctx)) { if (x) { crypto_bignum_to_bin((struct crypto_bignum *) x_bn, x, len, len); } if (y) { crypto_bignum_to_bin((struct crypto_bignum *) y_bn, y, len, len); } ret = 0; } BN_clear_free(x_bn); BN_clear_free(y_bn); return ret; } struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, const u8 *val) { BIGNUM *x, *y; EC_POINT *elem; int len = BN_num_bytes(e->prime); if (TEST_FAIL()) return NULL; x = BN_bin2bn(val, len, NULL); y = BN_bin2bn(val + len, len, NULL); elem = EC_POINT_new(e->group); if (x == NULL || y == NULL || elem == NULL) { BN_clear_free(x); BN_clear_free(y); EC_POINT_clear_free(elem); return NULL; } if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y, e->bnctx)) { EC_POINT_clear_free(elem); elem = NULL; } BN_clear_free(x); BN_clear_free(y); return (struct crypto_ec_point *) elem; } int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, const struct crypto_ec_point *b, struct crypto_ec_point *c) { if (TEST_FAIL()) return -1; return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a, (const EC_POINT *) b, e->bnctx) ? 0 : -1; } int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, const struct crypto_bignum *b, struct crypto_ec_point *res) { if (TEST_FAIL()) return -1; return EC_POINT_mul(e->group, (EC_POINT *) res, NULL, (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx) ? 0 : -1; } int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p) { if (TEST_FAIL()) return -1; return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1; } int crypto_ec_point_solve_y_coord(struct crypto_ec *e, struct crypto_ec_point *p, const struct crypto_bignum *x, int y_bit) { if (TEST_FAIL()) return -1; if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p, (const BIGNUM *) x, y_bit, e->bnctx) || !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx)) return -1; return 0; } struct crypto_bignum * crypto_ec_point_compute_y_sqr(struct crypto_ec *e, const struct crypto_bignum *x) { BIGNUM *tmp, *tmp2, *y_sqr = NULL; if (TEST_FAIL()) return NULL; tmp = BN_new(); tmp2 = BN_new(); /* y^2 = x^3 + ax + b */ if (tmp && tmp2 && BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) && BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) && BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) && BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) && BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) { y_sqr = tmp2; tmp2 = NULL; } BN_clear_free(tmp); BN_clear_free(tmp2); return (struct crypto_bignum *) y_sqr; } int crypto_ec_point_is_at_infinity(struct crypto_ec *e, const struct crypto_ec_point *p) { return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p); } int crypto_ec_point_is_on_curve(struct crypto_ec *e, const struct crypto_ec_point *p) { return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, e->bnctx) == 1; } int crypto_ec_point_cmp(const struct crypto_ec *e, const struct crypto_ec_point *a, const struct crypto_ec_point *b) { return EC_POINT_cmp(e->group, (const EC_POINT *) a, (const EC_POINT *) b, e->bnctx); } #endif /* CONFIG_ECC */